
Improved Two-Way Bit-parallel Search⋆

Branislav Ďurian1, Tamanna Chhabra2, Sukhpal Singh Ghuman2,
Tommi Hirvola2, Hannu Peltola2, and Jorma Tarhio2

1 S&T Slovakia s.r.o., Priemyselná 2, SK-010 01 Žilina, Slovakia
Branislav.Durian@snt.sk

2 Department of Computer Science and Engineering, Aalto University
P.O.B. 15400, FI-00076 Aalto, Finland

{Tamanna.Chhabra, Suhkpal.Ghuman, Tommi.Hirvola}@aalto.fi,
hpeltola@cs.hut.fi, Jorma.Tarhio@aalto.fi

Abstract. New bit-parallel algorithms for exact and approximate string matching are
introduced. TSO is a two-way Shift-Or algorithm, TSA is a two-way Shift-And algo-
rithm, and TSAdd is a two-way Shift-Add algorithm. Tuned Shift-Add is a minimalist
improvement to the original Shift-Add algorithm. TSO and TSA are for exact string
matching, while TSAdd and tuned Shift-Add are for approximate string matching with
k mismatches. TSO and TSA are shown to be linear in the worst case and sublinear in
the average case. Practical experiments show that the new algorithms are competitive
with earlier algorithms.

1 Introduction

String matching can be classified broadly as exact string matching and approximate
string matching. In this paper, we consider both types. Let T = t1t2 · · · tn and P =
p1p2 · · · pm be text and pattern respectively, over a finite alphabetΣ of size σ. The task
of exact string matching is to find all occurrences of the pattern P in the text T , i.e. all
positions i such that titi+1 · · · ti+m−1 = p1p2 · · · pm. Approximate string matching [14]
has several variations. In this paper, we consider only the k mismatches variation,
where the task is to find all the occurrences of P with at most k mismatches, where
0 ≤ k < m holds.

We will present new sublinear variations of the widely known Shift-Or, Shift-And,
and Shift-Add algorithms [3,19] which apply bit-parallelism. The key idea of the most
of these algorithms is a two-way loop of j where text characters ti−j and ti+j are
handled together. Our algorithms are linear in the worst case. Practical experiments
show that the new algorithms with q-grams, loop unrolling, or with a greedy skip
loop are competitive with earlier algorithms of same type.

All our algorithms utilize bit manipulation heavily. We use the following notations
of the C programming language: ‘&’, ‘|’, ‘<<’, and ‘>>’. These represent bitwise
operations and, or, left shift, and right shift, respectively. Parenthesis and extra
space has been used to clarify the correct evaluation order in pseudocodes. Let w be
the register width (or word size informally speaking) of a processor, typically 32 or
64.

2 Previous algorithms

This section describes the previous solutions for exact and approximate string match-
ing. First, we illustrate previous algorithms for exact matching which include Shift-
Or and its variants like BNDM (Backward Nondeterministic DAWG Matching),

⋆ Supported by the Academy of Finland (grant 134287).

Branislav Ďurian, Tamanna Chhabra, Sukhpal Singh Ghuman, Tommi Hirvola, Hannu Peltola, Jorma Tarhio: Improved Two-Way Bit-parallel Search,

pp. 71–83.

Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

72 Proceedings of the Prague Stringology Conference 2014

TNDM (Two-way Nondeterministic DAWG Matching), LNDM (Linear Nondeter-
ministic DAWG Matching), FSO (Fast Shift-Or) and FAOSO (Fast Average Optimal
Shift-Or. Then the algorithms for approximate string matching are presented which
cover Shift-Add and AOSA (Average Optimal Shift-Add).

2.1 Shift-Or and its variations

The Shift-Or algorithm [3] was the first string matching algorithm applying bit-
parallelism. Processing of the algorithm can be interpreted as simulation of an au-
tomaton. The update operations to all states are identical. Operands in the algorithm
are bit-vectors and the essential bit-vector containing the state of the automaton is
called the state vector. The state vector is updated with the bit-shift and or op-
erations. FSO (Fast Shift-Or) [7] is a fast variation of the Shift-Or algorithm, and
FAOSO (Fast Average Optimal Shift-Or) [7] is a sublinear variation of that algorithm.

BNDM [15] (Backward Nondeterministic DAWGMatching) is the bit-parallel sim-
ulation of an earlier algorithm called BDM (Backward DAWG Matching). BDM scans
the alignment window from right to left and skips characters using a suffix automa-
ton, which is made deterministic during preprocessing. BNDM, instead, simulates
the nondeterministic automaton using bit-parallelism. BNDM applies the Shift-And
method [19], which utilizes the bit-shift and and operations.

TNDM (Two-way Nondeterministic DAWGMatching) [17] is a variation of BNDM
applying two-way scanning. Our new algorithms are related to the Wide-Window
algorithm [11] and its bit-parallel variations [4,11,10]. The LNDM (Linear Nonde-
terministic DAWG Matching) algorithm [10] is a two-way Shift-And algorithm with
sequential symmetric scanning. The pseudocode of the LNDM is given as Alg. 1. The
precomputed occurrence vector table B associates each character of the alphabet with
a bit mask expressing occurrences of that character in the pattern P . We use table B
for this purpose in all algorithms presented in this paper. In LNDM, the alignment
window is shifted with fixed steps of m. Starting from the mth character of window
the text characters are examined moving leftwards. The bitvector L becomes zero,
when a mismatch is detected or (m shifts has been made while) m characters have

Algorithm 1 LNDM(P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: m ≤ w

/* Preprocessing */
1: for all c ∈ Σ do B[c]← 0
2: for i← 1 to m do

3: B[pi]← B[pi] | 1 << (i− 1) /* | 0m−i 1 0i−1 */
/* Searching */

4: for i← m step m while i ≤ n do

5: l← 0; r ← 0; L← (∼0) >> (w −m); R← 0 /* L← 1m; R← 0m */
6: while L 6= 0 do

7: L← L&B[ti−l]
8: l← l + 1
9: (LR)← (LR) >> 1
10: R← R >> (m− l)
11: while R 6= 0 do

12: r ← r + 1
13: if R&

(

1 << (m− 1)
)

6= 0 then report occurrence
14: R← (R << 1)&B[ti+r]

Branislav Ďurian et al.: Improved Two-Way Bit-parallel Search 73

been examined. The notation (LR) means the bitvector which is concatenated from
two m bits long bitvectors L and R1. Next examining continues rightwards from the
m + 1 character of window. Simultaneously it is easy to notice the matches. In our
two-way algorithms, these two scans are combined (into one scan). The characteristic
feature in two-way algorithms is that the first characters bring plenty information to
the state vector, but the last ones quite little.

2.2 Algorithms for the k-mismatches problem

Shift-Add [3, Fig. 8] is a bit-parallel algorithm for the k-mismatches problem. A vector
of m states is used to represent the state of the search. A field of L bits is used for
presenting each of the m states. The minimum value of L is ⌈log2(k+ 1)⌉+ 1. In the
original Shift-Add the state i denotes the state of the search between the positions
1, . . . , i of the pattern and positions j− i+1, . . . , j of the text, where j is the current
position in the text.

A slightly more efficient variation of Shift-Add is (in the average case only) AOSA
(Average Optimal Shift-Add) [7].

Galil and Giancarlo [9] presented a method for solving the k mismatches string
matching problem inO(nk) time with constant time longest common extension (LCE)

queries between P and T . Abrahamson [1] improved this for the case
√

(m logm) < k

by giving an O(n
√
m logm) time algorithm based on convolutions. The asymptoti-

cally fastest algorithm known to date is given by Amir et al. [2], which achieves the
worst-case time complexity of O(n

√
k log k). These algorithms are interesting in a

theoretical sense, but in practice they perform worse than the trivial algorithm for
reasonable values of m and k due to the heavy LCE and convolution operations.
Hence we have the need for developing fast practical algorithms for string matching
with k mismatches.

3 TSO and TSA

3.1 TSO

At first we introduce a new Two-way Shift-Or algorithm, TSO for short. The pseu-
docode of TSO is given as Alg. 2. TSO uses the same occurrence vectors B for charac-
ters as the original Shift-Or. The outer loop traverses the text with a fixed step of m
characters. At each step i, an alignment window ti−m+1, . . . , ti+m−1 is inspected. The
positions ti, . . . , ti+m−1 correspond to the end positions of possible matches and at the
same time, to the positions of the state vector D. Inspection starts at the character
ti, and it proceeds with a pair of characters ti−j and ti+j until corresponding bits in
D become 1m or j = m holds. Note that the two consecutive loops of LNDM are
combined in TSO into one loop (lines 8–10 of Alg. 2). When the actually used bits in
bit-vectors are seated to the highest order bits, in TSO the testing of the state vector
D is slightly faster than in elsewhere.

Moreover one bit in D stays zero for each occurrence of the pattern in the inner
loop on lines 8–10. The zero bits are switched to set bits on line 12. The count of set

1 So in the right shift the lowest bit of L becomes the highest bit of R. Note that generally this is
different from how e.g. gcc compiler handles this way variables of uint64 t type in x86 architecture
in 32-bit mode. See also [12, p. 35].

74 Proceedings of the Prague Stringology Conference 2014

Algorithm 2 TSO = Two-way Shift-Or(P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: m ≤ w

/* Preprocessing */
1: mask ← ∼0 << (w −m) /* = 1m 0w−m */
2: for all c ∈ Σ do B[c]← mask
3: for i← 1 to m do /* Lowest bits remain 0 */
4: B[pi]← B[pi] & ∼

(

1 << (w −m+ i− 1)
)

/* & 1m−i 0 1w−m+i−2 */
/* Searching */

5: matches ← 0
6: for i← m step m while i ≤ n do

7: D ← B[ti]; j ← 1
8: while D < mask and j < m do

9: D ← D | (B[ti−j] << j) | (B[ti+j] >> j) /* no need for additional masking */
10: j ← j + 1
11: if D < mask then /* Garbage is in the lowest bits */
12: E ← (∼D) & mask
13: matches ← matches + popcount(E)

bits is then calculated with the popcount2 function [12] on line 13. An easy realization
of popcount is the following:

while E > 0 do matches← matches+ 1; E ← (E − 1)&E

This requires O(s) time in total where s is the number of occurrences. If the locations
of occurrences need to be printed out, O(m) time is needed for every alignment
window holding at least one match.

Alg. 2 works correctly when n mod m = m − 1 holds. If access to tn+1, . . . is
allowed and some character—e.g. 255—does not appear in P , assignment of stopper
tn+1 ← 255 makes the algorithm work also for other values of n. Another easy way
of handling the end of the text is to use Shift-Or algorithm, because same occurrence
vectors are disposable.

In Figure 1, there is an example of the execution of TSO for P = abcab and
T = · · ·xabcabcabx· · · .

3.2 TSA

Shift-And is a dual method of Shift-Or. Therefore it is fairly straight-forward to
modify TSO to a Two-way Shift-And algorithm, TSA for short. The pseudocode of
TSA is given as Alg. 3.

In TSA, B[ti−j] and B[ti+j] are brought to state vector on line 8. For example, let
B[ti−2] and B[ti+2] be 1010 and 1011, respectively. (In this example and in the sub-
sequent examples all numbers are binary numbers.) Then the corresponding padded
bit strings are ((1010+1) << 2)−1 = 101011 and (1011 >> 2) | 1111 << 2 = 111110.

Original Shift-Or/Shift-And examines every text character once. Therefore its
practical performance is extremely insensitive to the input data. Two-way algorithms
check text in alignment windows of m consecutive text positions. A mismatch can
be detected immediately based on the first examined text character. In the best case
the performance can be Θ(n/m). On the other hand, if a match is in any position in

2 Population count, popcount, counts the number of 1-bits in a register or word. On many computers
it is a machine instruction; e.g. in Sparc, and in x86 64 processors in AMDs SSE4a extensions
and in Intel’s SSE4.2 instruction set extension.

Branislav Ďurian et al.: Improved Two-Way Bit-parallel Search 75

P = abcab B[a] = 10110

B[b] = 01101

B[c] = 11011

B[x] = 11111

T = · · · x a b c a b c a b x · · ·

a D = 10110

j = 1 c 11011

b 01101

D = 10110

j = 2 b 01101

c 11011

D = 10110

j = 3 a 10110

a 10110

D = 10110

j = 4 x 11111

b 01101

D = 10110

E = 01001

^ ^

2 matches

Figure 1. Example of work made in the inner loop of TSO.

Algorithm 3 TSA = Two-way Shift-And(P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: m ≤ w

/* Preprocessing */
1: for all c ∈ Σ do B[c]← 0
2: for i← 1 to m do

3: B[pi]← B[pi] | 1 << (m− i) /* | 0i−110m−i */
/* Searching */

4: matches ← 0
5: for i← m step m while i ≤ n do

6: D ← B[ti]; j ← 1
7: while (D > 0) and (j < m) do /* alternatively D 6= 0 */
8: D ← D & (((B[ti−j] + 1) << j)− 1) & ((B[ti+j] >> j) |

(((∼0) >> (w −m)) << (m− j))) /* (1m << (m− j))) */
9: j ← j + 1
10: if D > 0 then /* alternatively D 6= 0 */
11: matches← matches+ popcount(D)

the window, or if the mismatch is detected based on two last examined characters,
then 2m− 1 characters need to be examined. So in the worst case all text characters
except the last characters in each alignment window are examined twice.

3.3 Practical optimizations

In modern processors, loop unrolling often improves the speed of bit-parallel searching
algorithms [5]. In the case of TSO and TSA, it means that 3, 5, 7, or 9 characters
are read in the beginning of the inner loop instead of a single character. We denote
these versions by TSOx and TSAx, where x is the number of characters read in the
beginning; x is odd. Line 7 of TSO3 is the following:

76 Proceedings of the Prague Stringology Conference 2014

7: D ← (B[ti−1] << 1) | B[ti] | (B[ti+1] >> 1); j ← 2

Moreover, the shifted values B[a] << 1 and B[a] >> 1 can be stored to pre-
computed arrays in order to speed up access.

Many string searching algorithms apply a so called skip loop, which is used for
fast scanning before entering the matching phase. The skip loop can be called greedy,
if it handles two alignment windows at the same time [18]. Let us denote

(B[ti−1] << 1) |B[ti] | (B[ti+1] >> 1)

in TSO3 by f(3, i). If the programming language has the short-circuit and command,
then we can use the following greedy skip loop enabling steps of 2m in TSO3:

while f(3, i) = mask && f(3, i+m) = mask do i← i+ 2 ·m
Because && is the short-circuit and, the second condition is evaluated only if the
first condition holds. The resulting version of TSO3 is denoted by GTSO3. (Initial G
comes from greedy. GTSA3 is formed in a corresponding way.)

3.4 Analysis

We will show that TSO is linear in the worst case and sublinear in the average case.
For simplicity we assume in the analysis that m ≤ w holds and w is divisible by m.

The outer loop of TSO is executed n/m times. In each round, the inner loop is
executed at most m− 1 times. The most trivial implementation of popcount requires
O(m) time. So the total time in the worst case is O(nm/m) = O(n).

When analyzing the average case complexity of TSO, we assume that the char-
acters in P and T are statistically independent of each other and the distribution
of characters is discrete uniform. We consider the time complexity as the number of
read characters.

In each window, TSO reads 1 + 2k characters, 0 ≤ k ≤ m − 1, where k depends
on the window. Let us consider algorithms TSOr, r = 1, 2, 3, . . . , such that TSOr
reads an r-gram in the window before entering the inner loop. For odd r, TSOr was
described in the previous section. For even r, TSOr is modified from TSO(r−1) by
reading ti−r/2 before entering the inner loop. It is clear that TSOr2 reads at least
as many characters as TSOr1, if r2 > r1 holds. Let us consider TSOr as a filtering
algorithm. The reading of an r-gram and computing D for it belong to filtration and
the rest of the computation is considered as verification. The verification probability
is (m− r + 1)/σr. The verification cost is in the worst case O(m), but only O(1) on
average. The total number of read characters is rn/m in filtration. When we select
r to be logσ m, TSOr is sublinear. Because TSOr never reads less characters than
TSO1 = TSO, we conclude that also TSO is sublinear.

In other words, the time complexity of TSO is optimal O(n logσ m/m) with a
proper choice of r for m = O(w) and O(n logσ m/w) for larger m.

The time complexity of preprocessing of TSO isO(m+σ). Because of the similarity
of TSO and TSA, TSA has the same time complexities as TSO. The space requirement
of both algorithms is O(σ).

4 Variations of Shift-Add

4.1 Two-way Shift-Add

The basic idea in Shift-Add algorithm is to simultaneously evaluate the number of
mismatches in each inside field using L bits. The highest bit in each field is an

Branislav Ďurian et al.: Improved Two-Way Bit-parallel Search 77

overflow bit, which is used in preventing the error count rolling to the next field.
The original Shift-Add algorithm actually used two state vectors, State and Overflow

which were shifted L bits forward. Opposite this, two-way approach in exact matching
is successful due to simple (one statement) analogy to the one-way algorithm (Shift-
Or, Shift-And). Such an improved (one statement) Shift-Add is introduced in the
next section.

The core problem is addition; there can be up to m mismatches. When in some
position k errors is reached, we should stop addition into it. In the occurrence vector
array, B[], only the lowest bit in each field may be set. The key trick is to use the
overflow bits in the state vector D. We take the logical and operation between the
applied occurrence vector and the L− 1 right shifted complemented state vector D.
Then the complemented overflow bits and the possibly set bits in the occurrence
vector are aligned, and addition happens only when there is no overflow.

This idea is applied in the Two-way Shift-Addq The limitation of Two-way Shift-
Add on error level k = 0 is that each field needs 2 bits.

When bit-vectors are aligned to the lowest order bits, the unessential bits in the
right shifted occurrence vector fall off immediately, and in the right shifted ones they
do not disturb because bit-vectors are unsigned.

On line 12 the shown form is required with character classes [16, p. 78]; otherwise
also substraction works. The form of line 14 depends on q as before. Notice that there
can happen larger overflows, but as long as k ≤ q it does not matter; otherwise we
need a larger value for L. Then the minimum value of L is ⌈log2(q + 1)⌉+ 1.

Algorithm 4 Two-way Shift-Addq(P = p1p2 · · · pm, T = t1t2 · · · tn, k)
Require: m · L ≤ w and L ≥ max

{

2, ⌈log2(max{k, q}+ 1)⌉+ 1
}

and m > (q + 1) div 2
/* Preprocessing */

1: mask ← 0
2: for i← 1 to m do

3: mask ← (mask << L) |
(

(1 << (L− 1))− k
)

4: for all c ∈ Σ do BW [c]← mask
5: mask ← 0
6: for i← 1 to m do

7: mask ← (mask << L) | 1
8: for all c ∈ Σ do B[c]← mask /* mask = (0L−1 12)

m−1 */
9: mask ← mask << (L−1) /* mask = (1 0L−1

2)m−1 */
10: for i← 1 to m do

11: BW [pi]← BW [pi]−
(

1 << L · (i− 1)
)

12: B[pi]← B[pi] & ∼
(

1 << L · (i− 1)
)

/* −
(

1 << L · (i− 1)
)

also works normally */
/* Searching */

13: for i← m step m while i ≤ n do

14: D ← BW [ti] + (B[ti−1] << L) + (B[ti+1] >> L) /* this one is for q = 3 */
15: j ← (q+1) div 2 /* integer division – values of q are odd */
16: while j < m and (∼D) & mask do

17: D ← D +
(

∼D >> (L− 1)
)

& B[ti−j] << (L · j)
+

(

∼D >> (L− 1)
)

& B[ti+j] >> (L · j)
18: j ← j + 1
19: E ← (∼D) & mask
20: while E do

21: report an occurrence /* shifting of E is not needed */
22: E ← E & (E − 1) /* turning off rightmost 1-bit */

78 Proceedings of the Prague Stringology Conference 2014

Figure 2 shows an example how Two-way Shift-Add finds a match. Unrelevant
bits are not shown; they are all zeros. On each field (of L bits) in D the highest bit
is an overflow bit, which indicates that there is no match on the corresponding text
position. Vertical lines limit the computing area having interesting bit fields.

T = a b a d a c a d c · · ·
P = b a c a c
k = 1
L = 3 One bit unnecessarily large

B[a] = 001 000 001 000 001 Shown order of bit fields corresponds to P
backwards

B[b] = 001 001 001 001 000 Occurrences = 000
B[c] = 000 001 000 001 001
B[d] = 001 001 001 001 001 As all other characters that do not appear in

P

BW [a] = 011 010 011 010 011 Again P backwards
BW [b] = 011 011 011 011 010 011 minus number of errors still allowed
BW [c] = 010 011 010 011 011
BW [d] = 011 011 011 011 011

BW [t5] = BW [a] = 011 010 011 010 011 Starting to check next m positions
+B[t4] = B[d] << 3 = 001 001 001 001 001
+B[t6] = B[c] >> 3 = 000 001 000 001 001 Starting with q = 3 characters
= D = 100 011 101 011 100 Note that overflow depends on q
+B[t3] = B[a] << 6 = 000 001 000 001 Only lowest bits in fields may be set
& ∼D >> (L− 1) = 0 1 0 1 0 So only the overflow bit is relevant on each field
+B[t7] = B[a] >> 6 = 001 000 001 000· · ·
& ∼D >> (L− 1) = 0 1 0 1 0
= D = 100 011 101 011 100 Second and fourth position look promising
+B[t2] = B[b] << 9 = 001 001 000
& ∼D >> (L− 1) = 0 1 0 1 0
+B[t8] = B[d] >> 9 = 001 001 001· · ·
& ∼D >> (L− 1) = 0 1 0 1 0
= D = 100 011 101 100 100 Overflow also in fourth position
+B[t1] = B[b] << 12 = 001 000
& ∼D >> (L− 1) = 0 1 0 0 0
+B[t9] = B[c] >> 12 = 000 001· · · Last characters give only little information
& ∼D >> (L− 1) = 0 1 0 0 0
= D = 100 011 101 100 100

E = 0 1 0 0 0 Match in second position

Figure 2. Example of checking m positions in Two-way Shift-Add.

4.2 Analysis

The worst case analysis is similar to the analysis of TSO/TSA given in subsection 3.4.
For simplicity we assume in the analysis that m ≤ w holds and w is divisible by
m. The outer loop of TSAddq is executed n/m times, and in each iteration O(m)
text characters are read and O(m) occurrences are reported. Thus, the total time
complexity is O(n/m) · O(m+m) = O(n) for the worst case.

On the average case TSAddq is sublinear. It can been seen from the test results
where the search time decreases when m gets larger.

Branislav Ďurian et al.: Improved Two-Way Bit-parallel Search 79

4.3 Tuned Shift-Add

Algorithm 5 is Tuned Shift-Add. It is a minimalist version of Shift-Add algorithm.
If bitvectors fit into computer register, the worst- and average-case complexity of
the original Shift-Add algorithm O(n) [3, p. 75]; also Tuned Shift-Add is linear. The
original Shift-Add algorithm is using an overflow vector in addition to the state vec-
tor (here D). The essential difference between the original Shift-Add algorithm and
the Tuned Shift-Add is the state update. Using the same variable naming as in the
Tuned Shift-Add the line 11 in Tuned Shift-Add was in original Shift-Add as follows.
(Overflow bits are in the ovmask ; only the highest bit in each bit field is set.)

D ←
(

(D<< L) + BW [ti]
)

& mask2

overflow ←
(

(overflow<< L) | (D & ovmask)
)

& mask2

D ← D & ∼ovmask /∗ clears overflow bits ∗/

Algorithm 5 Tuned Shift-Add(P = p1p2 · · · pm, T = t1t2 · · · tn, k)
Require: m · L ≤ w and L ≥ max{2, ⌈log2(k + 1)⌉+ 1}

/* Preprocessing */
1: mask ← 0
2: for i← 1 to m do

3: mask ← (mask << L) | 1
4: for all c ∈ Σ do B[c]← mask
5: for i← 1 to m do

6: B[pi]← B[pi] & ∼
(

1 << L · (i− 1)
)

/* −
(

1 << L · (i− 1)
)

also works normally */
7: mask ← 1 << (L ·m− 1)
8: Xmask ←

(

1 << (L− 1)
)

− (k + 1)
/* Searching */

9: D ← ∼0 /* = 1w2 */
10: for i← 1 to n do

11: D ←
(

(D<< L) | Xmask
)

+
(

B[ti] & (∼(D<< 1))
)

12: if (D&mask) = 0 then

13: report an occurrence ending at i

5 Experiments

The tests were run on Intel Core i7-860 2.8GHz, 4 cores, with 16GiB memory; L2 cache
is 256KiB / core and L3 cache: 8MiB. The computer is running Ubuntu 12.04 LTS,
and has gcc 4.6.3 C compiler. Programs were written in the C programming language
and compiled with gcc compiler using -O3 optimization level. All the algorithms were
implemented and tested in the testing framework3 of Hume and Sunday [13]. New

3 Hume and Sunday test framework allows directly and precisely measure preprocessing times. Test
pattern can be selected as considered appropriate. This kind testing method where each algorithm
is coded and separately ensures that the tested algorithms can not affect to each other by placement
of data structures in memory and data cache. We have tested the search speed of e.g. Sunday’s
algorithm and various Boyer–Moore variations with implementations made by others. Thus we
believe that implementations enclosed in Hume and Sunday test framework are very efficient.
This kind of comparison makes it also possible to learn coding of efficient implementations. We
encourage everybody to make comparisons with different implementations of same and similar
algorithms.

80 Proceedings of the Prague Stringology Conference 2014

algorithms were compared with the following earlier algorithms: Shift-Or4 (SO) [3],
FSO [7], FAOSO [7], BNDM [15], and LNDM [10]. The given run times of FAOSO are
based on the best possible parameter combination for each text and pattern length.
We have only 32 bit version of FAOSO, but all other tested algorithms were using 64-
bit bit-vectors. For longer patterns than roughly 20 characters there are algorithms [6]
which are faster than ones used in here. The results for pattern lengths are shown to
demonstrate the behavior of the new algorithms.

We did not test the variations [4] of the Wide-Window algorithm [11], because
according to the original experiments [4], these algorithms are only slightly better
than BNDM. In addition, they require m ≤ w/2.

In the test runs we used three texts: binary, DNA, and English, the size of each is
2 MB. The English text is the prefix of the KJV Bible. The binary text is a random
text in the alphabet of two characters. The DNA text is from the genome of fruitfly
(Drosophila melanogaster). Sets of patterns of various lengths were randomly taken
from each text. Each set contains 200 patterns.

Data Algorithm 2 4 8 12 16 20 30 40 50 60
Binary SO 465 465 465 465 465 465 466 469 466 465

FSO 1406 707 268 241 234 234 235 236 235 —
FAOSO 3522 1728 859 745 695 469 372 239 263 239
BNDM 1892 1579 1059 723 554 452 316 246 201 171
LNDM 2814 2291 1573 1166 925 767 544 421 346 294
TSA 1999 1501 927 641 491 399 276 215 177 152
TSO 1565 1129 673 455 344 279 188 142 114 96.4
TSO3 1429 1158 718 502 385 316 219 172 142 122
TSO5 1704 911 632 462 359 297 207 161 135 116
TSO9 1881 771 473 342 272 229 172 141 121 109
GTSO3 1409 1165 719 499 381 313 217 169 139 121
GTSA3 1529 1281 819 571 441 362 252 195 163 141

Table 1. Search time of algorithms (in milliseconds) for binary data

Tables 1–3 show the search times in milliseconds for these data sets. Before mea-
suring the CPU time usage, the text and the pattern set were loaded to the main
memory, and so the execution times do not contain I/O time. The results were ob-
tained as an average of 100 runs. During repeated tests, the variation in timings was
about 1 percent. The best execution times have been put in boxes. Overall, TSO9,
TSO5 and GTSO3 appears to be the fastest for binary, DNA and English data re-
spectively.

Table 1 presents run times for binary data. SO is the winner for m ≤ 4, FSO for
8 ≤ m ≤ 16, TSO9 for 20 ≤ m ≤ 50, and TSO9 for m ≥ 60. Table 2 presents run
times for DNA data. FAOSO is the winner for m = 2, FSO for m = 4, TSO5 for
8 ≤ m ≤ 40, and TSO9 for m ≥ 50. Table 3 presents run times for English data. FSO
is the winner for m ≤ 4, GTSO3 for 8 ≤ m ≤ 16, GTSA3 for m = 20, and TSO5 for
m ≥ 30.

4 The performance of the Shift-Or algorithm is insensitive to the pattern length (when m ≤ w) and
also to the input data as long as the number of the matches is relative moderate. The relative
speed of some algorithm compared to the speed of Shift-Or on given data and pattern length is
suitable for comparing tests with similar data. This relative speed is useful for comparing roughly
performance of exact string matching algorithms with different text lengths and processors even
in different papers.

Branislav Ďurian et al.: Improved Two-Way Bit-parallel Search 81

Data Algorithm 2 4 8 12 16 20 30 40 50 60
Dna SO 464 465 465 464 465 465 465 469 465 465

FSO 709 272 235 235 234 235 235 234 235 —
FAOSO 372 639 524 331 311 212 185 216 217 213
BNDM 1496 984 548 385 302 248 175 134 111 93.4
LNDM 2255 1438 843 609 481 398 281 219 181 154
TSA 1481 869 498 355 285 241 179 143 119 103
TSO 1353 757 364 243 192 161 117 90.9 74.6 62.7
TSO3 758 491 295 225 189 164 128 106 89.3 79.8
TSO5 992 401 215 153 121 102 78.1 65.6 60.9 56.1
TSO9 1217 465 242 168 131 109 81.1 66.4 57.6 52.3
GTSO3 753 474 289 223 191 167 132 107 92.4 74.7
GTSA3 747 486 296 228 193 169 135 111 96.9 85.3

Table 2. Search time of algorithms (in milliseconds) for DNA data

Data Algorithm 2 4 8 12 16 20 30 40 50 60
English SO 465 465 465 465 464 465 464 464 465 465

FSO 328 246 235 234 234 234 234 234 232 —
FAOSO 1165 307 167 156 142 141 198 199 195 198
BNDM 651 505 342 252 198 164 115 93.3 78.0 68.3
LNDM 1398 903 561 412 326 272 194 154 126 109
TSA 1243 652 348 245 195 168 121 99.7 87.1 78.4
TSO 701 518 328 231 176 141 92.3 69.5 56.6 48.9
TSO3 485 274 159 121 104 89.1 72.9 64.8 59.1 56.1
TSO5 701 341 184 132 105 88.9 67.1 58.9 54.6 49.6
TSO9 924 448 235 165 128 107 79.3 64.6 57.7 52.4
GTSO3 449 249 149 115 96.5 86.6 71.8 63.4 57.6 52.8
GTSA3 441 252 151 116 97.4 86.4 72.1 65.1 58.2 53.7

Table 3. Search time of algorithms (in milliseconds) for English data

5.1 Experiments for k-mismatches problem

For the k-mismatch problem we tested the following algorithms: Shift-Add (SAdd),
Two-way Shift-Add with q-values 1, 3, and 5 (TSAdd-1, TSAdd-3, TSAdd-5), Tuned
Shift-Add (TuSAdd), Average Optimal Shift-Add (AOSA), and CMFN. CMFN is
a sublinear multi-pattern algorithm by Fredriksson and Navarro [8], and it is also
suitable for approximate circular pattern matching problem.

The text files are same as before. The binary pattern set for m = 5 contains only
32 patterns, all different. To make the results comparable with other pattern sets
containing 200 patterns, the timings have been multiplied with 200/32. The results
were obtained as an average of 300 runs.

Programs were written in the C programming language and compiled with gcc
compiler using -O2 optimization level. During preliminary tests we noticed perfor-
mance decrease in AOSA, which seems to be related to the optimization level in gcc
compiler. For example on error level k = 1 and optimization -O2 the search speed
was 22%–52% faster than with here used -O3.

Tables 4–6 represent the results for the k-mismatches problem.
In our tests the Tuned Shift-Add was faster than the original Shift-Add. Both seem

to suffer from relatively large number of occurrences. On k = 1 TSAdd-3 showed best
performance on all other data set except on 5 nucleotide long DNA patterns. (This

82 Proceedings of the Prague Stringology Conference 2014

m TSAdd-1 TSAdd-3 TuSAdd SAdd AOSA CMFN

English 5 177 137 149 231 229 880
10 98 77 145 228 115 270
20 53 43 145 228 51 113
30 37 30 145 228 38 93

DNA 5 226 225 165 246 267 2770
10 136 114 145 228 164 1420
20 69 58 145 228 92 1810
30 47 39 145 227 62 3083

Bin 5 333 167 625 937 937 1062
10 167 77 603 966 966 440
20 83 39 600 947 467 240
30 57 30 593 943 317 140

Table 4. Search times of algorithms (in milliseconds) for k = 1.

m TSAdd-1 TSAdd-3 TSAdd-5 TuSAdd SAdd AOSA CMFN

English 5 238 201 186 161 245 253 2807
10 124 107 101 145 230 137 533
20 65 56 51 147 216 73 223

DNA 5 322 280 268 255 339 497 4203
10 176 158 151 147 239 225 3183
20 88 79 69 146 214 113 3563

Bin 5 354 146 270 625 958 937 5688
10 167 73 127 642 962 947 800
20 82 46 67 611 941 470 350

Table 5. Search times of algorithms (in milliseconds) for k = 2.

m TSAdd-1 TSAdd-3 TSAdd-5 TuSAdd SAdd AOSA CMFN

English 5 299 259 247 209 291 377 3936
10 155 137 133 145 236 297 1128
20 78 70 67 145 217 107 292

DNA 5 357 316 310 447 536 1073 4290
10 215 196 194 151 241 238 4900
20 108 99 98 148 215 128 5293

Bin 5 333 146 250 604 937 917 5524
10 160 77 120 580 910 893 808
20 83 42 61 580 917 450 300

Table 6. Search times of algorithms (in milliseconds) for k = 3.

test was rerun, but results remained about the same.) TSAdd-3 was best on all tests
using binary text. On English and DNA texts for k = 2 and k = 3 TSAdd and
TuSAdd were the best.

To our surprise CMFN was not competitive in these tests. The macro bitvector

was defined unsigned long long, but we suspect that some other compilation pa-
rameter was unoptimal.

Branislav Ďurian et al.: Improved Two-Way Bit-parallel Search 83

6 Concluding remarks

We have presented two new bit-parallel algorithms based on Shift-Or/Shift-And and
Shift-Add techniques for exact string matching. The compact form of these algo-
rithms is an outcome of a long series of experimentation on bit-parallelism. The new
algorithms and their tuned versions are efficient both in theory and practice. They
run in linear time in the worst case and in sublinear time in the average case. Our
experiments show that the best ones of the new algorithms are in most cases faster
than the previous algorithms of the same type.

References

1. K. Abrahamson: Generalized string matching. SIAM Journal on Computing, 16(6) 1987,
pp. 1039–1051.

2. A. Amir, M. Lewenstein, and E. Porat: Faster algorithms for string matching with k
mismatches. Journal of Algorithms, 50(2) 2004, pp. 257–275.

3. R. Baeza-Yates and G. Gonnet: A new approach to text searching. Communications of the
ACM, 35(10) 1992, pp. 74–82.

4. D. Cantone, S. Faro, and E. Giaquinta: Bit-(parallelism)2: Getting to the next level of
parallelism, in Fun with Algorithms, 5th International Conference, FUN 2010, June 2-4, 2010.
Proceedings, P. Boldi and L. Gargano, eds., vol. 6099 of LNCS, Springer, 2010, pp. 166–177.

5. B. Ďurian, J. Holub, H. Peltola, and J. Tarhio: Improving practical exact string match-
ing. Information Processing Letters, 110(4) 2010, pp. 148–152.

6. B. Durian, H. Peltola, L. Salmela, and J. Tarhio: Bit-parallel search algorithms for
long patterns, in Experimental Algorithms, 9th International Symposium, SEA 2010, May 20-
22, 2010. Proceedings, P. Festa, ed., vol. 6049 of LNCS, Springer, 2010, pp. 129–140.

7. K. Fredriksson and S. Grabowski: Practical and optimal string matching, in International
Symposium on String Processing and Information Retrieval, SPIRE, LNCS, vol. 12, 2005.

8. K. Fredriksson and G. Navarro: Average-optimal single and multiple approximate string
matching. ACM Journal of Experimental Algorithmics, 9 2004.

9. Z. Galil and R. Giancarlo: Improved string matching with k mismatches. SIGACT NEWS
62, 17(4) 1986, pp. 52–54.

10. L. He and B. Fang: Linear nondeterministic dawg string matching algorithm, in String Pro-
cessing and Information Retrieval, 11th International Conference, SPIRE 2004, October 5-8,
2004, Proceedings, A. Apostolico and M. Melucci, eds., vol. 3246 of LNCS, Springer, 2004,
pp. 70–71.

11. L. He, B. Fang, and J. Sui: The wide window string matching algorithm. Theoretical
Computer Science, 332 2005.

12. J. Henry and S. Warren: Hacker’s Delight, Addison-Wesley, 2003.
13. A. Hume and D. Sunday: Fast string searching. Software—Practice and Experience, 21(11)

1991, pp. 1221–1248.
14. G. Navarro: A guided tour to approximate string matching. ACM Computing Surveys, 33(1)

2001, pp. 31–88.
15. G. Navarro and M. Raffinot: Fast and flexible string matching by combining bit-parallelism

and suffix automata. ACM Journal of Experimental Algorithmics, 5(4) 2000.
16. G. Navarro and M. Raffinot: Flexible pattern matching in strings - practical on-line search

algorithms for texts and biological sequences, Cambridge University Press, 2002.
17. H. Peltola and J. Tarhio: Alternative algorithms for bit-parallel string matching, in Inter-

national Symposium on String Processing and Information Retrieval, SPIRE, LNCS, vol. 10,
2003, pp. 80–93.

18. H. Peltola and J. Tarhio: String matching with lookahead. Discrete Applied Mathematics,
163(3) 2014, pp. 352–360.

19. S. Wu and U. Manber: Fast text searching allowing errors. Communications of the ACM,
35(10) 1992, p. 83.

