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Abstract. We propose two suffix array inspired full-text indexes. One, called SA-
hash, augments the suffix array with a hash table to speed up pattern searches due
to significantly narrowed search interval before the binary search phase. The other,
called FBCSA, is a compact data structure, similar to Mäkinen’s compact suffix array,
but working on fixed sized blocks, which allows to arrange the data in multiples of
32 bits, beneficial for CPU access. Experimental results on the Pizza & Chili 200 MB
datasets show that SA-hash is about 2.5–3 times faster in pattern searches (counts)
than the standard suffix array, for the price of requiring 0.3n − 2.0n bytes of extra
space, where n is the text length, and setting a minimum pattern length. The latter
limitation can be removed for the price of even more extra space. FBCSA is relatively
fast in single cell accesses (a few times faster than related indexes at about the same or
better compression), but not competitive if many consecutive cells are to be extracted.
Still, for the task of extracting e.g. 10 successive cells its time-space relation remains
attractive.
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1 Introduction

The field of text-oriented data structures continues to bloom. Curiously, in many cases
several years after ingenious theoretical solutions their more practical (which means:
faster and/or simpler) counterparts are presented, to mention only recent advances
in rank/select implementations [11] or the FM-index reaching the compression ratio
bounded by k-th order entropy with very simple means [17].

Despite the great interest in compact or compressed1 full-text indexes in recent
years [22], we believe that in some applications search speed is more important than
memory savings, thus different space-time tradeoffs are worth being explored. The
classic suffix array (SA) [21], combining speed, simplicity and often reasonable mem-
ory use, may be a good starting point for such research.

In this paper we present two SA-based full-text indexes, combining effectiveness
and simplicity. One augments the standard SA with a hash table to speed up searches,
for a moderate overhead in the memory use, the other is a byte-aligned variant of
Mäkinen’s compact suffix array [19,20].

1 By the latter we mean indexes with space use bounded by O(nH0) or even O(nHk) bits, where n

is the text length, σ the alphabet size, and H0 and Hk respectively the order-0 and the order-k
entropy. The former term, compact full-text indexes, is less definite, and, roughly speaking, may
fit any structure with less than n log

2
n bits of space, at least for “typical” texts.
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2 Preliminaries

We use 0-based sequence notation, that is, a sequence S of length n is written as
S[0 . . . n− 1], or equivalently as s0s1 · · · sn−1.

One may define a full-text index over text T of length n as a data structure
supporting at least two basic types of queries, both with respect to a pattern P of
length m, both T and P over a common finite integer alphabet of size σ. One query
type is count: return the number occ ≥ 0 of occurrences of P in T . The other query
type is locate: for each pattern occurrence report its position in T , that is, such j that
P [0 . . . m− 1] = T [j . . . j +m− 1].

The suffix array SA[0 . . . n−1] for text T is a permutation of the indexes {0, 1, . . . , n−
1} such that T [SA[i] . . . n−1] ≺ T [SA[i+1] . . . n−1] for all 0 ≤ i < n−1, where the
“≺” relation is the lexicographical order. The inverse suffix array SA−1 is the inverse
permutation of SA, that is, SA−1[j] = i⇔ SA[i] = j.

If not stated otherwise, all logarithms throughout the paper are in base 2.

3 Related work

The full-text indexing history starts with the suffix tree (ST) [25], a trie whose string
collection is the set of all the suffixes of a given text, with an additional requirement
that all non-branching paths of edges are converted into single edges. The structure
can be built in linear time [25,3]. Assuming constant-time access to any child of a given
node, the search in the ST takes only O(m+ occ) time in the worst case. In practice,
this is cumbersome for a large alphabet, as it requires using perfect hashing, which
also makes the construction time linear only in expectation. A small alphabet is easier
to handle, which goes in line with the wide use of the suffix tree in bioinformatics.

The main problem with the suffix tree is its large space requirement. Even in the
most economical version [18] the ST space use reaches almost 9n bytes on average and
16n in the worst case, plus the text, for σ ≤ 256, and even more for large alphabets.
Most implementations need 20n bytes or more.

An important alternative to the suffix tree is the suffix array (SA) [21]. It is an
array of n pointers to text suffixes arranged in the order of lexicographic ordering of
the sequences (i.e., the suffixes) the pointers store references to. The SA needs n log n
bits for its n suffix pointers (indexes), plus n log σ bits for the text, which typically
translates to 5n bytes in total. The pattern search time is O(m log n) in the worst case
and O(m logσ n + log n) on average, which can be improved to O(m + log n) in the
worst case using the longest common prefix (lcp) table. Alternatively, the O(m+log n)
time can be reached even without the lcp, in a more theoretical solution with a specific
suffix permutation [8]. Yet Manber and Myers in their seminal paper [21] presented a
nice trick saving several first steps in the binary search: if we know the SA intervals
for all the possible first k symbols of the pattern, we can immediately start the binary
search in a corresponding interval. We can set k close to logσ n, with O(n log n) extra
bits of space, but constant expected size of the interval, which leads to O(m) average
search time and only O(⌈m/|cache line|⌉) cache misses on average, where |cache line|
is the cache line length expressed in symbols, typically 64 symbols / bytes in a modern
CPU. Unfortunately, real texts are far from random, hence in practice, if text symbols
are bytes, we can use k up to 3, which offers a limited (yet, non-negligible) benefit.
This idea, later denoted as using a lookup table (LUT), is fairly well known, see e.g.
its impact in the search over a suffix array on words [4].



S.Grabowski, M.Raniszewski: Two Simple Full-Text Indexes Based on the Suffix Array 181

A number of suffix tree or suffix array inspired indexes have been proposed as
well, including the suffix cactus [16] and the enhanced suffix array (ESA) [1], with
space use usually between SA and ST, but according to our knowledge they generally
are not faster than their famous predecessors in the count or locate queries.

On a theoretical front, the suffix tray by Cole et al. [2] allows to achieve O(m +
log σ) search time (with O(n) worst-case time construction and O(n log n) bits of
space), which was recently improved by Fischer and Gawrychowski [7] to O(m +
log log σ) deterministic time, with preserved construction cost complexities.

The common wisdom about the practical performance of ST and SA is that they
are comparable, but Grimsmo in his interesting experimental work [14] showed that
a careful ST implementation may be up to about 50% faster than SA if the number
of matches is very small (in particular, one hit), but if the number of hits grows, the
SA becomes more competitive, sometimes being even about an order of magnitude
faster. Another conclusion from Grimsmo’s experiments is that the ESA may also be
moderately faster than SA if the alphabet is small (say, up to 8) but SA easily wins
for a large alphabet.

Since around 2000 we can witness a great interest in succinct data structures,
in particular, text indexes. Two main ideas that deserve being mentioned are the
compressed suffix array (CSA) [15,24] and the FM-index [6]; the reader is referred to
the survey [22] for an extensive coverage of the area.

It was noticed in extensive experimental comparisons [5,11] that compressed in-
dexes are not much slower, and sometimes comparable, to the suffix array in count
queries, but locate is 2–3 orders of magnitude slower if the number of matches is
large. This instigated researchers to follow one of two paths in order to mitigate the
locate cost for succinct indexes. One, pioneered by Mäkinen [19,20] and addressed in
a different way by González et al. [12,13], exploits repetitions in the suffix array (the
idea is explained in Section 5). The other approach is to build semi-external data
structures (see [9,10] and references therein).

4 Suffix array with deep buckets

The mentioned idea of Manber and Myers with precomputed interval (bucket) bound-
aries for k starting symbols tends to bring more gain with growing k, but also pre-
computing costs grow exponentially. Obviously, σk integers are needed to be kept in
the lookup table. Our proposal is to apply hashing on relatively long strings, with an
extra trick to reduce the number of unnecessary references to the text.

We start with building the hash table HT (Fig. 1). The hash function is calculated
for the distinct k-symbol (k ≥ 2) prefixes of suffixes from the (previously built) suffix
array. That is, we process the suffixes in their SA order and if the current suffix
shares its k-long prefix with its predecessor, it is skipped (line 08). The value written
to HT (line 11) is a pair: (the position in the SA of the first suffix with the given
prefix, the position in the SA of the last suffix with the given prefix). Linear probing
is used as the collision resolution method. As for the hash function, we used sdbm
(http://www.cse.yorku.ca/~oz/hash.html).

Fig. 2 presents the pattern search (locate) procedure. It is assumed that the pat-
tern length m is not less than k. First the range of rows in the suffix array corre-
sponding to the first two symbols of the pattern is found in a “standard” lookup table
(line 1); an empty range immediately terminates the search with no matches returned
(line 2). Then, the hash function over the pattern prefix is calculated and a scan over

http://www.cse.yorku.ca/~oz/hash.html
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HT build(T [0 . . . n− 1], SA[0 . . . n− 1], k, z, h(.))
Precondition: k ≥ 2

(01) allocate HT [0 . . . z − 1]
(02) for j ← 0 to z − 1 do HT [j]← NIL

(03) prevStr ← ε

(04) j ← NIL

(05) left← NIL; right← NIL

(06) for i← 0 to n− 1 do

(07) if SA[i] ≥ n− k then continue

(08) if T [SA[i] . . . SA[i] + k − 1] 6= prevStr then

(09) if j 6= NIL then

(10) right← i− 1
(11) HT [j]← (left, right)
(12) j ← h(T [SA[i] . . . SA[i] + k − 1])
(13) prevStr ← T [SA[i] . . . SA[i] + k − 1]
(14) repeat

(15) if HT [j] = NIL then

(16) left← i

(17) break

(18) else j ← (j + 1) % z

(19) until false
(20) HT [j]← (right + 1, n− 1)
(21) return HT

Figure 1. Building the hash table of a given size z

the hash table performed until no extra collisions (line 5; return no matches) or found
a match over the pattern prefix, which give us information about the range of suffixes
starting with the current prefix (line 6). In this case, the binary search strategy is ap-
plied to narrow down the SA interval to contain exactly the suffixes starting with the
whole pattern. (As an implementation note: the binary search could be modified to
ignore the first k symbols in the comparisons, but it did not help in our experiments,
due to specifics of the used A strcmp function from the asmlib library2).

Pattern search(T [0 . . . n− 1], SA[0 . . . n− 1], HT [0 . . . z − 1], k, h(.), P [0 . . .m− 1])
Precondition: m ≥ k ≥ 2

(1) beg, end← LUT2[p0, p1]
(2) if end < beg then report no matches; return
(3) j ← h(P [0 . . . k − 1])
(4) repeat

(5) if HT [j] = NIL then report no matches; return
(6) if (beg ≤ HT [j].left ≤ end) and (T [SA[HT [j].left] . . . SA[HT [j].left] + k − 1] = P [0 . . . k − 1])
(7) then binSearch(P [0 . . .m− 1], HT [j].left,HT [j].right); return
(8) j ← (j + 1) % z

(9) until false

Figure 2. Pattern search

2 http://www.agner.org/optimize/asmlib.zip, v2.34, by Agner Fog.

http://www.agner.org/optimize/asmlib.zip
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5 Fixed Block based Compact Suffix Array

We propose a variant of Mäkinen’s compact suffix array [19,20], whose key feature is
finding repeating suffix areas of fixed size, e.g., 32 bytes. This allows to maintain a
byte aligned data layout, beneficial for speed and simplicity. Even more, by setting
a natural restriction on one of the key parameters we force the structure’s building
bricks to be multiples of 32 bits, which prevents misaligned access to data.

Mäkinen’s index was the first opportunistic scheme for compressing a suffix array,
that is such that uses less space on compressible texts. The key idea was to exploit
runs in the SA, that is, maximal segments SA[i . . . i + ℓ − 1] for which there exists
another segment SA[j . . . j+ℓ−1], such that SA[j+s] = SA[i+s]+1 for all 0 ≤ s < ℓ.
This structure still allows for binary search, only the accesses to SA cells require local
decompression.

FBCSA build(SA[0 . . . n− 1], TBWT , bs, ss)

/* assume n is a multiple of bs */
(01) arr1 ← [ ]; arr2 ← [ ]
(02) j ← 0
(03) repeat

/* current block of the suffix array is SA[j . . . j + bs− 1] */
(04) find 3 most frequent symbols in TBWT [j . . . j + bs− 1] and store them in MFS[0 . . . 2]

/* if there are less than 3 distinct symbols in TBWT [j . . . j + bs− 1],
the trailing cells of MFS[0 . . . 2] are set to NIL) */

(05) for i← 0 to bs− 1 do

(06) if TBWT [j + i] = MFS[0] then arr1.append(00)
(07) else if TBWT [j + i] = MFS[1] then arr1.append(01)
(08) else if TBWT [j + i] = MFS[2] then arr1.append(10)
(09) else arr1.append(11)
(10) pos0 = TBWT [j . . . j + bs− 1].pos(MFS[0])
(11) pos1 = TBWT [j . . . j + bs− 1].pos(MFS[1]) /* set NIL if MFS[1] = NIL */
(12) pos2 = TBWT [j . . . j + bs− 1].pos(MFS[2]) /* set NIL if MFS[2] = NIL */
(13) a2s = |arr2|
(14) arr2.append(SA−1[SA[j + pos0]− 1])
(15) arr2.append(SA−1[SA[j + pos1]− 1]) /* append −1 if pos1 = NIL */
(16) arr2.append(SA−1[SA[j + pos2]− 1]) /* append −1 if pos2 = NIL */
(17) for i← 0 to bs− 1 do

(18) if (TBWT [j + i] 6∈ {MFS[0],MFS[1],MFS[2]}) or (SA[j + i] % ss = 0) then

(19) arr1.append(1); arr2.append(SA[j + i])
(20) else arr1.append(0)
(21) arr1.append(a2s)
(22) j ← j + bs

(23) if j = n then break

(24) until false
(25) return (arr1, arr2)

Figure 3. Building the fixed block based compact suffix array (FBCSA)

We resign from maximal segments in our proposal. The construction algorithm
for our structure, called fixed block based compact suffix array (FBCSA), is presented
in Fig. 3. As a result, we obtain two arrays, arr1 and arr2, which are empty at the
beginning, and their elements are always appended at the end during the construction.
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The elements appended to arr1 are single bits or pairs of bits while arr2 stores suffix
array indexes (32-bit integers).

The construction makes use of the suffix array SA of text T , the inverse suffix
array SA−1 and TBWT (which can be obtained from T and SA, that is, TBWT [i] =
T [(SA[i]− 1) mod n]).

Additionally, there are two construction-time parameters: block size bs and sam-
pling step ss. The block size tells how many successive SA indexes are encoded
together and is assumed to be a multiple of 32, for int32-alignment of the structure
layout. The parameter ss means that every ss-th SA index will be represented ver-
batim. This sampling parameter is a time-space tradeoff; using larger ss reduces the
overall space but decoding a particular SA index typically involves more recursive
invocations.

Let us describe the encoding procedure for one block, SA[j . . . j + bs− 1], where
j is a multiple of bs.

First we find the three most frequent symbols in TBWT [j . . . j + bs− 1] and store
them (in arbitrary order) in a small helper array MFS[0 . . . 2] (line 04). If the current
block of TBWT does not contain three different symbols, the NIL value will be written
in the last one or two cell(s) of MFS. Then we write information about the symbols
from MFS in the current block of TBWT into arr1: we append 2-bit combination
(00, 01 or 10) if a given symbol is from MFS and the remaining combination (11)
otherwise (lines 05–09). We also store the positions of the first occurrences of the
symbols from MFS in the current block of TBWT , using the variables pos0, pos1,
pos2 (lines 10–12); again NIL values are used if needed. These positions allow to use
links to runs of suffixes preceding subsets of the current ones marked by the respective
symbols from MFS.

We believe that a small example will be useful here. Let bs = 8 and the current
block be SA[400 . . . 407] (note this is a toy example and in the real implementation
bs must be a multiple of 32). The SA block contains the indexes: 1000, 522, 801,
303, 906, 477, 52, 610. Let their preceding symbols (from TBWT ) be: a, b, a, c, d, d,
b, b. The three most frequent symbols, written to MFS, are thus: b, a, d. The first
occurrences of these symbols are at positions: 401, 400 and 404, respectively (that
is, 400 + pos0 = 401, etc.). The SA offsets: 521 (= 522 − 1), 999 (= 1000 − 1) and
905 (= 906− 1) will be linked to the current block. We conclude that the preceding
groups of suffix offsets are: [521, 522, 523] (as there are three symbols b in the current
block of TBWT ), [999, 1000] and [905, 906].

We come back to the pseudocode. The described (up to three) links are obtained
thanks to SA−1 (lines 14–16) and are written to arr2. Finally, the offsets of the
suffixes preceded with a symbol not from MFS (if any) have to be written to arr2
explicitly. Additionally, the sampled suffixes (i.e., those whose offset modulo ss is 0)
are handled in the same way (line 18). To distinguish between referrentially encoded
and explicitly written suffix offsets, we spent a bit per suffix and append them to arr1
(lines 19–20). To allow for easy synchronization between the portions of data in arr1
and arr2, the size of arr2 (in bytes) as it was before processing the current block is
written to arr1 (line 21).

6 Experimental results

All experiments were run on a laptop computer with an Intel i3 2.1GHz CPU,
equipped with 8GB of DDR3 RAM and running Windows 7 Home Premium
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SP1 64-bit. All codes were written in C++ and compiled with Microsoft Visual
Studio 2010. The source codes for the FBCSA algorithm can be downloaded from
http://ranisz.iis.p.lodz.pl/indexes/fbcsa/.

The test datasets were taken from the popular Pizza & Chili site
(http://pizzachili.dcc.uchile.cl/). We used the 200-megabyte versions
of the files dna, english, proteins, sources and xml. In order to test the search
algorithms, we generated 500 thousand patterns for each used pattern length; the
patterns were extracted randomly from the corresponding datasets (i.e., each pattern
returns at least one match).

In the first experiment we compared pattern search (count) speed using the fol-
lowing indexes:

– plain suffix array (SA),
– suffix array with a lookup table over the first 2 symbols (SA-LUT2),
– suffix array with a lookup table over the first 3 symbols (SA-LUT3),
– the proposed suffix array with deep buckets, with hashing the prefixes of length
k = 8 (only for dna k = 12 and for proteins k = 5 is used); the load factor α in
the hash table was set to 50% (SA-hash),

– the proposed fixed block based compact suffix array with parameters bs = 32 and
ss = 5 (FBCSA),

– FBCSA (parameters as before) with a lookup table over the first 2 symbols
(FBCSA-LUT2),

– FBCSA (parameters as before) with a lookup table over the first 3 symbols
(FBCSA-LUT3),

– FBCSA (parameters as before) with a hashes of prefixes of length k = 8 (only for
dna k = 12 and for proteins k = 5 is used); the load factor in the hash table was
set to 50% (FBCSA-hash).

The results are presented in Fig. 4. As expected, SA-hash is the fastest index
among the tested ones. The reader may also look at Table 1 with a rundown of the
achieved speedups, where the plain suffix array is the baseline index and its speed is
denoted with 1.00.

dna english proteins sources xml

m = 16
SA 1.00 1.00 1.00 1.00 1.00
SA-LUT2 1.13 1.34 1.36 1.43 1.35
SA-LUT3 1.17 1.49 1.61 1.65 1.47
SA-hash 3.75 2.88 2.70 2.90 2.03
m = 64
SA 1.00 1.00 1.00 1.00 1.00
SA-LUT2 1.12 1.33 1.34 1.42 1.34
SA-LUT3 1.17 1.49 1.58 1.64 1.44
SA-hash 3.81 2.87 2.62 2.75 1.79

Table 1. Speedups with regard to the search speed of the plain suffix array, for the five datasets
and pattern lengths m = 16 and m = 64

The SA-hash index has two drawbacks: it requires significantly more space than
the standard SA and we assume (at construction time) a minimal pattern lengthmmin.
The latter issue may be eliminated, but for the price of even more space use; namely,

http://ranisz.iis.p.lodz.pl/indexes/fbcsa/
http://pizzachili.dcc.uchile.cl/


186 Proceedings of the Prague Stringology Conference 2014

10 20 30 40 50 60
m

0

10

20

30

40

50

60

se
a
rc
h
 t
im

e
 /
 p
a
tt
e
rn
 (
u
s)

dna.200MB
SA-hash

FBCSA-hash

SA

FBCSA

SA-LUT2

FBCSA-LUT2

SA-LUT3

FBCSA-LUT3

10 20 30 40 50 60
m

0

10

20

30

40

50

60

se
a
rc

h
 t
im

e
 /
 p

a
tt
e
rn

 (
u
s)

english.200MB
SA-hash

FBCSA-hash

SA

FBCSA

SA-LUT2

FBCSA-LUT2

SA-LUT3

FBCSA-LUT3

10 20 30 40 50 60
m

0

10

20

30

40

50

60

se
a
rc
h
 t
im

e
 /
 p
a
tt
e
rn
 (
u
s)

proteins.200MB
SA-hash

FBCSA-hash

SA

FBCSA

SA-LUT2

FBCSA-LUT2

SA-LUT3

FBCSA-LUT3

10 20 30 40 50 60
m

0

10

20

30

40

50

60

se
a
rc
h
 t
im

e
 /
 p
a
tt
e
rn
 (
u
s)

sources.200MB
SA-hash

FBCSA-hash

SA

FBCSA

SA-LUT2

FBCSA-LUT2

SA-LUT3

FBCSA-LUT3

10 20 30 40 50 60
m

0

10

20

30

40

50

60

se
a
rc
h
 t
im

e
 /
 p
a
tt
e
rn
 (
u
s)

xml.200MB
SA-hash

FBCSA-hash

SA

FBCSA

SA-LUT2

FBCSA-LUT2

SA-LUT3

FBCSA-LUT3

Figure 4. Pattern search time (count query). All times are averages over 500K random patterns of
the same length m = {mmin, 16, 32, 64}, where mmin is 8 for most datasets except for dna (12) and
proteins (5). The patterns were extracted from the respective texts.
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we can build one hash table for each pattern length from 1 to mmin (counting queries
for those short patterns do not ever need to perform binary search over the suffix
array). For the shortest lengths ({1, 2} or {1, 2, 3}) lookup tables may be alternatively
used.

We have not implemented this “all-HT” variant, but it is easy to estimate the
memory use for each dataset. To this end, one needs to know the number of distinct
q-grams for q ≤ mmin (Table 2).

q dna english proteins sources xml

1 16 225 25 230 96
2 152 10,829 607 9,525 7,054
3 683 102,666 11,607 253,831 141,783
4 2,222 589,230 224,132 1,719,387 908,131
5 5,892 2,150,525 3,623,281 5,252,826 2,716,438
6 12,804 5,566,993 36,525,895 10,669,627 5,555,190
7 28,473 11,599,445 94,488,651 17,826,241 8,957,209
8 80,397 20,782,043 112,880,347 26,325,724 12,534,152
9 279,680 33,143,032 117,199,335 35,666,486 16,212,609

10 1,065,613 48,061,001 119,518,691 45,354,280 20,018,262

Table 2. The number of distinct q-grams (1 . . . 10) in the datasets. The number of distinct 12-grams
for dna is 13,752,341.

The number of bytes for one hash table with z entries and 0 < α ≤ 1 load factor
is, in our implementation, z×8×(1/α), since each entry contains two 4-byte integers.
For example, in our experiments the hash table for english needed 20,782,043 ×16 =
332,512,688 bytes, i.e., 158.6% of the size of the text itself.

An obvious idea to reduce the HT space, in an open addressing scheme, is increas-
ing its load factor α. The search times then are, however, likely to grow. We checked
several values of α on two datasets (Table 3) to conclude that using α = 80% may be
a reasonable alternative to α = 50%, as the pattern search times grow by only about
10%.

HT load factor (%)
25 50 60 70 80 90

dna, m = 12 1.088 1.111 1.122 1.172 1.214 1.390
dna, m = 16 1.359 1.362 1.389 1.421 1.491 1.668
dna, m = 32 1.320 1.347 1.360 1.391 1.463 1.662
dna, m = 64 1.345 1.394 1.409 1.428 1.491 1.672
english, m = 8 1.292 1.386 1.402 1.487 1.524 1.617
english, m = 16 1.670 1.761 1.781 1.846 1.892 1.998
english, m = 32 1.665 1.762 1.813 1.858 1.931 2.015
english, m = 64 1.714 1.794 1.829 1.869 1.967 2.039

Table 3. Average pattern search times (in µs) in function of the HT load factor α for the SA-hash
algorithm

Finally, in Table 4 we present the overall space use for the four non-compact SA
variants: plain SA, SA-LUT2, SA-LUT3 and SA-hash, plus SA-allHT, which is a (not
implemented) structure comprising a suffix array, a LUT2 and one hash table for
each k ∈ {3, 4, . . . ,mmin}. The space is expressed as a multiple of the text length n
(including the text), which is for example 5.000 for the plain suffix array. We note that
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the lookup table structures become a relatively smaller fraction when larger texts are
indexed. For the variants with hash tables we take two load factors: 50% and 80%.

dna english proteins sources xml

SA 5.000 5.000 5.000 5.000 5.000
SA-LUT2 5.001 5.001 5.001 5.001 5.001
SA-LUT3 5.321 5.321 5.321 5.321 5.321
SA-hash-50 6.050 6.587 5.278 7.010 5.958
SA-hash-80 5.657 5.992 5.174 6.257 5.600
SA-allHT-50 6.472 8.114 5.296 9.736 7.353
SA-allHT-80 5.920 6.947 5.185 7.960 6.471

Table 4. Space use for the non-compact data structures as a multiple of the indexed text size
(including the text), with the assumption that text symbols are represented in 1 byte each and SA
offsets are represented in 4 bytes. The value of mmin for SA-hash-50 and SA-hash-80, used in the
construction of these structures and affecting their size, is like in the experiments from Fig. 4. The
index SA-allHT-* contains one hash table for each k ∈ {3, 4, . . . ,mmin}, when mmin depends on the
current dataset, as explained. The -50 and -80 suffixes in the structure names denote the hash load
factors (in percent).

In the next set of experiments we evaluated the FBCSA index. Its properties of
interest, for various block size (bs) and sampling step (ss) parameters, are: the space
use, pattern search times, times to access (extract) one random SA cell, times to
access (extract) multiple consecutive SA cells. For bs we set the values 32 and 64.
The ss was tested in a wider range (3, 5, 8, 16, 32). Using bs = 64 results in better
compression but decoding a cell is also slightly slower (see Fig. 5).
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Figure 5. FBCSA index sizes and cell access times with varying ss parameter (3, 5, 8, 16, 32).
The parameter bs was set to 32 (left figures) or 64 (right figures). The times are averages over 10M
random cell accesses.
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Unfortunately, our tests were run under Windows and it was not easy for us
to adapt other competitive compact indexes to run on our platform, yet from the
comparison with the results presented in [13, Sect. 4] we conclude that FBCSA is a
few times faster in single cell access than the other related algorithms, MakCSA [20]
(augmented with a compressed bitmap from [23] to extract arbitrary ranges of the
suffix array) and LCSA / LCSA-Psi [13], at similar or better compression. Extracting
c consecutive cells is not however an efficient operation for FBCSA (as opposed to
MakCSA and LCSA / LCSA-Psi, see Figs 5–7 in [13]), yet for small ss the time
growth is slower than linear, due to a few sampled (and thus written explicitly) SA
offsets in a typical block (Fig. 6). Therefore, in extracting only 5 or 10 successive cells
our index is still competitive.
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Figure 6. FBCSA, extraction time for c = 5 (top figures) and c = 10 (bottom figures) consecutive
cells, with varying ss parameter (3, 5, 8, 16, 32). The parameter bs was set to 32 (left figures) or 64
(right figures). The times are averages over 1M random cell run extractions.

7 Conclusions

We presented two simple full-text indexes. One, called SA-hash, speeds up standard
suffix array searches with reducing significantly the initial search range, thanks to
a hash table storing range boundaries of all intervals sharing a prefix of a specified
length. Despite its simplicity, we are not aware of such use of hashing in exact pattern
matching, and the approximately 3-fold speedups compared to a standard SA may
be worth the extra space in many applications.
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The other presented data structure is a compact variant of the suffix array, related
to Mäkinen’s compact SA [20]. Our solution works on blocks of fixed size, which
provides int32 alignment of the layout. This index is rather fast in single cell access,
but not competitive if many (e.g., 100) consecutive cells are to be extracted.

Several aspects of the presented indexes requires further study. In the SA-hash
scheme collisions in the HT may be eliminated with using perfect hashing or cuckoo
hashing. This should also reduce the overall space use. In case of plain text, the
standard suffix array component may be replaced with a suffix array on words [4],
with possibly new interesting space-time tradeoffs. The idea of deep buckets may
be incorporated into some compressed indexes, e.g., to save on the several first LF-
mapping steps in the FM-index.
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