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Abstract. This paper examines the application of human computation (HC) to two-
dimensional image pattern matching. The two main goals of our algorithm are to use
turks as the processing units to perform an efficient pattern match attempt on a sub-
section of an image, and to divide the work using a version of dead-zone based pattern
matching. In this approach, human computation presents an alternative to machine
learning by outsourcing computationally difficult work to humans, while the dead-zone
search offers an efficient search paradigm open to parallelization—making the combi-
nation a powerful approach for searching for patterns in two-dimensional images.
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1 Introduction, motivation, and related work

In human computation, humans are used for tasks for which humans are more suitable
than computers, i.e. they are human processing units, typically called turks in this
context. We consider the problem of utilizing turks in the search for an object inside
of a matrix of objects. To be more precise, this paper examines the utilization of
turks in the search for occurrences of an image (the pattern image or pattern) in
a larger image (the subject image or subject). This presents a two-fold problem: 1)
efficiently exploring and dividing the search space (i.e. the image); and 2) utilizing
a turk to check whether the pattern actually occurs in a specific area of the image.
The algorithm that is to be used for the search is an adaptation of a dead-zone
based pattern matching algorithm [7]; the new algorithm generalizes from this in that
it performs a search on a two-dimensional matrix instead of on a one-dimensional

array of symbols. The use of human computation allows more powerful searching
that otherwise may be very difficult to solve with pure computational algorithms
since humans easily recognize images that have been rotated, scaled, sheared, images
with alternative colours, and vague patterns.

1.1 Human Computation

Human computation (HC) provides a mechanism for solving problems using humans
as an alternative to using concepts of machine learning (ML) and artificial intelligence
(AI). Human computation relies on a series of so-called turks which juxtapose com-
puter processing units for processing information. Using HC it is possible to solve a
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myriad of problems that are trivial for humans yet baffle sophisticated programs [4].
The majority of these problems lie outside of what ML and AI can currently solve.
Captcha [11] and more generally the Amazon Turk [6] service both attempt to solve
problems that would be otherwise difficult to solve computationally.

The goal of this paper is to provide an alternative rather than a replacement for
machine learning in the development of a 2-dimensional search algorithm. The two
concepts are orthogonal and can be used in conjunction with each other, however,
that is outside the scope of this paper. Due to the multidisciplinary nature of human
computation, a number of considerations have to be taken into account at various
tiers including high level design, algorithms, and human-computer interaction and
other human aspects.

The work in 2-dimensional image search can be applied to satellite imaging data
where turks can classify objects on a map and perhaps even train machine learning
models. Letting a single turk scan such imaging data (possibly gigabytes of imaging
data) may be quite cumbersome and prevents parallelism and verification. This work
in this paper is motivated by such examples. The aim is to use humans and the
computer to distribute tasks based on their respective strengths efficiently.

Work in HC has been approached from multiple directions. Researchers from
MIT CSAIL have developed a javascript library to deal with the intricacies of HC [8]
enabling easy parallelism, crash-and-rerun programming, and ease of implementation.
In case a human computation program encounters an error, it is important to recover
since external calls are expensive (i.e. re-running the entire task with a turk may
cost time or money); a crash-and-rerun program mitigates this problem by recording
computationally expensive information and allowing the use of this information to
rerun from the last known point. Well known functions for parallelism such as fork
and join are available through this toolkit.

Luis Van Ahn dealt with problems in motivation (i.e. monetary motivation and
game theory), interfaces, and algorithms in his PhD thesis [4]. Other research in HC
includes task routing [1], combining human and machine intelligence [2], paralleliza-
tion and design patterns [3]. Additionally, Amazon has developed an environment
where the developers can utilize human computation through their Amazon Turk
service [6]. While Amazon provides an interface for connecting with turks, considera-
tion still has to be given to development of efficient and coherent algorithms optimized
for processing by humans (i.e. turks).

HC search algorithms allow the matching flexibilities of a human, and therefore
the inputs can range across many object types, including sounds, pictures, or strings.
With such flexibility, however, the fuzziness of the output increases. This may have
beneficial and adverse effects depending on the problem at hand. In the case of a
search algorithm, the uncertainty revolves about incorrect pattern matching and not
completing assigned tasks. These issues can be mitigated through parallelizing [9] the
work through different turks and using voting [10] or statistical methods to decide
whether the answer is correct. There are other ways to mitigate output errors by
rephrasing the problem in a way that results in the capture of natural human in-
stincts in solving a problem [5]. Parallelization, however, lets us measure the degree
of confidence of the final result by taking a sample of human outputs. Additionally,
parallelization reduces a dependency on a single turk, reducing the amount of time
it takes to solve a problem e.g. if a particular turk is unavailable at the moment.
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1.2 Dead-zone pattern matching

Dead-zone (DZ) pattern matching [7] is an approach for string pattern matching—
finding all occurrences or matches of a pattern string p in a larger string or text S.
In a nutshell, DZ algorithms start from a situation in which a single live-zone—the
entire text S—exists, and select a pivot in such a live-zone. They then proceed in
checking whether an actual match of p occurs there—if so, this match is reported.
Based on the information gathered during this checking, the algorithm can dead-zone

particular areas to the right and left of the pivot—preventing unnecessary further
match attempts in these areas, and splitting the live-zone into two separate smaller
ones. It repeatedly processes such a live-zone (or multiple ones in parallel), until a
situation is reached where no live-zone remains, and all of the text is dead, with all
pattern occurrences having been reported.

Each algorithm from the DZ family is easily parallelized and therefore especially
useful in the field of human computation where parallelization is necessary to have
the same tasks processed by multiple turks in order to deal with uncertainty.

2-dimensional pattern matching is about finding occurrences or matches of a 2-
dimensional pattern p in a 2-dimensional symbol matrix S. Figure 1 is a representation
of what a 2-dimensional search algorithm tries to accomplish. The dead-zone algo-
rithm starts a pattern match attempt in the middle of S. If a match is not found, the
algorithm proceeds to shift in 4 directions using the data obtained during the match
attempt. Once the shifting is complete and the dead-zones have been determined, the
algorithm divides the matrix into 8 areas and recurses into each zone.

Figure 1. Symbol matrix S with occurrence of a 2x2 square pattern p (j5o1), dead-zone drawn
around (struck-through text), and 8 areas created subsequently from the dead-zones (top, top-left,
top-right, middle-left, etc.)

2 An algorithm for 2-dimensional dead-zone matching using

human computation

Our new algorithm processes 2-dimensional data in the form of an image. The algo-
rithm below matches an image contained in a larger image. Humans are best utilized
in the processing of generalized problems i.e. problems that avoid detailed informa-
tion, since the end result may be an approximation - while a turk may have a hard
time recognizing pixels on the screen, he or she can certainly discern whether pic-
tures made out of these pixels are similar. Therefore, the 2-dimensional data used for
our algorithm is in the form of an image instead of other symbols. Nonetheless, the
algorithm can be applied to any matrix of symbols.
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The algorithm relies on dead-zoning a part of the image, then proceeding to shift-
ing, dividing and delegating the remaining work to turks. This approach allows the
smaller instances of the problem (smaller live-zones) to be easily parallelized between
numerous turks.

The algorithm uses the TurKit algorithms developed at MIT CSAIL [8]. Namely,
we are using crash-and-rerun concepts, fork (to allow parallel processing), createHIT
(to create our task for the turk), and voting (determine whether the turks agree on
the results). TurKit utilizes HTML to generate interfaces.

1
2 function human_2d_dz(live_low, live_high)

3 {

4 if(<pattern larger than livezone>)

5 return null;

6
7 draw_viewport(live_low, live_high);

8 pattern_found =human_search(); // Turk’s work

9
10 if(pattern_found)

11 {

12 console.log("Match at " + live_low + " " + live_high);

13 fork(function(){

14 // vote on the correctness of the result

15 vote_result =mturk_vote(pattern_found, ..);

16 })

17
18 }

19
20
21 //Expand zone and let user estimate whether there is a possibility of the

pattern occurring on any of the sides of the viewport.

22 //Let the user indicate how far they shift in the image to create deadzones.

23 new_deadzone =expand_deadzone(live_low, live_high);

24
25 live_zones =create_live_zones(new_deadzone)
26 for(zone in live_zones)

27 {

28 fork(function(){

29 human_2d_dz(

30 live_zones[zone].live_low,

31 live_zones[zone].live_high

32 )

33 });

34 join() ;

35 }

36
37 }

38
39 //Example of a human search function utilizing TurKit

40 function human_search()

41 {

42 var hitId =mturk.createHIT({
43 title : "Find possible image zone",

44 desc : "Indicate whether the pattern is found in the viewport.",

45 url : votePage,

46 height : 800,
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47 reward : 0.01,

48 })

49
50 return mturk.waitForHIT(hitId).assignments[0].answer.found;

51 }

Listing 1.1. 2D DZ algorithm using TurKit

2.1 Pattern Match

The algorithm utilizes a viewport (Figure 2) to deal with a particular subsection of
the image to be searched. The viewport is a rectangular region, just like the image.
The procedure draw viewport (Line 7) takes the entire image and the live zone (in-
dicated by 2D coordinates live low and live high) and creates a viewport that is to
be processed by human search (Line 8). After processing by a turk, human search

returns a boolean flag to indicate whether a pattern occurrence was found.

Figure 2. Viewport displayed to the user.

The turk is initially presented with the viewport centred in the middle of the
original image s. In the case that the turk finds the pattern p completely inside the
viewport, the algorithm returns the position of the image inside s. In any case, the
program continues to search for other occurrences of the pattern.

The viewport has size p to keep the result of the turk operations consistent with
the problem: the pattern found must fit within the viewport i.e. patterns larger than
the viewport will be ignored.

When the viewport completely overlays existing dead-zones, we can be confident
that the pattern of size of p cannot be found inside this viewport. In the case of scaled
patterns, we cannot confidently state that the pattern does not reside in a viewport
partially obscured by a dead-zone, preventing the algorithm from skipping the area
to be examined by the turk.

2.2 Expanding the dead-zone and shifting the viewport

The next step in the algorithm, expand deadzone (Line 22), draws a zone around the
viewport for the turk to indicate the dead-zones (Figure 3). The turk is then asked by
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Figure 3. Dead-zones drawn around
viewport.

Figure 4. In the case that a partial
match is found (ex. tower in the im-
age), the dead-zones will be indicated,
and the viewport will be shifted accord-
ingly based on user distance indicated.

the algorithm to estimate the appearance of the pattern next to the current viewport.
Once the turk indicates where the pattern could possibly occur, we can shift and infer
new dead-zones.

In the case that a partial match is found (i.e. p is overlapping zones), the turk
indicates the dead-zoned areas, and the algorithm moves the viewport based on the
shift distance indicated. (Figure 4)

2.3 Pattern not found/Slicing

If the user has indicated that there is no possibility of the pattern in the extended
dead-zone the algorithm proceeds to slice s into 8 zones starting from each corner
(Figure 5) by using the procedure create live zones (Line 24) which returns the
aforementioned 8-zones with live-zone data. The algorithm recurses into each of the
rectangular zones created and performs all the steps outlined above until a pattern
is found or all zones the size of p are dead-zoned. The algorithm utilizes parallelism
introduced in TurKit. The TurKit fork function works on the same principles as
the machine equivalent of the function i.e. it creates a new process. The function
passed into the fork further divides the problem and eventually returns the result.
The different return values are synchronized through the join function.

2.4 Completion

A critical step to completion of the algorithm is resolving issues with fuzziness. In the
process above, fuzziness is mitigated by having the turks vote using the mturk vote

(Line 14) function from the TurKit library. Alternatively, taking multiple samples
of the results processed by turks and performing regression analysis is possible (not
shown above).

3 Expected Case

While there are no experimental results at this stage, we can reason about the ex-
pected case of the algorithm. Figure 6 presents a typical search case in the algorithm
using 3 turks as an example. Parallelization of the task has not been shown, however,
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Figure 5. New zones to be analyzed.

it is feasible to send the initial task to all three turks starting at different locations
of the viewport.

At the start of the algorithm, the viewport is generated and, along with the
pattern, sent to Turk 1. Turk 1 indicates that the pattern is not in the viewport, and
not likely to be near i.e. the dead-zones are inferred. The algorithm will make a number
of shifts from areas without possible matches when the dead-zone is indicated by the
user. This yields an advantage over scanning areas sequentially since the algorithm
does not have to check every area of S.

Subsequently, the algorithm then slices an image into new live-zones and sends
the data to Turk 2 which indicates the pattern is near. The algorithm then shifts an
amount indicated by the user and sends new live-zones to Turk 3 where a match is
finally indicated.

4 Robustness

As stated before, due to the parallelized nature of the algorithm we are able to
reduce the error in computing problems. In the case of the DZ algorithm, chunks of
the images can be sent to multiple turks for verification. Parallelized results are then
compared to verify with a lower degree of error that the final result is valid. This
mitigates mistakes and inherent change blindness in the turk. In the current version
of the algorithm, voting is used to verify results.

The development of a natural algorithm heavily relies on concepts from the field
of Human Computer Interfaces. A search algorithm must consider human memory
principles for processing data i.e. the short term memory is limited to seven chunks
at a given time while the long term memory is useful for seeing larger patterns [12].
Chunking is designed to deal with human memory limitations, namely limiting the
number of artifacts on the screen by splitting data into meaningful pieces (a well
known example of that are phone numbers where the area code is separated from
the rest of the number). Chunking the information for the search algorithm can
decrease the processing time and reduce errors in turk processing. The algorithm
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Figure 6. Sequence of Human 2D DZ.
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utilizes chunking to help the user examine smaller sections of data to find a pattern
match.

A problem the algorithm runs into is the definition of problem bounds. If the turk
is asked to detect an object on a 2D surface, the turks may bring their own biases.
An example of such a bias could be an object that is differently coloured or sized,
but otherwise the same. Limiting the scope of the problem is a critical part of the
algorithm. The algorithm does not deal with this problem, it is left for the user to
provide a sufficient scope to the turks.

5 Performance

The greatest cost savings this algorithm provides is in dead-zones indicated by each
turk. The entire image does not have to be scanned if there is no chance for a match.

The performance of the algorithm largely varies from turk to turk; for example
adults may take more care in scanning the viewport while children may haphazardly
scan the same area. Research outlined in [8] has shown a number of results. The ex-
periments considered a number of problems dealing with blurry text, iterative writing
and photo sorting. Part of the time is spent on waiting for turks to accept tasks and
waiting for turks to perform the work, which is to be expected from a natural system.
As mentioned before, effective chunking increases the performance of the algorithm,
but there may be cases where chunking is not possible. Additionally, the time to com-
pute with a turk will be significantly different than using a machine. For this reason,
it is necessary to separate ”human time” from ”computing time”. For example, the
time to slice and shift is largely dependent on computing resources, while the time
to find a pattern is dependent on the turk recognizing the object. For this reason we
introduce O(ht) for the asymptotic notation of human time. The 2D algorithm’s time
complexity would therefore be T (n) = 8T (n

8
) + ht× n, where the work done outside

the recursion is indicating dead-zones and shifting. In the case of this algorithm, the
running time will depend on the marking of the potential dead-zone and shift per-
formed by the user. The worst case for machine computation, where major shifts do
not occur, being O(n log n).

The dead-zone algorithm has a number of advantages for searching text. In the
case of most algorithms, the worst case scenario is quadratic O(|S|2) while the best

case scenario is O( |S|
|p|
). In the case of a DZ algorithm, the worst case scenario remains

the same, however, the best case scenario is significantly improved. The best case

scenario yielded by the DZ algorithm is O( |S|−|p|+1

2|p|−1
). In practice the improvement is

significant since the algorithm performs half the match attempts. Additionally, the
algorithm is easily parallelisable which is a key in battling the latency presented by
human computation.

A large part of the performance will depend on the Human-Computer Interfacing
due to the high amount of interactions and latency between the turk and the machine.
A well designed interface will make the process seamless by removing obstructions for
new turks in the process. As mentioned above, the time it takes the human to perform
the task will be vastly different from the time it takes a machine to perform the same
task. In the case of a human, and additionally, the time to process will differ from
turk to turk. A well designed interface will optimize the processing and reduce the
average time spent by the turk. The experimentation which remains to be done will
test this algorithm against other alternatives in the paper to gauge which performs
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fastest in a real life scenario. The alternatives will include classic divide and conquer
search algorithms and displaying the entire matrix to the user for their peruse.

Furthermore, the cost of running turks will have to be tweaked and tested to
determine the best balance in cost to difficulty of task ratio.

5.1 Parallelization

In order to create a robust algorithm the final result validity has to be measured to be
reasonably accurate within a confidence interval. Parallelization occurs in two levels.
The first level poses the problem multiple times to an array of turks. The second
level parallelizes the work that needs to be completed in a single run by multiple
turks. The chunking of the pieces to be found yields work that can be performed
by multiple turks at the same time, asynchronously. This paves way for distributed
human computation.

6 Conclusions and future work

Human computation is just beginning to scratch the surface with the introduction of
such applications as Captcha and Amazon Turk. A human computation DZ algorithm
can be used in various fields dealing with imaging. Some examples discussed before
were dealing with pictures and sounds, however, more concrete examples of such pat-
tern matching could include geotagging locations (human turks indicate where various
locations on a picture are), screening for cancers (determining cancerous patterns on
a photo) etc.

With the proven efficiency of a 1-dimensional DZ algorithm we are expecting a
more efficient matrix search using the pattern recognition of a human turk. Addi-
tionally, using a human turk gives us the possibility of performing flexible image
processing while keeping the cost and time of the turk down.

While most modern algorithms tend to examine machine learning and artificial in-
telligence, human computation departs from this concept by utilizing human turks to
perform simple work in order to solve a bigger problem. Humans are currently inher-
ently better at recognizing patterns and with continued expansion of social networks
we are given more access to resources. Utilizing the power of distributed networks,
human computation can lead to results faster with the help of traditional algorithms.

The next steps in the algorithm is to measure the running time and cost. Due
to approximate nature of human computation, a sample of data comparing the two
algorithms above will be taken. The data will measure the number of steps that
are taken to find the needle in a haystack in order to get a more accurate cost.
Additionally, the experiment will measure the time taken to find and the amount of
false positives and negatives yielded by both algorithms. The goal of the algorithms
is to optimize robustness, running time and user experience. Furthermore, human
computation sorting and classification algorithms need to be examined and expanded.
Humans have tendencies and biases, and therefore it is important to adapt algorithms
to work more naturally with a human.
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