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Abstract. Minimal acyclic deterministic finite automata (MADFAs) are used to rep-
resent dictionaries, i.e., finite sets of finite words, in, e.g., spell checkers and network
security applications. Given the size of such dictionaries, which may contain millions
of words, their efficient construction is a critical issue. Watson [31] published a classi-
fication of such algorithms in an algorithm taxonomy with correctness arguments. We
report on a new algorithm which constructs MADFAs in parallel—each for a keyword
set from a partition of the original keyword set—and afterwards merges and minimizes
the resulting automata into a single MADFA; on our experience implementing the
algorithms in a Java-based toolkit; and on empirical performance results obtained.
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1 Introduction

Minimal acyclic deterministic finite automata (MADFAs) are frequently used to rep-
resent dictionaries, i.e., finite sets of finite words, in, e.g., spell checkers, network
security, packet filtering applications, and other tools. Given the size of such dictio-
naries, which may run into millions of words, their efficient construction is a critical
issue [31]. Acyclic Deterministic Finite Automata (ADFAs) consist of a set of states,
one of them being a start state, and one or more of them being final states; and la-
beled transitions between states. They are deterministic, i.e., each state has at most
one out-transition for a specific label; and they are acyclic, i.e. as their name says, no
transition cycles occur. An ADFA is a MADFA if no other ADFA with fewer states ac-
cepts the same set of words. This makes MADFAs an excellent data structure to store
large finite word sets like dictionaries. As a result, quite some research has gone into
MADFA construction algorithms (see Section 2). Yet, no coherent implementation
covering all these algorithm variants exists.

In this paper, we make the following contributions: we provide a two-dimensional
presentation of Watson’s implicit taxonomy of sequential MADFA construction algo-
rithms [31], as well as an implementation of the seven sequential MADFA algorithms
from that taxonomy in a Java-based toolkit. Furthermore, we develop a new par-
allel approach to MADFA construction, offering a versatile family of algorithms for
MADFA construction in contexts where concurrent processing is available or pre-
ferred. Using one of the existing, sequential algorithms, the new algorithm constructs
MADFAs in parallel—one for each of a partition of the original keyword set—and
afterwards merges and minimizes the resulting automata into a single MADFA. The
merger process is newly implemented, but the minimization step is the same as that
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in one of the existing, sequential MADFA algorithms. Finally, we provide the results
of benchmarking the algorithms to evaluate their performance relative to each other.1

The work reported here contrasts with related work as follows: typically, there are
several implementations of each of the known algorithms (see the next section), but
previously only one publicly available comprehensive toolkit (that by Jan Daciuk,
available at www.jandaciuk.pl/fsa.html); our contribution is another such toolkit,
built from a uniformly styled presentation of the algorithms [31]; previously, there
have also been few comprehensive benchmarks where the algorithms are implemented
in the same style and emperically compared against each other.

2 Related work and a short history

The following history is distilled from [31], which is until now the most comprehen-
sive such collection of derivations of MADFA construction algorithms. Jan Daciuk
maintains implementations of many MADFA construction algorithms and has au-
thored what is arguably the most comprehensive work on optimization, minimization
and implementation/engineering issues as related to automata [9] in addition to his
extensive algorithmic work in this field (detailed below).

Before the 1990s, some MADFA construction algorithms may have been known
and used in proprietary (commercial, trade-secret) software. The first efficient (lin-
ear time and space) algorithm was published by Dominique Revuz in the early
1990s [21,22]. Revuz’s main algorithm uses an ordering of the words to quickly com-
press the endings of the words within the dictionary. Recent derivations by Johannes
Bubenzer and Thomas Hanneforth have yielded efficient new algorithms bearing a
resemblance to Revuz’s [3]. These algorithm variants are essentially what appears as
Algorithm Trie in Fig. 1; in that figure, Algorithm General is a generalized version of
Revuz’s algorithm, first presented in [31].

By the mid-1990s, several groups were working independently on incremental

MADFA construction algorithms. In 1996–1997, Jan Daciuk derived several incre-
mental algorithms as part of his PhD work [8]: one relying on the words being in
lexicographic order. In 1996, Richard and Bruce Watson derived a generalized in-
cremental algorithm, which included the possibility of incrementally removing words
while maintaining minimality; owing to its commercial value, the algorithm was not
published at that time. Collaboration between Daciuk, Watson & Watson led to [11].
More or less concurrently, Stoyan Mihov PhD work derived parts of the same algo-
rithms [18], and further collaboration yielded [10] by Daciuk, Mihov, Watson & Wat-
son. In the domain of pattern matching, Park et al derived a similar algorithm [19],
while in program verification, Gerard Holzmann and Anuj Puri [14] discovered a re-
stricted form of the algorithm, in which all words accepted by the automaton are
the same length. In early 2000, Daciuk unearthed the derivational work of Sgarbas et
al (an incremental algorithm [24]) and Marcin Ciura and Sebastian Deorowicz (lex-
icographic order algorithm, including some benchmarking [5]). Also in 2000, Revuz
presented essentially the generalized algorithm [23]—though he also sketched word
deletion algorithms similar to those previously derived by Watson & Watson. Jorge
Graña et al subsequently summarized some of the current results and made improve-
ments to several of the algorithms [13]. The generalized algorithm has also been
extended by Rafael Carrasco and Mikel Forcada to handle cyclic automata [4]. In

1 We are not focusing on absolute performance or on further tuning of the algorithms.
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this paper, the generalized incremental algorithm is Algorithm Incremental in Fig. 1,
while the sorted-input algorithm is Algorithm Sorted in the same figure. An alterna-
tive sorted-input algorithm (based on arbitrary sortings of decreasing lengths of the
words) was developed in [31, Chapter 10], and appears in Fig. 1 as Algorithm Depth

Layered.
In 1998, Watson derived a semi-incremental MADFA construction algorithm [29].

Such an algorithm does a form of pseudo (or near) minimization incrementally as
words are added; after all words are added, a final ‘cleanup’ phase is required to
reach true minimality. This is Algorithm Semi-Incremental in Fig. 1. In the same
year, Watson used Brzozowski’s minimization algorithm to give an elegant MADFA
construction algorithm in [27,28] (which maps to Algorithm Reverse in Fig. 1). Con-
currently, Watson derived a simple recursive algorithm in [30]; that algorithm does
not appear separately in this paper’s work, as it is a variant of Algorithm Incre-

mental. Aside from [31], to which this paper relates, early taxonomies/classifications
appeared [26].

3 Taxonomy and Algorithms

Algorithm taxonomies hierarchically structure algorithms stemming from a domain,
in order to facilitate comparison and emphasize algorithms’ similarities. The root
of such a classification is formed by an abstract algorithm, and branches refine a
parent algorithm into more concrete child algorithms. As such, by proving or at
least considering the correctness of each such branch or refinement, one can prove or
convince oneself of the correctness of each and every algorithm in the taxonomy.

Algorithm taxonomies have been in use since at least the 1970s; for example,
Darlington [12] and Broy [1] classified different sorting algorithms, while Jonkers [15]
classified garbage collection algorithms, and did so with an emphasis on correctness.
Building on Jonkers’ style, Marcelis considered attribute evaluation algorithms [16],
while Watson presented taxonomies of string pattern matching and automata related
algorithms [25]. Cleophas [6] similarly treated tree pattern matching and automata.
Pieterse, going beyond just taxonomies, recently published a thesis on the use of topic
maps for structuring algorithmic knowledge, including a topic map and taxonomy of
transitive closure algorithms [20].

Algorithm taxonomies can also form the starting point for the development of
implementations, as is done in the TABASCO method [7] where toolkit implemen-
tations of the taxonomised family are derived from the taxonomies. The taxonomies’
structure guides that of a corresponding toolkit, including ensuring reuse of common
algorithm parts and hence common implementation parts. The correctness arguments
contained in the taxonomies provide confidence in the correctness of the implemen-
tations as well.

3.1 A two-dimensional taxonomy of MADFA construction

The seven known MADFA construction algorithms have been classified hierarchically
in a taxonomy, to facilitate comparison, highlight similarities, and reason about cor-
rectness [31]. The root represents an abstract model of the algorithms, with methods
add word to add an individual word—resulting in a not necessarily minimal ADFA—
and cleanup to ensure the final result is again a MADFA. The method add word is
called for every word in the set of input words, after which a call to cleanup minimizes
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the ADFA to a corresponding MADFA. Some algorithms do not follow the separation
between adding words and cleanup; these algorithms partially minimize the automa-
ton during add word and need just a single, final call to cleanup. In Figure 1, we
show a taxonomy graph, conceptually representing the MADFA construction taxon-
omy that was left somewhat implicit in [31]. The algorithms are depicted as circles.
They always have one link to an add word method and one to a cleanup method.
Both methods are depicted as rectangles. The connectors between the methods show
the hierarchy. Algorithm-Skeleton has the two abstract methods add word -Skeleton
and cleanup-Skeleton; and both are refined by the specific algorithms.
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Figure 1. Taxonomy of the sequential MADFA construction algorithms

The method add word is classified as follows. add word of Algorithm Trie is the
base for all the other algorithms. This method adds words by adding a path for ev-
ery new word. The result is a trie. The Algorithm General extends the process such
that the method is applicable for arbitrary ADFAs instead of just tries. The other
four algorithms directly connected to Algorithm Trie’s add word method extend this
add word method with a minimization step. Finally, the Algorithm Incremental in-
herits from General directly and also adds a minimization step to this method. For
the method cleanup, we can not find many commonalities between the different vari-
ants of the algorithms. All the considered algorithms have different cleanup methods,
except for Algorithm Trie and General, which both use the same cleanup method.
As a result, the method add word is related in each algorithm and can be refined
hierarchically, but the method cleanup differs between most algorithms.

As we will see in Section 3, a novel, parallel approach was developed which uses
parallel threads to construct MADFAs and finally merge them into a single MADFA.
This approach forms a whole new family of MADFA construction algorithms, as in
each of the parallel MADFA construction threads, any of the algorithms from the
above taxonomy can be used. The algorithm family corresponding to this parallel
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approach is not shown in Figure 1 because the parallelism is orthogonal to the al-
gorithmic solution strategies of the algorithms shown in the figure. In the parallel
algorithm, two or more threads call one of the preceding seven algorithms to con-
struct a MADFA in parallel—each for a keyword set such that these sets form a
partition of the original keyword set. The chosen algorithm may even be different per
thread, since each such algorithm guarantees a MADFA to be constructed. After the
construction of the separate MADFAs, a merge method merges these MADFAs into
a single ADFA. This ADFA is then minimized with a call to the cleanup method of
Algorithm Trie, as this cleanup method can be used for arbitrary ADFAs.

3.2 Algorithms

We briefly discuss four algorithms (Algorithms Trie, Incremental, Reverse, and Semi-

Incremental) to give some insight into the behavior of MADFA construction algo-
rithms. (More extensive examples of all these algorithms in action can be found
throughout [31].) Algorithm Trie can be seen as the base algorithm for all the other
ones. It realizes the abstract methods add word and cleanup. At first, all words are
added one by one by calling the method add word. This is done by traversing the au-
tomaton according to the word under consideration, until no out-transition is found
for a specific letter of the word; then the automaton is extended with new states and
transitions so that it accepts the word. The result is a trie, which is then minimized
to a MADFA with the help of cleanup [31]. This cleanup method is a Revuz-like algo-
rithm [22]: it merges equivalent states of the automaton in order of decreasing height
level. (A height level is a set of states which have the same length of their longest
path to any final state.) The method starts with the leaves of the trie and ends at the
root. Two states are equivalent if they have the same right language, i.e., they have
the same set of words leading to final states. If that is the case, the states can be
merged. During the merge, one state is deleted and its transitions are redirected to
another state. If no more states are equivalent, no states can be merged, and therefore
the automaton is minimal, i.e., in our context is a MADFA.

In Figure 2 we show an example of how this algorithm works. Firstly, all words are
added. In this example the order of the words is lexicographic, i.e. had, hard, he, head,
heard, her, herd, here. For every word, the automaton is traversed, and if necessary,
new transitions and states are added. To give an example, ‘head’ is added after ‘he’
and before ‘her’ etc., i.e., state 6 is final and has no out-transitions before ‘head’ is
added. During add word, the automaton is traversed to state 6, following the letters
‘h’ and ‘e’. Now, we are at a state with no out-transition for the next symbol, ‘a’.
We need to add a transition ‘a’ to a new state 7 and from there we add a transition
‘d’ to a new final state 8. Such a process is followed for every word. The result is the
ADFA in Figure 2a. To minimize the automaton, Algorithm Trie computes height
levels and merges equivalent states. In this example the first height level is the set
of all states that have no out-transitions, i.e. their longest path to a final state is 0.
The states 3, 5, 8, 10, 12, 13 belong to this set. Every state is equivalent to the other
states because every state is final and has no out-transition. That is why all states
are merged into state 3 in Figure 2b. The next height level consists of all states
with a longest path-length of one to a final state. This set includes 4, 9, 11. Again,
equivalent states are merged (not depicted), i.e. state 4 and 9 are merged, while 11
is not (both because it differs from 4 and 9 in out-transitions, and because it does
so in its finality). Afterwards, the height level with a path-length of two is created
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and equivalent states in it are merged, and so on, until the resulting automaton is a
MADFA.
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(a) Trie after adding words
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(b) First minimization step

Figure 2. Example for Algorithm Trie

The other six MADFA construction algorithms use a similar method to add words
but with some specific extensions. Algorithm Incremental for example minimizes the
automaton directly after each word is added. States on the newly added path are
compared with the other states of the automaton and equivalent states are merged.
The comparison starts at the end of the path and ends at the start state. cleanup
only is a skip statement since the automaton is minimized during add word [8,17]. A
characteristic of this algorithm is that sometimes states have to be cloned, so that
the automaton stays correct.

Algorithm Reverse is different from the other ones, in that add word adds words
in reverse order compared to the add word method of Algorithm Trie. The resulting
ADFA is a trie for the reverse of the words; because of that, cleanup must reverse and
determinize the whole ADFA to obtain a MADFA. (In essence, this is a specialization
of Brzozowski’s classical result for DFA minimization [2]).

Algorithm Semi-Incremental also uses the add word method of Algorithm Trie,
but it adds words in order of decreasing length; hence the final state added by calling
add word is never visited again and all successors of this state can already be consid-
ered for merging. These are all the states that are compared with other final states
and their successors. This is done during the add word method. The method cleanup

visits the last non-considered successor states of the start state, which are all states
that do not have a predecessor final state [31]. The number of states compared by
the cleanup method depends on the input word set. In Figure 3 we give an example.
We add the word ‘herd’ after ‘heard’ because ‘herd’ is shorter than ‘heard’. The new
states 6 and 7 are added, the second being final. The result is the upper automaton
in Figure 3. add word starts to merge afterwards. The new final state and its succes-
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sors are compared against all other final states and their successors. In this example,
state 5 and 7 are compared. They are equivalent and because of that they are merged
into one state. The result is the second automaton in Figure 3. The next step of this
algorithm is to add other words and merge final states until the entire input set has
been processed.
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Figure 3. Example Algorithm Semi-Incremental: Adding word ‘herd’

4 Parallel MADFA Construction

The seven MADFA construction algorithms [31] included in our taxonomy construct
MADFAs sequentially. We present a novel approach to MADFA construction here,
based on constructing multiple MADFAs in parallel, such that their keyword sets
form a partition of the original keyword set; and then merging these MADFAs and
ensuring the result is a single MADFA for the original keyword set. That is, we
generate MADFAs in two or more threads and merge them afterwards; as this merger
in general may provide an ADFA yet not a MADFA, it must be minimized again to
obtain the final single MADFA for the original keyword set.

The new algorithm family forks threads which are then used to create multiple
MADFAs, one per thread; and it joins them again once the threads are done. The
construction of multiple MADFAs does not require much synchronization. Every call
to a method is independent of other calls if both method calls operate on different
automata. In our case, we opt to ensure that every state, across the MADFAs created
in parallel, gets a unique id, so the access to the id counter is synchronized. The unique
id facilitates the merge of automata because every state in the merged automaton can
be attached to one input automaton, and the merged automaton does not include
states with the same ids. The only point where we need to synchronize threads,
therefore, is the creation of states. (This synchronisation has no substantial impact
on the total running time, as the observed time for the complete parallel MADFA
construction in our experiments was around one twentieth of the time taken for the
final merger and minimization.)

We have implemented, two instantiations of the general approach described above.
The first version creates two MADFAs in parallel, while the second approach creates
four MADFAs. Conceptually, the two algorithms work as follows:

1. Split keyword set into 2 or 4 parts, respectively.
2. Create a thread for each of these parts, and use each such thread to create a

MADFA for a particular part, using one of the seven sequential MADFA con-
struction algorithms.
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3. Merge the 2 or 4 MADFAs obtained into a single ADFA, using the classical product
construction for the union of multiple automata.

4. For minimization, run the cleanup method of Algorithm Trie on the resulting
ADFA, yielding a final MADFA for the original keyword set. We use this particular
cleanup because it can be used for arbitrary ADFAs (whereas the other MADFA
construction algorithms’ cleanup methods cannot).

In our implementation, steps 3 and 4 are performed for 2 MADFAs at a time, and this
process is then repeated once in the case of 4 threads/MADFAs; but in general, the
merger could be performed in one go for all the MADFAs. The resulting MADFA is
a MADFA for the original keyword set. The details of the above construction can be
found in Subsection 5.2, where our Java implementation of the approach is discussed.

The product automaton of step 3 is generated recursively from the start state,
following the outgoing transitions. We traverse every state of both automata and
generate the combined state. We show an example of this product construction from
two MADFAs. We want to merge the automata in Figures 4 and 5. Automaton 1
accepts the words ‘he’ and ‘she’. Automaton 2 accepts ‘his’ and ‘this’. Note that
both automata are MADFAs. The product of both automata is shown in Figure 6.
We start with the product of both start states, i.e. 0,4. From there, we reach the
product state 1,5 with a transition ‘h’, as 0 has such a transition to 1 and 4 to 5.
With a transition ‘e’, we reach the final state 2 in automaton 1. Automaton 2 has no
transition ‘e’ from state 5 but a transition ‘i’ to state 6. In the merged automaton we
get states 2,null and null,6 or short 2 and 6. state 6 in automaton 2 has a transition
to 7, so state 7 is copied to the product automaton. The same goes for state 3 and
1 that are reached from state 0 in automaton 1 and state 8 and 5 that are reached
from state 4 in automaton 2. The resulting automaton is an ADFA because state 2
and 7 can be merged to generate the minimal MADFA.
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Figure 4. Automaton 1
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Figure 5. Automaton 2
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Figure 6. Merged automaton

The second variant of our algorithm generates four MADFAs in parallel. It also
generates the product automaton during the merge step and minimize with a call
to the cleanup method of Algorithm Trie. The difference is that this approach has
two merge and minimization steps, re-using the merge of two MADFAs as mentioned
above. First, two MADFAs are merged at a time and the intermediate ADFAs are
minimized. The next step is to merge these two intermediate MADFAs again. The



134 Proceedings of the Prague Stringology Conference 2017

resulting ADFA is minimized to the final MADFA. The first merge and minimization
step is also done in parallel. We minimize the intermediate automata because the
benchmark shows that this approach is faster than without a minimization step. This
approach can be adapted to every number of threads that is a power of two; otherwise
the merge scheduling has to be changed. Another possibility is to merge more than
two automata at once, but this complicates the merge process.

5 Toolkit

Our MADFA construction toolkit2, Many-MADFAct, implements a skeleton class
which is shared by all the sequential MADFA construction algorithms; specific algo-
rithm implementations directly or indirectly inherit from this base class and override
the abstract methods add word and cleanup as needed, as shown on the left of Fig-
ure 7. Some of the algorithms also need specific helper methods. Helper methods
that are used for more than one algorithm are in a component Util. For the data
representation we use an automaton class which includes states and transitions. The
former have in- and out-transitions, and the latter are represented as triples of start
state, label, end state, for efficient transition processing. The automaton contains
states, of which one is the start state, and zero or more are final i.e. accepting states;
and transitions that link states. To distinguish states, every state gets a unique id.
The implementation was done in Java. After the data representation was chosen, the
pseudo-code from the algorithms in the taxonomy was easily translated to Java.

The helper methods are combined in the component Util. This class is divided into
three parts. Firstly, we use string manipulation methods, for example for returning
the head or tail of a string, and for computing a left derivate or longest common prefix.
The second part concerns the analysis of the automaton. It contains methods that
creates state subsets of the automaton, like height levels or the state set corresponding
to a path. The last part is the check for minimality. We compare states and decide
whether they are equivalent or not.

5.1 Sequential Algorithm Implementation

As explained at the beginning of this section, the sequential MADFA construction al-
gorithms are implemented as part of a hierarchy, derived using the TABASCO process
mentioned in Section 3. The class diagram is shown on the left side of Figure 7. The
root, AlgorithmSkeleton, is an abstract class that creates an empty automaton and
calls method to generate a MADFA. It also declares the abstract methods add word

and cleanup. The general approach is to call the method add word for every word
and minimize the automaton with cleanup afterwards. This general approach is im-
plemented in createMadfa using the template method design pattern. The specific
algorithms inherit from this class and implement the abstract methods. They also
import Util. If necessary, the algorithms declare private helper methods. Algorithm
Trie only inherits from AlgorithmSkeleton directly. The other algorithms inherit from
Trie and extend add word. They call the super class’s add word and add specific op-
erations at the end of the method. Method cleanup is always overridden, except in the
case of Algorithm General. It uses the same cleanup as Trie. Algorithm Incremental

is an exception: this algorithm inherits from Algorithm General because it has nearly

2 https://github.com/TUBS-ISF/MADFAct
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AlgorithmSkeleton

- Automaton automaton

+ createMadfa(List<String>: 

words): Automaton

# addWord(String: word): 

void

# cleanUp(): void

Algorithm Trie

# addWord(String: word): 

void

# cleanUp(): void

Algorithm General

# addWord(String: word): 

void

Algorithm Semi-Incremental

# addWord(String: word): 

void

# cleanUp(): void

Algorithm Incremental

# addWord(String: word): 

void

# cleanUp(): void

- visitMin (State: state, String: 

left, String: right): void

- semiMin(State: p, 

List<State>: listOfStatesU): 

void

MultithreadedMADFAConstructor

- AlgorithmSkeleton algorithm

+ createMadfa(List<String>: words): 

Automaton

- int numberThreads

- mergeAutomata(firstAutomaton: 

Automaton, secondAutomaton: 

Automaton, mergedAutomaton: 

Automaton): void

- minimizeMergedAutomaton 

(mergedAutomaton: Automaton): 

void

- processAutomata(mergedState: 

State, nextState1: State, nextState2: 

State, mergedAutomaton: 

Automaton): void

Figure 7. Class diagram of the toolkit

the same add word method; i.e., add word from General is called and extended. We
implemented seven different sequential MADFA construction algorithms, of which
this diagram shows three to illustrate the design without loosing clarity. The absent
algorithms inherit from Algorithm Trie directly, just as Algorithm Semi-Incremental

does.

5.2 Parallel Algorithm Implementation

The class MultithreadedMAFDAConstructor on the right of Figure 7 implements
methods to create MADFAs in parallel and merge them afterwards. It contains a class
variable that determines the construction algorithm used in each of the construction
threads, e.g., Algorithm Incremental. Method createMadfa is the main method of
this class. It creates MADFAs in parallel, and it calls the methods mergeAutomata

and minimizeMergedAutomaton respectively to merge the resultant MADFAs into an
ADFA, and to finally minimize this ADFA into a MADFA. Method processAutomata

is a helper method of mergeAutomata. It creates the product automaton of multiple
MADFAs by traversing the input automata recursively. The creation of MADFAs in
parallel is done by forking and joining threads. Java is a multi-threaded programming
language, so the implementation is straightforward; for every MADFA that should
be constructed in parallel, we create a thread.

The procedure createMadfa is shown in Listing 1.1. Firstly, we divide the word
list into the specific number of sub-lists (line 4). The next step is to create MADFA-
threads and start them with a sub-list as input (line 7-12). They all execute the
same algorithm and wait at the end. We implemented an algorithm to merge the
intermediate MADFAs and minimize the result. processAutomata, the helper method
for mergeAutomata, is shown in Listing 1.2. It traverses the input automata and
merges them. It is a recursive method that gets a merged state and a state from each
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input automaton as input. We check if the states are not null because it is possible
that we process a merged state with one null state. If that is the case, we are at line 34
/ 39, and we copy the outgoing transitions and successor states from this state. After
that, we call the method for every successor again, i.e. the copied successor state is the
new merged state. If both input states are not null, we search for outgoing transitions
with the same labels (line 4-6). If we find a pair, we run the code in line 11-23. A
new merged state is created if it does not already exist, and this is the merged state
for the next call of this method. In the case of transitions that only appear in one
input automaton, we do the same as we only have one input state. We copy the new
transition and the successor state, cf. line 7-9 and line 26-31.

1 public Aut createMadfa(List <String > words) {

2 Aut mergedAut = new Aut ();

3 List <Aut > intermediateAut = new ArrayList <>();

4 List <List <String >> subLists = chop(words , numberT );

5 // numberT is the number of threads

6

7 for (int i = 0; i < numberT; i++) {

8 List <String > subList = subLists.get(i);

9 MadfaThread thread = new MadfaThread(algorithm ,

10 intermediateAut , subList );

11 thread.start ();

12 }

13 Thread.join ();

14

15 if (numberT == 2) {

16 // merge and minimize two automata

17 } else if (numberT == 4) {

18 // merge and minimize four automata

19 }

20 return mergedAut;

21 }

Listing 1.1. Code to start the parallel approach

6 Benchmarking

For benchmarking, we use the Java implementation of our toolkit and created MAD-
FAs for different sets of input words. We use random English words3 and sub-
sequences from the ecoli genome4. We want to compare the runtimes of the seven
algorithms. We also want to find out whether and how the lengths of the words
impact performance. The results are presented below.

6.1 Setup

As input we decided for random English words to have a set with possibly many
common prefixes and suffixes. We wanted to analyze how the algorithms behave if
they can merge states during cleanup. For a totally different application setting, we
also used the ecoli genome as input. Here, we cut substrings from the genome and use
these as input. Most of the time such substrings have no common prefixes or suffixes
because the probability to get a sequence of equal characters is low—especially for
the natural language case. For example, the probability that two words share the
same four characters as a prefix is lower than one percent. Therefore, the generated
MADFAs consist of parallel state paths that do not have much in common.

3 http://www-01.sil.org/linguistics/wordlists/english/
4 http://www.dmi.unict.it/ faro/smart/download.php



T. Runge et al.: Many-MADFAct: Concurrently Constructing MADFAs 137

1 private static void processAutomata (St mergedSt ,

2 St nextSt1 , St nextSt2) {

3 if (nextSt1 != null && nextSt2 != null) {

4 for (Tran trans1 : nextSt1.getOutgoingTran ()) {

5 Tran trans2 = getEqualTran(nextSt2 ,

6 trans1.getLabel ());

7 if (trans2 == null) {

8 St newMergedSt = copy(mergedSt , trans1 );

9 processAut(newMergedSt , trans1.EndSt(), null);

10 } else {

11 String id = trans1.getEndSt (). getId () + ";" +

12 trans2.EndSt (). getId ();

13 St newMergedSt = getEqualSt(id , mergedAut );

14 if (newMergedSt == null) {

15 newMergedSt = new St(id);

16 }

17 if (mergedSt.getEqualTran(newMergedSt ,

18 trans1.getLabel ()) == null) {

19 Tran newTran = new Tran(mergedSt ,

20 newMergedSt , trans1.getLabel ());

21 }

22 processAut(newMergedSt , trans1.EndSt(),

23 trans2.EndSt ());

24 }

25 }

26 for (Tran trans2 : nextSt2.getOutgoingTran ()) {

27 Tran trans1 = getEqualTran(nextSt1 ,

28 trans2.getLabel ());

29 if (trans1 == null) {

30 St newMergedSt = copy(mergedSt , trans2 );

31 processAut(newMergedSt , null , trans2.EndSt ());

32 }

33 }

34 } else if (nextSt1 != null) {

35 for (Tran trans : nextSt1.getOutgoingTran ()) {

36 St newMergedSt = copy(mergedSt , trans );

37 processAut(newMergedSt , trans.EndSt(), null);

38 }

39 } else if (nextSt2 != null) {

40 for (Tran trans : nextSt2.getOutgoingTran ()) {

41 St newMergedSt = copy(mergedSt , trans );

42 processAut(newMergedSt , null , trans.EndSt ());

43 }

44 }

45 }

Listing 1.2. Code to merge two automata

The setup for our benchmark is as follows. We select random sets of words and run
every algorithm five times with each set. To deal with for example caching problems,
we take the fastest run among these five as result. The sets form a sequence of
increasing size and for every set size we generate 30 different sets, i.e. we add random
words until the size of the set is reached. For example we build sets from size one to
216 in the case of random English words. We always double the number of words from
one set to the next. In the case of ecoli, we do two different runs. First, we construct
sets which consist of strings of the same length. We vary the set size from 1 to 210,
doubling the number in each iteration. For every set size, we insert strings of the
same length, ranging from one to 26 (64) and again doubling in each iteration. The
second benchmark run of ecoli is with substrings of varying length, called varying-
length ecoli. We also construct sets from 1 to 210, but this time, we insert substrings
of random length between 1 and 26.



138 Proceedings of the Prague Stringology Conference 2017

� � �� �� �� ��� ��� ��� ���� ���� ��	� ��	� ����� ��
��

�������

��������

��������

��������

��������

��������

��������

���������������� ����������������� �����������������

�������������������� ��������������������� ���������������������

��������������� ���������������� ����������������

����� !�

"
#

�
� 

�
�

� 
�

��
�

Figure 8. Benchmark result of fast algorithms with English words. The x-axis of the graph shows
the set size of input words, the y-axis the runtime in ms.

6.2 Results

The benchmark results diverge between the seven algorithms. For example, with
English words as input, Algorithm Incremental is the fastest. It needs ca. 15 seconds
for 216 words. The next faster algorithms are in this order: Sorted, Trie and General.
Trie needs for example ca. 65 seconds for the same number of words. The other three
algorithms, Depth-Layered, Reverse and Semi-Incremental, are much slower. They
need up to two hours for this word set. We also tested the same sets with the new
parallel implementation, using two and four threads. The fast algorithms Incremental,
Sorted, Trie and General are not getting faster, they are even slower, cf. Figure 8.
The scale for both axes is logarithmic. We start at set size four so that, in the case
of four threads, every thread gets at least one input word. The graphs show that the
runtime for each algorithm increases exponentially. Algorithm Trie is not shown in
the figure because it behaves like Algorithm General if the MADFA is built from an
empty automaton. The difference between Algorithm Trie and Algorithm General is
that General looks for confluence states, i.e. states which need to be cloned before
adding a new transition, and clones them [31]. If the automaton is built from scratch,
it is constructed as a trie and no confluence states occur, so both algorithms execute
identically. The runtimes for every algorithm for one thread are in every case shorter
than the runtime for two or four threads.

The slow algorithms on the other hand get faster. For example we present in
Figure 9 the algorithms Depth-Layered, Semi-Incremental and Reverse. For small
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Figure 9. Benchmark result of slow algorithms with English words. The x-axis of the graph shows
the set size of input words, the y-axis the runtime in ms.
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Figure 10. Benchmark result of algorithm Depth-Layered (one thread). The x-axis of the graph
shows the set size of input words, the y-axis the runtime in ms.

sets, the execution of Depth-Layered and Semi-Incremental is the fastest, but the
bigger the set is, the better the parallel implementation performs. For big sets, i.e.,
with 32768 words, the 4 thread implementation is in every case the fastest, followed
by the 2 thread one. Here, we can save time by running the algorithm in parallel.
A general observation for the three algorithms is, the more threads the faster the
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runtime. However in the case of small sets, the runtime is slower because the parallel
approach has some overhead for creating parallel automata and merging them. The
approach does not pay off in such cases, due to the extra merge and minimization
steps needed.

Figure 10 only shows the benchmark results for Algorithm Depth-Layered. Here,
we do not compute the average of the 30 runs for every set size. The graph shows
boxplots that include the 30 different runs. As we can see, the runtimes are similar
and there are few spikes. The scale of the runtime is logarithmic, causing the boxplots
to be very small. The other benchmark results are quite similar. We infer from the
few spikes and the small box sizes that the use of mean values is ok, as the spread of
values is limited.

The benchmarking using ecoli strings does not uncover new insights. The runtime
increases exponentially for every algorithm and the ordering wrt. performance is the
same, i.e. Algorithm Incremental is the fastest. If we want to compare the benchmark
of ecoli with the benchmark of English words, we should not compare sets with the
same number of words because the ecoli strings can be much longer. We decided to
compare sets with the same summed word length. For example, we compared 256
equal length ecoli strings with fixed string length 64 with an English word set with
2048 words that has ca. the same summed word length. The running times of all
seven algorithms are longer for ecoli than for English words. We get the same result,
that the runtime is longer for longer string lengths, if we compare two different runs
of ecoli with fixed string length. We take for example the results of set size 128 and
length 64 and compare it with the results of set size 1024 and length 8. Both have
8192 characters in total and the algorithms are slower in case of the longer strings,
i.e., the toolkit performs better for large sets with short words than for small sets
with long words.

7 Conclusion and Future Work

In this project, we successfully implemented the algorithms presented by Watson [31].
First, we created a taxonomy graph by identifying the commonalities and differences
between the algorithms. The next step was to create a toolkit based on this informa-
tion, using the TABASCO process to do so. We also implemented a new algorithm
family exploiting parallelism. The two algorithm variants from this family that we
discussed and implemented create MADFAs in two or four threads and merge and
minimize the resulting MADFAs into a single MADFA in the end. We benchmarked
the toolkit using English words and ecoli substrings as input. The results show that
the parallel approach improves the runtime of the slower algorithms.

For future work an implementation in C++ is planned to compare the imple-
mentations with respect to their runtime and their storage space consumption. We
also want to improve the current parallel implementation. The current merge process
creates an ADFA from two MADFAs. We minimize the ADFA afterwards to create
the final MADFA. It should be possible to create a MADFA directly from two or
more MADFAs, by adapting the merge process to minimize the product automa-
ton during construction, possibly by reusing and generalizing ideas from Algorithm
Incremental ’s add word method.
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