Multiple Pattern Matching Revisited

Robert Susik ${ }^{1}$, Szymon Grabowski ${ }^{1}$, and Kimmo Fredriksson ${ }^{2}$
${ }^{1}$ Lodz University of Technology, Institute of Applied Computer Science
Al. Politechniki 11, 90-924 Łódź, Poland
\{rsusik|sgrabow\}@kis.p.lodz.pl
${ }^{2}$ School of Computing, University of Eastern Finland
P.O.B. 1627, FI-70211 Kuopio, Finland
kimmo.fredriksson@uef.fi

Abstract

We consider the classical exact multiple string matching problem. Our solution is based on q-grams combined with pattern superimposition, bit-parallelism and alphabet size reduction. We discuss the pros and cons of the various alternatives of how to achieve best combination. Our method is closely related to previous work by (Salmela et al., 2006). The experimental results show that our method performs well on different alphabet sizes and that they scale to large pattern sets.

Keywords: combinatorial problems, string algorithms, q-grams, word-level parallelism

1 Introduction

Multiple pattern matching is a classic problem, with about 40 years of history, with applications in intrusion detection, anti-virus software and bioinformatics, to name a few. The problem can be stated as follows: Given text T of length n and pattern set $\mathcal{P}=\left\{P_{1}, \ldots, P_{r}\right\}$, in which each pattern is of length m, and all considered sequences are over common alphabet Σ of size σ, find all pattern occurrences in T. The pattern equal length requirement may be removed. The multiple pattern matching problem is a straightforward generalization of single pattern matching and it is no surprise that many techniques worked out for a single pattern are borrowed in efficient algorithms for multiple patterns.

1.1 Related work

The classical algorithms for the present problem can be roughly divided into three different categories, (i) prefix searching, $(i i)$ suffix searching and (iii) factor searching. Another way to classify the solutions is to say that they are based on character comparisons, hashing, or bit-parallelism. Yet another view is to say that they are based o erage case complexity, or on some kind of "direct search" exity guarantees. These different categorizations are of c ideas fr the rea and many solutions are hybrids that borrow ood overview of the classical solutions we refer

Per
the Ah
proach)
the Knı
time is $O(M$
cost, and z is t e of them in the following. ltiple pattern matching problem is ks in linear time (prefix-based apure) links and actually generalizes e pattern. More precisely, AC total ttern lengths, is the preprocessing aces in T. Recently Fredriksson and

tion 4 contains (preliminary) experimental results. The last section concludes and points some avenues for pursuing further research.

2 On q-grams and superimposi

A q-gram is (usually) a contiguous substrin though non-contiguous q-grams have been o considered a small constant, $2, \ldots, 6$ in pra timal value for a given problem instance. V used in approximate (single and multiple) s
 the exact case as well, as a special case, but they of view. Another use (which is not relevant in our ing of a single pattern by treating the q-grams as a case) is t
cs of a string, alfollows, q can be analyze the optave been widely they can be used of q-grams. Obviously t are not i superalp

In ou sting as combined with a technique called superimposition. where ea $P[i] \subseteq \Sigma$ $\mathcal{J}_{j} P_{j}[i]$. Now P can be used as a filter: we search candidate text substrings that might contain an occurrence of any of the patterns in \mathcal{P}. That is, if $T[i+j] \in P[j]$, for all $j \in 1, \ldots, m$, then $T[i \ldots i+m-1]$ may match with some pattern in \mathcal{P}.

For example, if $\mathcal{P}=\{a b b a, b b a c\}$, the superimposed pattern will be $P=$ $\{a, b\}\{b\}\{a, b\}\{a, c\}$, and there are a total of 8 different strings of length 4 that can match with P (and trigger verification). Therefore we immediately notice one of the problems with this approach, i.e. the probability that some text character t matches a pattern character p is no longer $1 / \sigma$ (assuming uniform random distribution), it can be up to r / σ. This gets quickly out of hands when the number of patterns r grows.

To make the technique more useful, we first generate a new set of patterns, and then superimpose. The new patterns have the q-grams as the alphabet, which mean the new alphabet has size σ^{q}, and the probability of a false positive candidate will be considerably lower. There are two main approaches: overlapping and non-overlapping q-grams.

Consider first the overlapping q-grams. For each P_{i} we generate a new pattern such that $P_{i}^{\prime}[j]=P_{i}[j \ldots j+q-1]$, for $j \in 1, \ldots, m-q+1$, that is, each q-gram $P_{i}[j \ldots j+q-1]$ is treated as a single "super character" in P_{i}^{\prime}. Note also that the pattern lengths are decreased from m to $m-q+1$. Taking the previous example, if $\mathcal{P}=\{a b b a, b b a c\}$ and now $q=2$, the new pattern set is $\mathcal{P}^{\prime}=\{[a b][b b][b a],[b b][b a][a c]\}$, where we use the brackets to denote the q-grams. The corresponding superimposed pattern is then $P^{\prime}=\{[a b],[b b]\}\{[b b],[b a]\}\{[b a],[a c]\}$. To be able to search for P^{\prime}, the text must be factored in exactly the same way.

The other possibility is to use non-overlapping q-grams. In this case we have $P_{i}^{\prime}[j]=P_{i}[(j-1) q+1 \ldots j q]$, for $j \in 1, \ldots,\lfloor m / q\rfloor$, and for our running example we get $P^{\prime}=\{[a b],[b b]\}\{[b a],[a c]\}$. Again, the text must be factored similarly. But the problem now is that only every q th text position is considered, and to solve this problem we must consider all q possible shifts of the original patterns. That is, given a pattern P_{i}, we generate a set $\hat{P}_{i}=\left\{P_{i}[1 \ldots m], P_{i}[2 \ldots m], \ldots, P_{i}[q-1 \ldots m]\right\}$, and then generate \hat{P}_{i}^{\prime}, and finally superimpose them.

The above two alternatives both have some benefits and drawbacks. For overlapping q-grams we have:

- pattern length is large $(m-q+1)$, which means less verifications
- text length is practically unaffected $(n-q+1)$

Non-overlapping:

- pattern length is short $(\mathrm{m} / \mathrm{q})$, which means potentially more verifications, but bit-parallelism works for bigger m
- text is shorter too (n / q)
- more patterns to superimpose (factor of q)

In the end, the benefits and drawbacks between the two approaches mostly cancel out each other, except bit-parallelism remains more applicable to non-overlapping q-grams.

To illustrate the power of this technique, let us have, for example, a random text over an alphabet of size $\sigma=16$ and patterns generated according to the same probability distribution; q-grams are not used yet (i.e., we assume $q=1$). If $r=16$, then the expected size of a character class in the superimposed pattern is about 10.3, which means that a match probability for a single character position is about 64%. Even if high, this value may yet be feasible for long enough patterns, but if we increase r to 64 , the character class expected size grows to over 15.7 and the corresponding probability to over 98%. This implies that match verifications are likely to be invoked for most positions of the text. Using q-grams has the effect of artificially growing the alphabet. In our example, if we use $q=2$ and thus $\sigma^{\prime}=16^{2}=256$, the corresponding probabilities for $r=16$ anc $\quad \%$ and 22%, respectively, so they are significantly lower.

The main problem that choose a suitable q, and fi pattern. To this end, Salm known mechanisms: Shift-c former two of these algori called SOG, BG and HG, r on the other hand the size $O\left(\sigma^{q}\right)$, which can be prohibi $B G$ with hashing.

In general, not many classic patterns (character classes) ef tween the two choices, properly hm to search the superimposed three algorithms combining the with overlapping q-grams; the The resulting algorithm were r q means better filtering, but
es) that the algorithms use is In the next section we describ

rithm

technique of how to skip text characters, with any (linear time) algorithm that can search for multiple patterns simultaneously was ide with several applications to known algorithms. In the following a, and for the moment assume that we already have done all factoring that we have only a single pattern.

3.1 Average-optimal character skipping

The method takes a parameter k, and from the original pattern generates a set \mathcal{K} of k new patterns $\mathcal{K}=\left\{P^{0}, \ldots, P^{k-1}\right\}$, each of length $m^{\prime}=\lfloor m / k\rfloor$, as follows:

$$
P^{j}[i]=P[j+i k], \quad j=0, \ldots, k-1, \quad i=0, \ldots,\lfloor m / k\rfloor-1 .
$$

In other words, k different alignments of the original pattern P is generated, each alignment containing only every k th character. The total length of the patterns P^{j} is $k\lfloor m / k\rfloor \leq m$.

Assume now that P occurs at $T[i \ldots i+m-1]$. From the definition of P^{j} it directly follows that

$$
\begin{aligned}
& \qquad P^{j}[h]=T[i+j+h k], \quad j=i \\
& \text { This means that the set } \mathcal{K} \text { can be used as } \\
& \text { filter needs only to scan every } k \text { th character }
\end{aligned}
$$

Figure 1. An example. Assume that $P=$ abcdef occurs at text position $T[i \ldots i+m-1]$, and that $k=3$. The current text position is $p=10$, and $T[p]=\mathrm{b}$. The next character the algorithm reads is $T[p+k]=T[13]=\mathrm{e}$. This triggers a match of $P^{p \bmod k}=P^{1}$, and the text area $T[p-1 \ldots p-1+$ $m-1]=T[i \ldots i+m-1]$ is verified.

The occurrences of the patterns in \mathcal{K} can be searched for simultaneously using any multiple string matching algorithm. Assuming that the selected string matching algorithm runs generally in $O(n)$ time, then the filtering time becomes $O(n / k)$, as only every k th symbol of T is read. The filter searches for the exact matches of k patterns, each of length $\lfloor m / k\rfloor$. Assuming that each character occurs with probability $1 / \sigma$, the probability that P^{j} occurs (triggering a verification) in a given text position is $(1 / \sigma)^{\lfloor m / k\rfloor}$. A brute force verification co (m). To keep the total time at most $O(n / k)$ on average, v This is satisfied for $k=m /\left(2 \log _{\sigma}(m)\right)$, wh and filtering cost $O\left(n \log _{\sigma}(m) / m\right)$. The tot filtering time, i.e. $O\left(n \log _{\sigma}(m) / m\right)$, which

3.2 Multiple matching with q-gram:

To apply the previous idea to multiple m $'^{m / k}=O(n / k)$. becomes $O(n / m)$ dominated by the input pattern (for the filter) is the non-overlapping q-gram factored and superimposed
pattern set. The verification phase just needs to be aware that there are possibly more than one pattern to verify. The analysis remains essentially the same: now the text length is n / q, pattern lengths are m / q, there are r patterns to verify, and the probability of a match is p instead of $1 / \sigma$, where $p=O\left(1-\left(1-\left(1 / \sigma^{q}\right)\right)^{q r}\right)=$ $O\left((q r) / \sigma^{q}\right)$. That is, the filtering time is $O(q n /(k q))=O(n / k)$, verification cost is $O(r q m)$, and its probability is $O\left(p^{\lfloor m /(k q)\rfloor}\right)$ for each of the n / q text positions. However, now we have two parameters to optimize, k and q, and the optimal value of one depends on the other.

In practice we want to choose q first, such that the verification probability is as low as possible. This means maximizing q, but the preprocessing cost (and space) grows as $O\left(\sigma^{q}\right)$, and we do not want this to exceed $O(r m)$ (or the filtering cost for that matter). So we select $q=\log _{\sigma}(r m)$, and then choose k as large as possible. Repeating the above analysis gives then

$$
k=O\left(\frac{m}{\log _{\sigma}(r m)} \cdot \frac{\log _{\sigma} 1 / \rho}{\log _{\sigma}(r m)+\log }\right)
$$

where $\rho=\log _{\sigma}(r m) / m$. We note that this is not avera

Implementation. In
view the q-gram, i.e. the super character, must have some sultadie representation, and the convenient way is to compute a numerical value in the range $0, \ldots, \sigma^{q}-1$, which is done as $\sum_{i=1}^{q} S[i] \cdot \sigma^{i-1}$ for a q-gram $S[1 \ldots q]$. This is computed using Horner's method to avoid the exponentiation. We have experimented with two different variants. The first encodes the whole text prior to starting the actual search algorithm, which is then more streamlined. This also means that the total complexity is $\Omega(n)$, the time to encode the text. We call the resulting algorithm SMAG (short of Simple Multi AOSO on q-Grams). The other alternative is to keep the text intact, and compute the numerical representation of the q-gram requested on the fly. This adds just constant overhead to the total complexity. We call this variant MAG (short of Multi AOSO on q-Grams). We have verified experimentally that MAG is generally better than SMAG.

3.3 Alphabet mapping

If the alphabet is large, then selecting a suitable q may become a problem. The reason is that some value q^{\prime} may be too small to facilitate good filtering capability, yet, using $q=q^{\prime}+1$ can be problematic, as the preprocessing time and space grow with σ^{q} (note that q must be an integer). The other view of using length q strings as super characters, we may say that our characters have $q \log _{2} \sigma$ bits, and we want to have more control of how many bits we use. One way to achieve this is to reduce the original alphabet size σ.

We note that in theory this method cannot achieve much, as reducing the alphabet size generally only worsens the filtering capability and therefore forces larger q, but in practice this allows better fine tuning of the parameters.

What we do is that we select some $\sigma^{\prime}<\sigma$, compute a mapping $\mu: \Sigma \mapsto 0, \ldots, \sigma^{\prime}-$ 1 , and use $\mu(c)$ whenever the (filtering) algorithm needs to access some character c from the text or the pattern set. Verifications still obviously use the original alphabet.

A simple method to achieve this is to compute the histogram of character distribution of the pattern set, and assign code 0 to the most frequent character, 1 to second most frequent, and so on, and put the $\sigma^{\prime}-1, \ldots, \sigma-1$ most frequent characters to the last bin, i.e. giving them code $\sigma^{\prime}-1$. The text characters not appearing in the patterns also will have code $\sigma^{\prime}-1$.

A better strategy is to try to distribute the original characters into σ^{\prime} bins so that each bin will have (approximately) equal weight, i.e. each $\mu(c)$, where $c \in 0, \ldots, \sigma^{\prime}-1$ will have (approximately) equal probability of appearance. This is NP-hard optimization problem, so we use a simple greedy heuristic.

Alphabet mapping on the \boldsymbol{q}-grams. We note that the above method can be applied also on the q-gram alphabet. This allows a precise control of the table size, and combined with hashing, it can accommodate very large q as well. That is, we want to

1. Choose some (possibly very large) q;
2. compute the q-gram frequencies on the pattern set (using e.g. hashing to avoid possibly large tables);
3. choose some suitable σ^{\prime}, the size of the mapped q-gram alphabet;
4. use method of choice (e.g. bin-packing) to reduce the number of q-grams, i.e. map the q-grams to range $0, \ldots, \sigma^{\prime}-1$;
5. use hashing to store the mapping, along with the corresponding bitvectors needed by FAOSO.

Combined alphabet mapping and q-gram generation. Yet another method to reduce the alphabet is to combine the q-gram computations with some bit magic. The benefit is that the mapping tables need not to be preprocessed, and this allows further optimizations as we will see shortly. The drawback is that the quality of the mapping is worse than what is achieved with approaches like bin-packing.

Consider a (text sub-)string $S[1 \ldots q]$ over alphabet Σ of size σ. A simple way to reduce the alphabet is to consider only the ℓ low-order bits of each $S[i]$, where $\ell<\log _{2} \sigma$. We can then compute ($q \ell$)-bit q-gram s simply as

$$
s=(S[1] \& b)+(S[2] \& b) \ll \ell+(S[3] \& b) \ll 2 \ell+\cdots+(S[q] \& b) \ll(q-1) \ell
$$

where $b=(1 \ll \ell)-1$ and \ll denotes the left shift and \& the bitwise and.
The main benefit of this approach is that a sequence of shifts and adds can be often replaced by a multiplication (which can be seen as an algorithm performing just that). As an illustrative example, consider the case $\ell=2$ and hence $b=3$ (which coincides to DNA nicely). As an implementation detail, assume that the text is 8bit ASCII text, and it is possible to address the text, a sequence of characters, as a sequence of 32 -bit integers (which is easy e.g. in C). Then to compute a 8 -bit 4 -gram s we can simply do

$$
s=(((x \gg 1) \& 0 \mathrm{x} 03030303) * 0 \mathrm{x} 40100401) \gg 24,
$$

where x is the 32 -bit integer containing the 4 chars $S[1 \ldots 4]$. Assuming 4 letter DNA alphabet, the right shift (by 1) and the (parallel) masking generate 2 -bit unique (and case insensitive) codes for all 4 characters. If the alphabet is larger (some DNA sequences have rare additional symbols), those will be mapped in the same range, $0, \ldots, 3$. The multiplication then shifts and adds all those codes into an 8 -bit quantity, and the final shift moves the 4 -gram to the low order bits. Larger q-grams can be obtained by repeating the code.

We leave the implementation to future work.

4 Experimental res

In order to evaluate the ne
using the 200 MB
the widely used Pi
We test the fo

- BNDM on q -

nented in oeriments PC with an Intel i3-2100 CPU clocked at 3.1 GHz with 128 KB MB L3 cache. The test machine was equiped with 4 GB of and running Ubuntu 64 -bit OS with kernel 3.11.0-17. te results of all the listed algorithms on english, with a fixed growing number of patterns r. The used pattern lengths (one ; $, 32,64$ hms (or rather their available ot hanc ameters
U serves for an unrolling techni in the search code (for more d of them we chose the best cor value of r and m separately; for longer patterns $(32,64)$ an expected, for all algorithms the $=64$). Our algorithm, MAG, vo were explained earlier, and mber of executed conditionals two settings for MAG. In one U, for each dataset and each as MAG-tuned. It dominates ed for $m=8$ and $m=16$. As s with the number of patterns, and for $r=10,000$ and relatively long patterns $(m=32)$ only MAG slightly exceeds $100 \mathrm{MB} / \mathrm{s}$ (the worst ones here, SOG and RK, are 10 times slower).

Although the "optimal" MAG settings may be found in the construction phase, assuming the patterns are randomly taken from the text, this approach is rather inelegant (and the tuning phase may be time-consuming). Therefore, we ran another test in which the parameters U and k (yet not q) are set for a particular dataset, m and r according to the following simple rules found experimentally: if the "best" value of q is greater than 5 , we set $U=8$ and $k=1$, otherwise we set $U=4$ and $k=2$. The case of english and $m=8$ is an exception, where $U=8$ and $k=1$ was

Figure 2. english, search speeds (MB / s) for varying number of patterns r. MAG is the same as
 e the "mag-tuned" points for this case are not presented.
of q. These results are presented on the plots as MAG. As or than MAG-tuned, but the differences are not huge. er of patterns r is fixed (1000), but m roteins (except for the shortest patter dna. Overall, in the experiments the to n some cases the winner was SOG. MAG performance changes with growi pected, larger q makes sense for large r, but a too large value search, presumably to many cache misses. The used MAG varia alphabet is quantized for all datasets. The new alphabet size, rately for each case) from the set $\{4,5,13,14,22\}$. Note that du the original alphabet size does not (significantly) affect the choice of q.

5 Conclusions and future work

Multiple string matching is one of the most exploited problems in stringology. It is hard to find really novel ideas for this idea, and our work can also be seen as a new and quite successful combination of known building bricks. The presented algorithm, MAG, usually wins with its competitors on the three test datasets (english and proteins, dna). One of the key successful ideas was alphabet quantization (binning), which is performed in a greedy manner, after sorting the original alphabet by frequency. In the future, we are going to try other quantization techniques, also for

Figure 3. Search speeds for the number of patterns $r=1000$ and varying pattern length m.

Figure 4. Search speeds for the pattern length $m=32$ and varying q.
quantization of the alphabet built on q-grams. This could give further improvement in the algorithm performance and savings in memory consumption.

Apart from the mentioned issue, there are a number of interesting questions that we can pose here. We analytically showed that the presented approach is sublinear on average, yet not average optimal. Therefore, is it possible to choose the algorithm's parameters in order to reach average optimality (for $m=O(w)$)?

Real computers nowadays have a hierarchy of caches in their CPU-related architecture and it could be interesting to apply the I/O model (or cache-obvious model) for the multiple pattern matching problem. The cache efficiency issue may be crucial for very large pattern sets.

The underexplored power of the SIMD instructions also seems to offer great opportunities, especially for bit-parallel algorithms.

It was reported that dense codes (e.g., ETDC) for words or q-grams not only serve for compressing data (texts), but also enable faster pattern searches. Multiple pattern searching over such compressed data seems unexplored yet and it is interesting to apply our algorithm for this scenario (our preliminary results are rather promising).

References

1. A. V. Aho and M. J. Corasick: Efficient string matching: an aid to bibliographic search. Communications of the ACM, 18(6) 1975, pp. 333-340.
2. C. Allauzen and M. Raffinot: Factor oracle of a set of words, Technical Report 99-11, Institut Gaspard-Monge, Université de Marne-la-Vallée, 1999.
3. R. A. Baeza-Yates and G. H. Gonnet: A new approach to text searching. Communications of the ACM, 35(10) 1992, pp. 74-82.
4. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Commun. ACM, 20(10) 1977, pp. 762-772.
5. S. Burkhardt and J. Kärkkäinen: Better filtering with gapped q-grams. Fundam. Inform., 56(1-2) 2003, pp. 51-70.
6. D. Cantone, S. Faro, and E. Giaquinta: A compact representation of nondeterministic (suffix) automata for the bit-parallel approach. Inf. Comput., 213 2012, pp. 3-12.
7. B. Commentz-Walter: A string matching algorithm fast on the average, in Proceedings of the 6th International Colloquium on Automata, Languages and Programming, H. A. Maurer, ed., no. 71 in Lecture Notes in Computer Science, Graz, Austria, 1979, Springer, pp. 118-132.
8. M. Crochemore, A. Czumaj, L. Gasieniec, T. Lecroq, W. Plandowski, and W. RytTER: Fast practical multi-pattern matching. Inf. Process. Lett., 71(3-4) 1999, pp. 107-113.
9. M. Crochemore, C. Hancart, and T. Lecroq: Algorithms on Strings, Cambridge University Press, New York, USA, 2007.
10. M. Crochemore and W. Rytter: Text algorithms, Oxford University Press, 1994.
11. S. Faro and M. O. Külekci: Fast multiple string matching using streaming simd extensions technology, in SPIRE, L. Calderón-Benavides, C. N. González-Caro, E. Chávez, and N. Ziviani, eds., vol. 7608 of Lecture Notes in Computer Science, Springer, 2012, pp. 217-228.
12. M. Fisk and G. Varghese: Fast content-based packet handling for intrusion detection, tech. rep., DTIC Document, 2001.
13. K. Fredriksson: Shift-or string matching with super-alphabets. Information Processing Letters, 87(1) 2003, pp. 201-204.
14. K. Fredriksson: Succinct backward-DAWG-matching. J. Exp. Algorithmics, 13 2009, pp. 1.81.26.
15. K. Fredriksson and S. Grabowski: Average-optimal string matching. J. Discrete Algorithms, 7(4) 2009, pp. 579-594.
16. D. Gusfield: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology, Cambridge University Press, 1997.
17. R. N. Horspool: Practical fast searching in strings. Softw., Pract. Exper., 10(6) 1980, pp. 501506.
18. D. E. Knuth, J. H. Morris, and V. R. Pratt: Fast pattern matching in strings. SIAM Journal on Computing, 6(1) 1977, pp. 323-350.
19. G. Navarro and K. Fredriksson: Average complexity of exact and approximate multiple string matching. Theoretical Computer Science A, 321(2-3) 2004, pp. 283-290.
20. G. Navarro and M. Raffinot: Fast and flexible string matching by combining bit-parallelism and suffix automata. ACM Journal of Experimental Algorithmics (JEA), 5 2000, p. article 4, 36 pages. http://www.jea.acm.org/2000/NavarroString.
21. G. Navarro and M. Raffinot: Flexible Pattern Matching in Strings - Practical on-line search algorithms for texts and biological sequences, Cambridge University Press, 2002, ISBN 0-521-81307-7. 280 pages.
22. H. Peltola and J. Tarhio: Alternative algorithms for bit-parallel string matching, in Proceedings of the 10th International Symposium on String Processing and Information Retrieval (SPIRE2003), LNCS 2857, Springer-Verlag, 2003, pp. 80-94.
23. L. Salmela, J. Tarhio, and J. Kytöjoki: Multipattern string matching with q-grams. ACM Journal of Experimental Algorithmics, 112006.
24. S. Wu and U. Manber: A fast algorithm for multi-pattern searching, Report TR-94-17, Department of Computer Science, University of Arizona, Tucson, AZ, 1994.
25. P. Yang, L. Liu, H. Fan, and Q. Huang: Fast multi-pattern string matching algorithms based on q-grams bit-parallelism filter and hash, in Proceedings of the 2012 International Conference on Information Technology and Software Engineering, vol. 211 of LNEE, Springer, 2013, pp. 487495.
26. A. C. YaO: The complexity of pattern matching for a random string. SIAM Journal on Computing, 8(3) 1979, pp. 368-387.
