Reducing Squares in Suffix Arrays

Peter Leupold
Institut für Informatik, Universität Leipzig, Leipzig, Germany
Peter.Leupold@web.de

Abstract

In contrast to other mutations, duplication leaves an easily detectable trace: a repetition. Therefore it is a convenient starting point for computing a phylogenetic network. Basically, all squares must be detected to compute all possible direct predecessors. To find all the possible, not necessarily direct predecessors, this process must be iterated for all the resulting strings. We show how to reuse the work for one string in this process for the detection of squares in all the strings that are derived from it. For the detection of squares we propose suffix arrays as data structure and show how they can be updated after the reduction of a square.

Keywords: duplication, suffix array

1 Introduction

The duplication of parts of a sequence is a very frequent gene mutatio The result of such a duplication is called a tandem repeat. As dupli frequently in genomes, they can offer a way of reconstructing the way ferent populations of a given species have developed. For example, Wap wanted to determine the relations between seventeen different populatio of fungi. They did this by looking at the tandem repeats in the genes they induced possible relationships.

In a very simplified way, the approach works like this: suppose at the s in the genome of different individuals (or entire populations) of the same species we have the following sequences: uv, uuv, uvuv, and uvuvvuv. In this case, it is possible and even probable that the latter sequences have evolved from the first one via duplication. The second and third sequences are direct derivations from the first. To reach the last sequence, several duplications are necessary. So the question is, whether the corresponding individual can be a descendant of one or both of the others. Further duplications in uuv cannot change the fact that there are two successive letters u in the string. Since uvuvvuv does not contain $u u$, it cannot be a descendant. On the other hand, it is obtained from uvuv by duplicating the last three letters. So in this case

Figure 1. The duplication history for the string aabcbabcbbc. The direction of reductions is top to bottom.

There exist efficient algori implemented in the mreps wel ditions and do not necessarily of perfect repetitions is freque There are also good algorithn search for more repetitions in

of tandem repeats ze into account bio itions. For strings, ys or similar data of these. However, ve to compute thei from scratch. Since the change in the string is only local, the new suffix very similar to the old one. We aim to characterize this similarity and the new suffix array can be computed by modifying the old one rather than computing the new one from scratch. Here we address this problem for strings and perfect repetitions without regarding possible biochemical restrictions of tandem repeats in real DNA.

It is worth noting that such a computation might prove infeasible already due to the mere size of the solution. Note that at the end of each complete sequence of reduction there is a square-free string, i.e. one without any repetition. Obviously no further repetition can be reduced, if there is none by definition. When we consider the elimination of repetitions as a string-rewriting process, these square-free strings are themen forms. Even the number of these normal forms, which
 the paths of the duplication histories, can be exponential
ry positive integer n there are words of length n whose under eliminating squares is bounded by:

$$
\frac{1}{30} 110^{\frac{n}{42}} \leq N \leq 2^{n}
$$

Thus there can be no hope of finding an efficient algorithm for computing the entire duplication history for all possible strings. However, many strings will not reach this worst case. For them, we intend to find good methods for computing their duplication histories. The efficient detection of repetitions is a first step in such a computation.

2 Preliminaries on Strings

We recall some basic concepts on strings and fix notations for them. For a string w we denote by $w[i]$ the symbol at position i, where we start counting at 0 . $w[i \ldots j]$ denotes the substring starting at position i and ending at position j. A string w has a positive integer k as a period, if for all i, j such that $i \equiv j(\bmod k)$ we have $w[i]=w[j]$, if both $w[i]$ and $w[j]$ are defined. The length of w is always a trivial period of w. If a string has a non-trivial period then it is called periodic.

A string u is a prefix of w if there exists an $i \leq|w|$ such that $u=w[0 \ldots i]$; if $i<|w|$, then the prefix is called proper. Suffixes are the corresponding concept reading from the back of the word to the front. The longest common prefix of two strings u and v is the prefix $l c p(u, v)=u[0 \ldots i]=v[0 \ldots i]$ such that either $u[i+1] \neq v[i+1]$ or at least one of the strings has length only $i+1$. So the function $l c p$ takes two strings as its arguments and returns the length of their longest common prefix.

The lexicographical order is defined as follows for strings u and v over an ordered alphabet: $u \leq v$ if u is a prefix of v, or if the two strings can be factorized as $u=w a u^{\prime}$ and $v=w b v^{\prime}$ for some w and letters a and b such that $a<b$.

3 Runs, not Squares

Before we start to reduce squares, let us take a look at the effect that this operation has in periodic factors. In the following example, we see that reduction of either of the three squares in the periodic factor $b c b c b c$ leads to the same result:

Thus it would not be efficient to do all the three reductions and produce three times the same string. A maximal periodic factor like this is called a run. Maximal here means that if we choose a longer factor that includes the current one, then this longer factor does not have the same period any more. In the string above, $b c b c b c$ is a run. It has period two, but its extensions $a b c b c b c$ to the left and $b c b c b c a$ to the right do not have period two any more.
it is rather straight-forward to see how the example from above generalizes to arbitrary periodic factors. For the sake of completeness we give a formal proof of this fact.

Lemma 2. Let w be a string with period k. Then any deletion of a factor of length k will result in the same string.

Proof. Because the string w has period k, the deleted factor starts with a suffix and ends with a prefix of $w[0 \ldots k-1]$. Thus it is of the form

$$
w[i+1 \ldots k-1] w[0 \ldots i]
$$

for some $i<k$. If it starts at position $\ell+1$, then the string

$$
w[0 \ldots \ell] w[i+1 \ldots k-1] w[0 \ldots i] w[\ell+k+1 \ldots|w|-1]
$$

is converted to

$$
w[0 \ldots \ell] w[\ell+k+1 \ldots|w|-1] .
$$

For a deletion at position ℓ, which is one step more to the left, we obtain

$$
w[0 \ldots \ell-1] w[i] w[\ell+k+1 \ldots|w|-1] .
$$

Since $w[i]=w[\ell+k]$ this letter is equal to $w[\ell]$ due to the period k, and thus

$$
w[0 \ldots \ell]=w[0 \ldots \ell-1] w[i],
$$

and the two results are the same. In an analogous way the deleted factor can be moved to the right. The result is the same, also for several consecutive movements.

So rather than looking for ually look for runs and reduce only one square within each zulting strings will be different from each other.

As stated above, the mo suffix arrays and related dat a strategy along the lines of

Algorithm 1: Computing squares.

Input: string: w;

Data: stringlist: S (contains w);
while (S nonempty) do $x:=P O P(S)$; Construct the suffix array of x; if (there are runs in x) then
foreach run r do
Reduce one square in r;
Add new string to S;

end

end
else output x;
end
to all the resulting strings which are not square-free. Our main aim is to improve line 3 by modifying the antecedent suffix array instead of constructing the new one from scratch. For this we first recall what a suffix array is.

4 Suffix Arrays

In string algorithms suffix ar allow fast search for patterns depicted on the left-hand side all the suffixes of w; typically
on data structure, because they ing w consists of the two tables lexicographically ordered list of is saved rather than the entire
suffix. $L C P$ is the list of the longest common prefixes between these suffixes. Here we only provide the values for direct neighbors. Depending on the application, they may be saved for all pairs. $S A$ and $L C P$ are also called an extended suffix array in contrast to $S A$ alone.

Figure 2. Modification of the suffix array by deletion of bcb in abcbbcba.

Now let there be a run with period k that contains at least one square $u u$ starting in position i in a string; thi least length $2 k$. Then the positions i and $i+k$ have an $L C P$ array, because both suffixe detect runs without lookin

On the right-hand side suffix array. There is no cha suffixes that start to the rig the first half of the square also for the positions in the
 ry close to each other in the suffix why suffix arrays can be used to sain once the array is computed. w the deletion of bck r nor in the $L C P$ val re it is more convenie ause then we see imm othing changes, see a
The only new suffix is abcba. It starts with the same letter as abcb it comes from; also the following $b c b$ is the same as before, because the is replaced by another copy of itself - only after that there can be Thus the new suffix will not be very far from the old one in lexicog Formulating these observations in a more general and exact way will be the objective of the next section.

5 Updating the Suffix Array

The problem we treat here is the following: Given a string w with a square of length n starting at position k and given the suffix array of w, compute the suffix array of $w[0 \ldots k-1] w[k+n \ldots|w|-1]$. So $w[k-1 \ldots k+n-1]$ is deleted from the original string, not $w[k+n \ldots k+2 n-1]$. The result is, of course the same; however, it is convenient for our considerations to suppose that it is the first half of the square that is deleted. In this way, it is a little bit easier to see, which suffixes of the original string are also suffixes of the new one.
the simple fact that the positions to the right of a deleted ame order and that this is also true for the positions in the re, which is not deleted.

Figure 4. If the LCP is not greater than $\ell+n$, then the order of the new suffix relative to the old ones remains unchanged, because its $\ell+n$ are the same as before the deletion.

Lemma 3. Let the LCP of two strings z and uvw be k and let $z<u v w$. Then z and uvvw have the same $L C P$ and $z<u v v w$ unless $\operatorname{LCP}(z, u v w) \geq|u v|$; in the latter case also $\operatorname{LCP}(z, u v v w) \geq|u v|$.

Proof. If $\operatorname{LCP}(z, u v w)<|u v|$ then the first position from the left where z and $u v w$ differ is within $u v$. As $u v$ is also a prefix of $u v v w, z$ and $u v v w$ have their first difference in the same position. Thus $L C P$ and the lexicographic order remain the same.

If $\operatorname{LCP}(z, u v w) \geq|u v|$, then $u v$ is a common prefix of z and $u v v w$. Thus also $L C P(z, u v v w) \geq|u v|$.
ow that we only have to process suffixes starting to the left of the deleted also here not necessarily all suffixes have to be checked. To be more exact, arting from the right one suffix does not fulfill the conditions of Lemma fixes starting to the left of it will not fulfill these conditions either.

Let $L C P[j]=k$ in the suffix array of a string w of length $n+1$. Then always have $L C P[i] \leq k+j-i$.

Figure 5. Only if the LCP is greater than $\ell+n$ some letter within the prefix of length LCP might change.

Proof. Let us suppose the contrary of the statement, i.e. $L C P[i]>k+j-i$. Further let the suffix of w that is lexicographically following $w[i \ldots n]$ start at position m. This suffix shares a prefix of length at least $k+j-i+1$ with $w[i \ldots n]$, i.e.

$$
w[m \ldots m+k+1]=w[i \ldots i+k+1] .
$$

Disregarding the first $j-i$ letters we obtain

$$
w[m+(j-i) \ldots m+(j-i)+k+1]=w[i+(j-i) \ldots i+(j-i)+k+1]
$$

and this gives us

$$
w[m+j-i \ldots m+j-i+k+1]=w[j \ldots j+k+1] .
$$

So $w[i \ldots n]$ shares $k+1$ letters with the suffix $w[m+j-i \ldots m+j-i+k+1]$ of w. Further, since $w[m \ldots n]$ is lexicographically greater than $w[i \ldots n]$ also $w[m+j-$


```
Algorithm 2: Computing the new suffix array.
    Input: string: w; arrays: SA, LCP;
    length and pos of square: \(\mathrm{n}, \mathrm{k}\);
    for \(j=n+k\) to \(|w|-1\) do
        SAnew \([\mathrm{j}]:=\mathrm{SA}[\mathrm{j}]-\mathrm{n}\);
    end
    \(i:=k-1\);
    while ( \(L C P[i]>n+k-i\) AND \(i \geq 0\) ) do
        compute SAnew of \(w[i \ldots k-1] w[k+n \ldots|w|-1]\);
        compute new LCP \([\mathrm{i}]\);
        \(i:=i-1 ;\)
    end
    for \(j=0\) to \(i+m\) do
        SAnew \([\mathrm{j}]:=\mathrm{SA}[\mathrm{j}]\);
    end
```


6 Computing the Changes

There are two tasks whose details are left open in whose position changes, we need to find the new posit

suffixes LCP-values must be updated.

6.1 Computing the New Position

Intuitively, the position of a new suffix is not very f_{a} suffix it is derived from. If a suffix wuuv is convert remains the same. Both w and u are non-empty in that start left of the deletion can change their position $|w u| \geq 2$ and consequently $l c p(w u u v, w u v) \geq 2$. Furt suffixes that are between the positions of wuuv and thus have a $L C P$ with both of them that is greater can restrict our search for the position of wuv to the
 wuuv, where the $L C P$-values are not smaller than $|w u|$. Within this range we use the standard method for inserting a string in a suffix array.

6.2 Updating the LCP

At this point, where a suffix is moved to ano -table must be updated to contain the new $L C P$ between the computed via the following, well-known equal: and w in the suffix array, always $l c p(u, w)=r$ ccessor. This is e suffixes u, v, holds, see also the work of Salson et al. that treats deletions

When a new suffix is inserted into the suffi> ew position, we $\begin{array}{ll}\text { actually } n & P \text { values: tl } \\ \text { positions. } & \text { cases. }\end{array}$

If we h we know explained after $w u$ on just after affected

The $L C P$ with the following position might be as low as zero. In this case, however, also the original $L C P[i+\ell]$ was zero, because the two suffixes start with the same letter as they share the prefix $|w u|$. More generally, if $L C P[i+\ell]$ was less than $|w u|$, then the inserted suffix has the same $L C P$ with its successor. So we only need to compare more letters if the old $L C P[i+\ell]$ is greater than $|w u|$. Otherwise we can inherit the old value.

For the case that the new position in the suffix array is higher, we proceed symmetrically. The $L C P$ with the successor is at least $|w u|$, and the $L C P$ with the predecessor can be taken from the original list unless this value was greater than $|w u|$.

7 Conclusion and Perspectives

the suffix
longer the Then the relevant p : On the constructi can be cop
 s this is even probable, because the the $L C P$-value will be even bigger. ly fails, and we essentially copy the we should save time compared to g behind the reduced square m we can use some of the old ad the computation of $L C P$ than the general updating probably only be answered es like the ones carried out efficiently. But for actually ust be handled in an efficient many descendants, many suffix arrays must be derived f these must be stored at the same time. Again, they are all similar to each other. The question is whether there are ways in which this similarity can be used to store them more compactly.

Further, a typical duplication history contains many paths to a given word. For example for a word $w_{1} u^{2} w_{2} v^{2} w_{3} x^{2} w_{4}$ that contains three squares that do not overlap, there is one normal form $w_{1} u w_{2} v w_{3} x w_{4}$ and there are six paths leading to this string. Every intermediate word is on two of these paths. The ones with one square left are reached from two different words, the normal form is reached from the three strings with only one square. How do we avoid computing a string more than once? Is there a way of knowing that the result was already obtained in an earlier reduction?

Depending in the goal of the computation, we can possibly do something about the length of t uced. Squares of lengths one can be reduced first, if we do 1 detecting and over the string value $n+k-$ of length two c makes reductio of the final bcb be reached any
action graph, but only the normal forms. For it is faster to just run a window of size two hout building the suffix array. After this, the prithm would always be at least two. Squares others in a way that reduction of one square e like in the string abcbabcbc; here reduction string, and the other normal form abc cannot

References

1. D. H. Huson, R. Rupp, and C. Scornavacca: Phylogenetic Networks, Cambridge University Press, Cambridge, 2010.
2. R. Kolpakov, G. Bana, and G. Kucherov: mreps: efficient and flexible detection of tandem repeats in DNA. Nucleic Acids Research, 31(13) 2003, pp. 3672-3678.
3. M. Léonard, L. Mouchard, and M. Salson: On the number of elements to reorder when updating a suffix array. Journal of Discrete Algorithms, 11 2012, pp. 87-99.
4. P. Leupold: Reducing repetitions, in Prague Stringology Conference, J. Holub and J. Žďárek, eds., Prague Stringology Club Publications, Prague, 2009, pp. 225-236.
5. A. Meyer: Molecular evolution: Duplication, duplication. Nature, 421 2003, pp. 31-32.
6. S. J. Puglisi, W. F. Smyth, and M. Yusufu: Fast, practical algorithms for computing all the repeats in a string. Mathematics in Computer Science, 3(4) 2010, pp. 373-389.
7. M. Salson, T. Lecroq, M. Léonard, and L. Mouchard: Dynamic extended suffix arrays. Journal of Discrete Algorithms, 8(2) 2010, pp. 241-257.
8. I. Wapinski, A. Pfeffer, N. Friedman, and A. Regev: Natural history and evolutionary principles of gene duplication in fungi. Nature, 449 2007, pp. 54-61.
