
Using Correctness-by-Construction to Derive

Dead-zone Algorithms

Bruce W. Watson1, Loek Cleophas2, and Derrick G. Kourie1

1 FASTAR Research Group, Department of Information Science, Stellenbosch University,
Private Bag X1, 7602 Matieland, Republic of South Africa
2 Department of Computer Science, University of Pretoria,

Private Bag X20, 0028 Hatfield, Pretoria, Republic of South Africa
{bruce,loek,derrick}@fastar.org

Abstract. We give a derivation, in the form of a stepwise (refinement-oriented) pre-
sentation, of a family of algorithms for single keyword pattern matching, all based on
the so-called dead-zone algorithm-style, in which input text parts are tracked as either
unprocessed (‘live’), or processed (‘dead’). Such algorithms allow for Boyer-Moore-style
shifting in the input in two directions (left and right) instead of one, and have shown
promising results in practice. The algorithms are the more interesting because of their
potential for concurrency (multithreading). The focus of our algorithm family presenta-
tion is on correctness-arguments (proofs) accompanying each step, and on the resulting
elegance and efficiency. Several new algorithms are described as part of this algorithm
family, including ones amenable to using concurrency.

Keywords: correctness-by-construction, algorithm derivation, keyword pattern match-
ing, Boyer-Moore, concurrency

1 Introduction

In this paper, we give a stepwise derivation of a family of algorithms for single key-
word pattern matching. The focus of the derivation is on clarity and confidence in
the correctness of each step, which lead to efficiency and elegance. Because of the
correctness arguments associated with each step, the presentation forms the essence
of a derivation of the various algorithms. As such, the presentation forms a case study
for the Correctness-by-Construction (CbC) approach to software or algorithm con-
struction: we start with an abstract problem specification, in the form of pre- and
postcondition, and iteratively refine these to obtain more refined (concrete) specifica-
tions [15]. In its strict form, the use of CbC requires that in each refinement step, rules
are applied that guarantee and prove correctness of the resulting refined specification.
For presentation clarity, and since many of the proof obligations involved are triv-
ial, we will leave out many formal details in the present context. A CbC approach,
and the derivations resulting from it, give a clear understanding of the algorithms
and concepts involved, and give confidence in correctness, even if applied somewhat
informally. Furthermore, new algorithms may arise from the process.

The main result of our presentation is the derivation of a substantial and partially
new algorithm family, of which significant parts have not been explicitly presented
before. In some sense, the algorithms in the family are reminiscent of the Boyer-Moore
style of algorithms, in which shift functions are used to potentially skip reading parts
of the subject string by moving to the right in the input text by more than one
position. This has earned such algorithms the term sublinear.

The algorithm family we consider uses quite different algorithm skeletons from
the Boyer-Moore style ones, although the latter form degenerate cases within our

Bruce W. Watson, Loek Cleophas, Derrick G. Kourie: Using Correctness-by-Construction to Derive Dead-zone Algorithms, pp. 84–95.

Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

B. W. Watson et al.: Using Correctness-by-Construction to Derive Dead-zone Algorithms 85

algorithm family. It is based on characterizing positions in the text as either (a)live
and part of a live-zone or dead and part of a dead-zone. A position or range of
positions in the text is dead i.e. in a dead-zone, if (based on information obtained by an
algorithm so far) it has been deemed to either not match the pattern/keyword or has
been deemed to match the pattern and such a match has been reported or registered.
Otherwise, it is live i.e. in a live-zone. Initially, the entire input text is live, and
upon termination, the entire input text is dead. So-called dead-zone style algorithms
such as those in the algorithm family presented here, can do better than Boyer-
Moore style algorithms can: based on a single alignment of text to pattern, shifting
(i.e. “killing” positions) can occur both to the right and to the left, i.e. yielding two
remaining live text parts (and hence next alignments) to consider. Furthermore, these
two parts can be processed independently, offering ample opportunity for concurrency
and fundamentally distinguishes the dead-zone algorithm family from classical Boyer-
Moore and most more recent single keyword pattern matching algorithms, which
typically use a single sliding alignment window on the text. Dead-zone style algorithms
can be used with any of the various Boyer-Moore style shift functions known from
the literature, and they can even use left and right shift functions that are completely
different (above and beyond the obvious mirroring required).

This algorithm family can be seen in the context of earlier work by the authors and
their collaborators, based on the use of live-zones and dead-zones for keyword pat-
tern matching. At the Second Prague Stringology Club Workshop (1997), Watson and
Watson presented a paper on a new family of string pattern matching algorithms [19],
with a later version appearing in 2003 in the South African Computer Journal [20].
In those papers, the focus is on representing liveness and deadness on a per-position
basis. The use of ranges to represent liveness and deadness is only mentioned in pass-
ing, leading to a recursive range-based algorithm. Furthermore, this early work is
not explicit about the use of Boyer-Moore style shift functions in the algorithms. At
the International Workshop on Combinatorial Algorithms (IWOCA) 2012, Watson,
Kourie and Strauss presented a slightly different recursive dead-zone-based algorithm
with explicit use of Boyer-Moore style shift functions, as well as a C++ implemen-
tation and benchmarking [18]. This work was further extended by Mauch et al. [13],
who present the recursive algorithm with some variations, including iterative ones
obtained by (tail) recursion elimination. The focus there is on implementing and
benchmarking these variants (in C and C++).

In this paper, we present and derive a family of iterative, range-based dead-zone
algorithms, including different representation choices for the live-zones in the algo-
rithms. As we will see, the family includes an alternative derivation of the recursive
implicit-stack based algorithm used in [18,13]. Furthermore, various representation
choices are considered, and various dead-zone-style algorithms using concurrency are
presented and sketched, some of them new. The presentation is in the spirit of the
CbC style pioneered by Dijkstra, Gries, and others over four decades ago [6,8,14,12].
For this reason, we assume some awareness of this style and we use the well-known
Guarded Command Language (GCL; designed by Dijkstra) which was designed to
support reasoning about correctness. The presentation starts out from a single ab-
stract algorithm whose correctness is easy to argue based on the formulation of pre-
and post-conditions and invariant. Using the CbC approach, this algorithm is then
iteratively refined, leading to the derivation and presentation of the family of algo-
rithms.

86 Proceedings of the Prague Stringology Conference 2014

2 Problem Statement and Initial Solution Sketch

The single keyword pattern matching problem can be stated as follows:

Given two strings x, y ∈ Σ∗ over an alphabet Σ—respectively called the key-
word or pattern, and (input or search) text—find all occurrences of x as a
contiguous substring of y.

We register any such occurrences or matches by keeping track of the indices in
the text at which they occur, i.e. at which they start, in a match set variable, called
MS (a set of integers)1. To make this more precise, we define a helper predicate

Match(x, y, j) ≡ (x = y[j,j+|x|)).

Note that here and throughout this derivation, we use [a, b) style ranges (inclusive
at the left end, exclusive at the right end) to avoid numerous +1 and −1 terms in
indexing a string.

Using predicate Match, the postcondition to be established by any algorithm solv-
ing the single keyword pattern matching problem therefore is:

MS =
⋃

j∈[0,|y|):Match(x,y,j)

{j}

Note that indexing in y starts from 0, in keeping with many programming lan-
guages as well as typical use in correctness-by-construction styles.

Also note that the above does not place any restrictions on x, y; in particular, y
may be shorter than x (in which cases there are no matches), and one or both could
be of length 0 (and in case x does, it trivially matches at every position of y). Many
algorithm presentations in the literature needlessly give such restrictions as part of
the problem statement—thereby cluttering the resulting algorithm(s).

As in the earlier derivations and presentations of dead-zone style algorithms men-
tioned in the introduction, our algorithms will keep track of all indices in y (i.e.
members of the set [0, |y|), categorizing each such index k into one of a number of
disjoint sets. Here, we will use three (disjoint) sets, although one of them will not be
represented explicitly:

1. MS, the set of indices where a match has already been found.
2. Live Todo, the set of indices about which we know nothing (i.e. there may or may

not be a match at such an index), i.e. that are still live.
3. ¬(MS ∪ Live Todo), the set of indices at which we know no match occurs.

The indices in category 2 are called live indices, while those in category 1 and
3 are called dead. In earlier dead-zone-style algorithms as presented in [19,20], two
disjoint sets were used, representing the live (or to do) and dead (or done) indices
respectively, with dead indices at which a match occurs being reported as soon as
they are found.

The aim of every algorithm in this paper’s algorithm family is to start with
Live Todo = [0, |y|) and reduce this to Live Todo = ∅, meaning that all indices
have been checked and are in category 1 or 3; in other words, each such algorithm
starts with the entire input text y being live, and ends with the entire input being
dead. This is expressed by the predicates and algorithm skeleton given below.

1 Of course, in practical implementations, we may print a message to the screen or otherwise report
a match instead of accumulating the variable MS.

B. W. Watson et al.: Using Correctness-by-Construction to Derive Dead-zone Algorithms 87

Algorithm 1 (Abstract Live and Dead Indices Matcher)
Live Todo :=[0, |y|);
MS := ∅;
{ invariant: (∀ j : j ∈ MS : Match(x, y, j)) }
{ ∧(∀ j : j 6∈ (MS ∪ Live Todo) : ¬Match(x, y, j)) }
{ variant: |Live Todo| }
S

{ invariant ∧ |Live Todo| = 0 }
{ post }

Clearly, given an appropriate statement S satisfying the above pre- and postcondi-
tions for S, when |Live Todo| = 0, Live Todo = ∅ and hence the previously mentioned
postcondition holds, i.e. MS =

⋃

j∈[0,|y|):Match(x,y,j)

{j}.

3 From Position-based to Range-based Iterative Dead-zone

We can immediately make a practical improvement to Algorithm 1 by representing
Live Todo as a set of (live) ranges [l, h) (with l, h integers). At first glance this may
seem less efficient, but we will benefit from this shortly. As a further conjunct to the
original invariant, we also insist that the ranges in Live Todo are pairwise disjoint,
i.e. none of the ranges overlap with each other2. Furthermore, the ranges are assumed
to be maximal, to keep Live Todo small (although ranges may be empty). With this
minor change of representation, we need to be clear about what |Live Todo| in the
variant means: we still use it to refer to the total number of indices represented in
Live Todo, not the number of ranges in it. The resulting new algorithm skeleton is
given below.

Algorithm 2 (Abstract Live and Dead Ranges Matcher)
Live Todo := {[0, |y|)};
MS := ∅;
{ invariant: (∀ j : j ∈ MS : Match(x, y, j)) }
{ ∧ (∀ j : j 6∈ (MS ∪ Live Todo) : ¬Match(x, y, j)) }
{ variant: |Live Todo| }
do Live Todo 6= ∅ →

Extract some [l, h) from Live Todo;
S0

od
{ invariant ∧ |Live Todo| = 0 }
{ post }

The question now becomes what needs to be done in S0 to re-establish the invariant.
Clearly some or all of the indices in the range [l, h) need to be checked to gain
information about matches found or found to be impossible. Rather than check all
indices in the range, we check for a match at the midpoint of the range, i.e. at

2 Not doing so would lead to inefficiency by considering a live position more than once, or extra
booking-keeping to eliminate positions which have already been considered

88 Proceedings of the Prague Stringology Conference 2014

m =
⌊

l+h
2

⌋

and split the range in two, inserting the remaining portions into Live Todo,
i.e. adding [l,m) and [m+1, h) to Live Todo. Note that as indicated above, this does
not make variant |Live Todo| increase. It should also be noted that other choices than
the midpoint of the range could be made, including choices that have the algorithm
degenerate to e.g. Boyer-Moore [19], but we will not explore these here.

Either or both of [l,m) and [m + 1, h) may be empty ranges. We can detect this
before insertion and not insert the empty range(s) into Live Todo. Here, we elect to do
such range checking upon extraction of a range from Live Todo, cutting the amount of
pseudo-code. However, whenever an empty range is processed in the loop, the earlier
variant |Live Todo| does not strictly decrease but stays the same. Because of this, we
change the variant to the pair 〈|Live Todo|, E〉 with E the number of empty ranges
in Live Todo. Using the standard lexicographical ordering on such pairs, this is once
more a correct variant: it decreases not only when |Live Todo| decreases, but also
when |Live Todo| stays the same yet an empty range is extracted from Live Todo
(since in that case E decreases).

Finally, we note that the last |x|−1 indices of input text y cannot contain a match,
and we change the initialization of y accordingly. (Note that this could already have
been done before, i.e. in Algorithms 1 and 2.)

The above refinements give us Algorithm 3.

Algorithm 3 (Live and Dead Ranges Matcher)
Live Todo := {[0, |y| − |x|)};
MS := ∅;
{ invariant: (∀ j : j ∈ MS : Match(x, y, j)) }
{ ∧ (∀ j : j 6∈ (MS ∪ Live Todo) : ¬Match(x, y, j)) }
{ variant: 〈|Live Todo|, E〉 }
do Live Todo 6= ∅ →

Extract [l, h) from Live Todo;
if l ≥ h → { empty range } skip
[] l < h →

m :=
⌊

l+h
2

⌋

;
if Match(x, y,m) → MS := MS ∪ {m}
[] ¬Match(x, y,m) → skip
fi;
Live Todo := Live Todo ∪ [l,m) ∪ [m+ 1, h)

f i
od
{ invariant ∧ |Live Todo| = 0 }
{ post }

4 Improvements to Range-based Iterative Dead-zone

The preceding algorithm repeatedly performs match attempts, i.e. tests predicate
Match. Testing this predicate boils down to a loop testing the symbols of x one-for-
one against y[m,m+|x|). Such match attempts can be done letter-by-letter from right to
left or vice versa, but also in parallel, or using a different order. The particular order
used has typically been called the match order, with extensive discussions of different
orders by Hume & Sunday [11] and elsewhere [16,3].

B. W. Watson et al.: Using Correctness-by-Construction to Derive Dead-zone Algorithms 89

As with all Boyer-Moore style algorithms, we can eliminate more than one index
at a time, i.e. not just index m but consecutive indices next to it as well, by cleverly
using information gathered during the match attempt. Shifting more than one index
at a time after this match attempt is usually done using a precomputed shift function.
We do not consider the details of such “shifters” here. They are extensively covered in
the literature [2,9,11], including with correctness arguments in [21,5]. Given that any
such shift function is usable with the above algorithm skeleton, the resulting skeleton
(not explicitly given here) in fact represents an extensive family of algorithms, even
without considering the preceding abstract algorithms or the ones that follow in
Section 5.

Since match attempts are made near the middle of a selected range however, our
algorithm skeleton, in contrast to classical Boyer-Moore and all its variations, can
use two shifters at the same time: one to shift to the right (as per Boyer-Moore
and variants), increasing the left bound of range [m + 1, h); and a dual one to the
left, decreasing the upper bound of range [l,m). Although such left shifters have not
been described in detail in the literature, they are in fact straightforwardly computed
“duals” of the right shifters, as was pointed out in [18]. It is important to note that
it is not even necessary to use a shifter and its dual shifter in the other direction, but
that a shifter and the dual of a completely different Boyer-Moore style shifter can
be used—thus, the algorithm family is even more extensive than it may seem at first
glance. For example, a family member could use Horspool’s shifter for its right shifts,
and the dual of Sunday’s shifter for its left shift, etc.

If we assume two such shift functions, returning values shl and shr for shift left and
shift right, the update of Live Todo near the bottom of Algorithm 3 can be replaced
by

l′, h′ := m− shl,m+ shr;
Live Todo := Live Todo ∪ [l, l′) ∪ [h′, h);

We can do a relatively simple running-time analysis, which relies on prior knowl-
edge about the shift functions: they are both bounded above by |x| in most cases3

meaning we could make as few as
⌈

|y|
2|x|

⌉

match attempts in the best case. This con-

trasts to
⌈

|y|
|x|

⌉

match attempts for Boyer-Moore and variants. Note that this does not

violate any information-theoretical bounds; in each match attempt, character com-
parisons from both the left and the right end of the current alignment are made, and
following each match attempt, our family of algorithms simply shifts in two direc-
tions instead of one. In the best case, just like for the Boyer-Moore algorithm and

variants, we have
⌈

|y|
|x|

⌉

character comparisons. The worst case for this family, as with

all keyword pattern matching variants, is |y| match attempts, and |y| ∗ |x| character
comparisons.

3 The exception is with shift functions as used in e.g. the Berry-Ravindran algorithm [1], which uses
characters next to x’s current alignment in y as well. In such cases, the shift function is bounded
by |x|+ c for some constant c.

90 Proceedings of the Prague Stringology Conference 2014

5 Different Live-zone Representations

Until now, Live Todo has been a set, meaning there is a measure of nondeterminism
in the algorithms presented. This can lead to very poor performance in practice, in
cases where the algorithm needs read access intermittently all across y.

Alternatively to a set representation, Live Todo can easily be represented using
a queue or using a stack. Predictably, these lead to breadth- respectively depth-wise
traversals of the ranges in y.

As noted before, the ranges in Live Todo are pairwise disjoint. This also means
we can deal with them entirely independently and in parallel. Indeed, each iteration
could give rise to new threads, leading to various concurrent versions of the algo-
rithms presented. Two recent papers, [10] and [7], discuss approaches that have some
similarities to this; they also process multiple text segments at the same time, but
this is limited to two segments in the former, and a fixed number of segments in the
latter. In [7], the fixed number of segments is strongly reflected in the structure of the
source code, with some coupling between the segments’ processing, and no obvious
way of making the processing multi-threaded.

In the worst case, a queue can grow to |y| and in the best case to
⌈

|y|
|x|

⌉

elements

(ranges). Because of this worst case behaviour, we do not further consider this rep-
resentation choice in the current paper.

A stack representation is much more efficient than a queue one, giving a maximum
stack size of log2|y|. The resulting algorithm is a relatively straightforward refinement
of (the bidirectional shifting-based refinement) of Algorithm 3, and is given below.

Algorithm 4 (Live and Dead Ranges Matcher using Stack)
Live Todo := 〈[0, |y| − |x|)〉;
MS := ∅;
{ invariant: (∀ j : j ∈ MS : Match(x, y, j)) }
{ ∧ (∀ j : j 6∈ (MS ∪ Live Todo) : ¬Match(x, y, j)) }
{ variant: 〈|Live Todo|, E〉 }
do Live Todo 6= ∅ →

Pop [l, h) from Live Todo;
if l ≥ h → { empty range } skip
[] l < h →

m :=
⌊

l+h
2

⌋

;
if Match(x, y,m) → MS := MS ∪ {m}
[] ¬Match(x, y,m) → skip
fi;
l′, h′ := m− shl,m+ shr;
Push [h′, h) to Live Todo;
Push [l, l′) to Live Todo

f i
od
{ invariant ∧ |Live Todo| = 0 }
{ post }

This algorithm in fact is an encoding with an explicit stack of a recursive dead-
zone-style algorithm, similar to the ones presented in [18,13].

B. W. Watson et al.: Using Correctness-by-Construction to Derive Dead-zone Algorithms 91

Algorithm 4 can be further refined to yield a version with information sharing;
that is, given that zones may overlap, and since the algorithm considers zones from
left to right, we can track a known dead-zone [0, z) with z such that (∀ i : 0 ≤ i < z :
i 6∈ Live Todo), and keep z maximal given what is presently known about the input
text based on the algorithm’s preceding processing.

Given such a value z, whenever we pop [l, h) from the stack, it can be changed
to [lmax z, h), followed by updating z to lmax z. These changes are correct due to
additional invariants added below, as well as the order in which ranges are pushed
onto the stack, which ensures that whenever [l, h) is popped from the stack, all indices
to the left of l are already dead.

Algorithm 5 (Live and Dead Ranges Matcher using Stack and Sharing)
Live Todo := 〈[0, |y| − |x|)〉;
MS := ∅;
z := 0;
{ invariant: (∀ j : j ∈ MS : Match(x, y, j)) }
{ ∧ (∀ j : j 6∈ (MS ∪ Live Todo) : ¬Match(x, y, j)) }
{ ∧ (∀ i : 0 ≤ i < z : i 6∈ Live Todo) }
{ ∧ (top(Live Todo) = [l, h)) =⇒ [0, l) is dead }
{ variant: 〈|Live Todo|, E〉 }
do Live Todo 6= ∅ →

Pop [l, h) from Live Todo;
l := lmax z;
z := l;
if l ≥ h → { empty range } skip
[] l < h →

m :=
⌊

l+h
2

⌋

;
if Match(x, y,m) → MS := MS ∪ {m}
[] ¬Match(x, y,m) → skip
fi;
l′, h′ := m− shl,m+ shr;
Push [h′, h) to Live Todo;
Push [l, l′) to Live Todo

f i
od
{ invariant ∧ |Live Todo| = 0 }
{ post }

6 Using Concurrency for Match Attempts

The use of concurrency as suggested in the preceding section is but one possible
use of concurrency in dead-zone-style algorithms. We consider a different, previously
undescribed, use of concurrency below. The core observation that leads to this use of
concurrency is that for certain shift functions, very little match attempt information
is used to determine the shifts to be made (while often still providing competitive
performance compared to other shift functions). This means that shifting and match
attempt verification can be decoupled to some degree.

92 Proceedings of the Prague Stringology Conference 2014

For example, Horspool’s variant of Boyer-Moore uses shifts based only on the
rightmost symbol of the input at the given keyword alignment (and in our context,
dually uses the leftmost symbol for the left shifter). Similarly, Sunday’s Quicksearch
uses shifts solely based on the symbol to the right of that rightmost symbol; and in our
context, dually based on the symbol to the left of the leftmost symbol of the alignment
for the shift to the left. Thus, it is not necessary to attempt a complete match i.e. to
fully evaluate predicate Match(x, y,m) before such shifts can be calculated.

For a given alignment of the pattern to the input text, an alternative algorithm
could read the two symbols needed for the respective right shift and left shift (one
for the right, one for the left shift), and immediately compute the shifts and make
appropriate updates to Live Todo. The current index, at which a match attempt still
has to be performed (i.e. for which predicateMatch has to be evaluated), can be added
to a separate set variable, say Attempt. The elements of this set can be processed after
the main loop of the algorithm has terminated, yielding a different but still sequential
dead-zone-style algorithm.

Instead of such a sequential algorithm, a version employing concurrency could be
used: one or more separate “matcher” threads could repeatedly extract an element
from Attempt and perform the match attempt for the alignment indicated by the
element. Alternatively, each thread t can have its own thread-private set Attemptt
from which to extract elements, with the main algorithm loop adding positions to the
various threads’s Attemptt. We present the latter algorithm, including the procedure
Matchert to be executed by each of the matcher threads t ∈ MThreads. Note that the
second conjunct of the invariant has been changed to cover the Attemptt variables,
reflecting the fact that removal of an element from Live Todo does not necessarily
mean it represents a non-match, as long as the match attempt for the element still
needs to be executed (i.e. the element is in one of the sets Attemptt).

Algorithm 6 (Concurrent Live and Dead Ranges Matcher using Stack)
Live Todo := 〈[0, |y| − |x|)〉;
MS := ∅;
{ invariant: (∀ j : j ∈ MS : Match(x, y, j)) }
{ ∧ (∀ j : j 6∈ (MS ∪ Live Todo ∪

⋃

t∈MThreads

{Attemptt}) : ¬Match(x, y, j)) }

{ variant: 〈|Live Todo|, E〉 }
do Live Todo 6= ∅ →

Pop [l, h) from Live Todo;
if l ≥ h → { empty range } skip
[] l < h →

m :=
⌊

l+h
2

⌋

;
Add m to queue Attemptt for some thread t;
l′, h′ := m− shl,m+ shr;
Push [h′, h) to Live Todo;
Push [l, l′) to Live Todo

f i
od
{ invariant ∧ |Live Todo| = 0 ∧ (∀ t : t ∈ MThreads : Attemptt = ∅) }
{ post }

proc Matchert

B. W. Watson et al.: Using Correctness-by-Construction to Derive Dead-zone Algorithms 93

do Attemptt 6= ∅ →
if Match(x, y,m) → MS := MS ∪ {m}
[] ¬Match(x, y,m) → skip
fi

od
corp

This algorithm assumes each matcher thread has write access to the shared match
set variable MS. In practice, it is likely that an implementation would instead have a
thread-local match set variable, and these would be gathered in shared memory after
thread termination.

7 Concluding Remarks

We have given a derivation, in the form of a stepwise presentation, of an exten-
sive family of single keyword pattern matching algorithms. Our exposition serves
as a case study for the Correctness-by-Construction style of algorithm development,
emphasizing correctness and clarity, which in turn lead to elegant and presumably ef-
ficient algorithms. Our presentation included several new algorithm variants, a result
typically seen when using the correctness-by-construction style of algorithm deriva-
tion [17,4,15].

The algorithms in the family are all based on tracking input text parts as be-
ing dead-zones or live-zones, and using shifts to both the left and the right after
an alignment and match attempt in the middle of a remaining text part to be con-
sidered. This approach offers ample opportunity for concurrency and fundamentally
distinguishes the dead-zone algorithm family from classical Boyer-Moore and most
more recent single keyword pattern matching algorithms, which typically use a single
sliding alignment window on the text.

Previous publications [13,18] and ongoing benchmarking have already shown pro-
mising results for some of the members of the algorithm family as well as closely
related dead-zone-based algorithms. Figure 1 shows some recent results. The details
are not of particular interest here, but Figures 1a and 1b show the differences be-
tween each of 10 algorithms—8 dead-zone variants, followed by plain non-dead-zone
Horspool and QuickSearch at the right of each figure—when run on Bible and Ecoli
data respectively. The box plots reflect results over keyword lengths 2i for i ∈ [1, 16]
with 100 pseudo-randomly generated keywords of each length—thus, each figure has
10∗16 = 160 box plots over 100 values. The results are relative (in percentage terms)
to the first (leftmost) algorithm, an iterative dead-zone algorithm using Horspool’s
shifter (and dual). The results show current dead-zone implementations to already
be close to competitive against plain non-dead-zone Horspool and QuickSearch, de-
pending on the data sets pattern length under consideration. Since the new dead-zone
algorithms derived and discussed in this paper include ones amenable to using con-
currency (multithreading) in various ways, they are all the more interesting to explore
further as future work.

94 Proceedings of the Prague Stringology Conference 2014

1 8 17 27 37 47 57 67 77 87 97 109 122 135 148

−
1
0
0

−
8
0

−
6
0

−
4
0

−
2
0

0
2
0

4
0

(x − nhh) / nhh * 100

Data Sources: i7 / Wall plug / Sequential / * / * / Bible / Machine time

(a) On bible data

1 8 17 27 37 47 57 67 77 87 97 109 122 135 148

−
5
0

0
5
0

(x − enhh) / enhh * 100

Data Sources: i7 / Wall plug / Sequentual / * / * / Ecoli / Machine time

(b) On Ecoli data

Figure 1: Comparisons of relative performance of various dead-zone algorithms and
plain Horspool and QuickSearch.

References

1. T. Berry and S. Ravindran: A fast string matching algorithm and experimental results, in
Proceedings of the Prague Stringology Club Workshop‘99, J. Holub and M. Simánek, eds., Czech
Technical University, Prague, Czech Republic, 1999, pp. 16–26, Collaborative Report DC-99-05.

2. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Communications of the
ACM, 20(10) 1977, pp. 62–72.

3. D. Cantone and S. Faro: Improved and self-tuned occurrence heuristics, in Proceedings of the
Prague Stringology Conference 2013, J. Holub and J. Žďárek, eds., Czech Technical University
in Prague, Czech Republic, 2013, pp. 92–106.

4. L. Cleophas: Tree Algorithms: Two Taxonomies and a Toolkit, PhD thesis, Eindhoven Uni-
versity of Technology, the Netherlands, Apr. 2008.

5. L. Cleophas, B. W. Watson, and G. Zwaan: A new taxonomy of sublinear right-to-left
scanning keyword pattern matching algorithms. Science of Computer Programming, 75 2010,
pp. 1095–1112.

6. E. W. Dijkstra: A Discipline of Programming, Prentice Hall, 1976.
7. S. Faro and T. Lecroq: A multiple sliding windows approach to speed up string matching

algorithms, in SEA, R. Klasing, ed., vol. 7276 of Lecture Notes in Computer Science, Springer,
2012, pp. 172–183.

8. D. Gries: The Science of Computer Programming, Springer-Verlag, second ed., 1980.
9. R. N. Horspool: Practical fast searching in strings. Software — Practice & Experience, 10(6)

1980, pp. 501–506.
10. A. Hudaib, R. Al-Khalid, D. Suleiman, M. Itriq, and A. Al-Anani: A fast pattern

matching algorithm with two sliding windows (TSW). Journal of Computer Science, 4(5) 2008,
pp. 393–401.

11. A. Hume and D. Sunday: Fast string searching. Software — Practice & Experience, 21(11)
1991, pp. 1221–1248.

12. D. G. Kourie and B. W. Watson: The Correctness-by-Construction Approach to Program-
ming, Springer Verlag, 2012.

13. M. Mauch, D. G. Kourie, B. W. Watson, and T. Strauss: Performance assessment of
dead-zone single keyword pattern matching, in SAICSIT Conf., J. H. Kroeze and R. de Villiers,
eds., ACM, 2012, pp. 59–68.

14. C. C. Morgan: Programming from specifications, 2nd Edition, Prentice Hall International
series in computer science, Prentice Hall, 1994.

B. W. Watson et al.: Using Correctness-by-Construction to Derive Dead-zone Algorithms 95

15. B. Watson, D. Kourie, and L. Cleophas: Experience with correctness-by-construction.
Science of Computer Programming, 2013, in press.

16. B. W. Watson: Taxonomies and Toolkits of Regular Language Algorithms, PhD thesis, Faculty
of Computing Science, Eindhoven University of Technology, the Netherlands, Sept. 1995.

17. B. W. Watson: Algorithms for Constructing Minimal Acyclic Deterministic Finite Automata,
PhD thesis, Department of Computer Science, University of Pretoria, South Africa, 2010.

18. B. W. Watson, D. G. Kourie, and T. Strauss: A sequential recursive implementation of
dead-zone single keyword pattern matching, in IWOCA, S. Arumugam and W. F. Smyth, eds.,
vol. 7643 of Lecture Notes in Computer Science, Springer, 2012, pp. 236–248.

19. B. W. Watson and R. E. Watson: A new family of string pattern matching algorithms, in
Proceedings of the Second Prague Stringologic Workshop, J. Holub, ed., Prague, Czech Republic,
July 1997, Czech Technical University, pp. 12–23.

20. B. W. Watson and R. E. Watson: A new family of string pattern matching algorithms.
South African Computer Journal, 30 June 2003, pp. 34–41.

21. B. W. Watson and G. Zwaan: A taxonomy of sublinear multiple keyword pattern matching
algorithms. Science of Computer Programming, 27(2) 1996, pp. 85–118.

