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Abstract. We consider the classical exact multiple string matching problem. Our so-
lution is based on q-grams combined with pattern superimposition, bit-parallelism and
alphabet size reduction. We discuss the pros and cons of the various alternatives of
how to achieve best combination. Our method is closely related to previous work by
(Salmela et al., 2006). The experimental results show that our method performs well
on different alphabet sizes and that they scale to large pattern sets.
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1 Introduction

Multiple pattern matching is a classic problem, with about 40 years of history, with
applications in intrusion detection, anti-virus software and bioinformatics, to name a
few. The problem can be stated as follows: Given text T of length n and pattern set
P = {P1, . . . , Pr}, in which each pattern is of length m, and all considered sequences
are over common alphabet Σ of size σ, find all pattern occurrences in T . The pattern
equal length requirement may be removed. The multiple pattern matching problem is
a straightforward generalization of single pattern matching and it is no surprise that
many techniques worked out for a single pattern are borrowed in efficient algorithms
for multiple patterns.

1.1 Related work

The classical algorithms for the present problem can be roughly divided into three
different categories, (i) prefix searching, (ii) suffix searching and (iii) factor searching.
Another way to classify the solutions is to say that they are based on character
comparisons, hashing, or bit-parallelism. Yet another view is to say that they are
based on filtering, aiming for good average case complexity, or on some kind of “direct
search” with good worst case complexity guarantees. These different categorizations
are of course not mutually exclusive, and many solutions are hybrids that borrow
ideas from several techniques. For a good overview of the classical solutions we refer
the reader e.g. to [21,16,9]. We briefly review some of them in the following.

Perhaps the most famous solution to the multiple pattern matching problem is
the Aho–Corasick (AC) [1] algorithm, which works in linear time (prefix-based ap-
proach). It builds a pattern trie with extra (failure) links and actually generalizes
the Knuth–Morris–Pratt algorithm [18] for a single pattern. More precisely, AC total
time is O(M + n + z), where M , the sum of pattern lengths, is the preprocessing
cost, and z is the total number of pattern occurrences in T . Recently Fredriksson and
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Grabowski [15] showed an average-optimal filtering variant of the classic AC algo-
rithm. They built the AC automaton over superimposed subpatterns, which allows
to sample the text characters in regular distances, not to miss any match (i.e., any
verification). This algorithm is based on the same ideas as the current work.

Another classic algorithm is Commentz–Walter [7], which generalizes the ideas of
Boyer–Moore (BM) algorithm [4] for a single pattern to solve the multiple pattern
matching problem (suffix-based approach). Set Horspool [12,21] may be considered its
more practical simplification, exactly in the way that Boyer–Moore–Horspool (BMH)
[17] is a simplification of the original BM. Set Horspool makes use of a generalized
bad character function. The Horspool technique was used in a different way in an
earlier algorithm by Wu and Manber [24]. These methods are based on backward
matching over a sliding text window, which is shifted based on some rule, and the
hope is that many text characters can be skipped altogether.

The first factor based algorithms were DAWG-match [8] and MultiBDM [10]. Like
Commentz–Walter and Set Horspool they are based on backward matching. However,
instead of recognizing the pattern suffixes, they recognize the factors, which effectively
means that they work more per window, but in return they are able to make longer
shifts of the sliding window, and in fact they obtain optimal average case complexity.
At the same time they are linear in the worst case. The drawback is that these
algorithms are reasonably complex and not very efficient in practice. More practical
approach is the Set Backward Oracle Matching (SBOM) algorithm [2], which is based
on the same idea as MultiBDM, but uses simpler data structures and is very efficient in
practice. Yet another variant is the Succinct Backward DAWG Matching algorithm
(SBDM) [14], which is practical for huge pattern sets due to replacing the suffix
automaton with succinct index. The factor based algorithms usually lead to average
optimal [19] complexity O(n logσ(rm)/m).

Bit-parallelism can be used to replace the various automata in the previous meth-
ods to obtain very simple and very efficient variants of many classical algorithms.
The classic method for a single pattern is Shift-Or [3]. The idea is to encode (non-
deterministic) automaton as a bitvector, i.e. a small integer value, and simulate all
the states in parallel using Boolean logic and arithmetic. The result is often the most
practical method for the problem, but the drawback is that the scalability is limited
by the number of bits in a computer word, although there exist ways to alleviate this
problem somewhat, see [22,6]. Another way that is applicable to huge pattern sets is
to combine bit-parallelism with q-grams; our method is also based on this, and we
review the idea and related previous work in detail in the next section.

Some recent work also recognizes the neglected power of the SIMD instructions,
which have been available on commodity computers well over a decade. For exam-
ple, Faro and Külekci [11] make use of the Intel Streaming SIMD Extensions (SSE)
technology, which gives wide registers and many special purpose instructions to work
with. They develop (among other things) a wsfp (word-size fingerprint instruction)
operation, based on hardware opcode for computing CRC32 checksums, which com-
putes an α-bit fingerprint from a w-bit register handled as a block of α characters.
Similar values are obtained for all α-sized factors of all the patterns in the preprocess-
ing, and wsfp can therefore be used as a simple yet efficient hash-function to identify
text blocks that may contain a matching pattern.

The paper is organized as follows. Section 2 describes and discusses the two
key concepts underlying our work, q-grams and pattern superimposition. Section 3
presents the description of our algorithm, together with its complexity analysis. Sec-
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tion 4 contains (preliminary) experimental results. The last section concludes and
points some avenues for pursuing further research.

2 On q-grams and superimposition

A q-gram is (usually) a contiguous substring (factor) of q characters of a string, al-
though non-contiguous q-grams have been considered [5]. In what follows, q can be
considered a small constant, 2, . . . , 6 in practice, although we may analyze the op-
timal value for a given problem instance. We note that q-grams have been widely
used in approximate (single and multiple) string matching, where they can be used
to obtain fast filtering algorithms based on exact matching of a set of q-grams. Ob-
viously these algorithms work for the exact case as well, as a special case, but they
are not interesting in our point of view. Another use (which is not relevant in our
case) is to speed up exact matching of a single pattern by treating the q-grams as a
superalphabet, see [13].

In our case q-grams are interesting as combined with a technique called superim-
position. Consider a set of patterns P = {P1, . . . , Pr}. We form a single pattern P
where each position P [i] is no longer a single character, but a set of characters, i.e.
P [i] ⊆ Σ. More precisely, P [i] =

⋃

j Pj[i]. Now P can be used as a filter: we search
candidate text substrings that might contain an occurrence of any of the patterns in
P . That is, if T [i+ j] ∈ P [j], for all j ∈ 1, . . . ,m, then T [i . . . i+m− 1] may match
with some pattern in P .

For example, if P = {abba, bbac}, the superimposed pattern will be P =
{a, b}{b}{a, b}{a, c}, and there are a total of 8 different strings of length 4 that
can match with P (and trigger verification). Therefore we immediately notice one
of the problems with this approach, i.e. the probability that some text character t
matches a pattern character p is no longer 1/σ (assuming uniform random distri-
bution), it can be up to r/σ. This gets quickly out of hands when the number of
patterns r grows.

To make the technique more useful, we first generate a new set of patterns, and
then superimpose. The new patterns have the q-grams as the alphabet, which mean
the new alphabet has size σq, and the probability of a false positive candidate will be
considerably lower. There are two main approaches: overlapping and non-overlapping
q-grams.

Consider first the overlapping q-grams. For each Pi we generate a new pattern
such that P ′

i [j] = Pi[j . . . j + q − 1], for j ∈ 1, . . . ,m − q + 1, that is, each q-gram
Pi[j . . . j + q − 1] is treated as a single “super character” in P ′

i . Note also that the
pattern lengths are decreased from m to m− q + 1. Taking the previous example, if
P = {abba, bbac} and now q = 2, the new pattern set is P ′ = {[ab][bb][ba], [bb][ba][ac]},
where we use the brackets to denote the q-grams. The corresponding superimposed
pattern is then P ′ = {[ab], [bb]}{[bb], [ba]}{[ba], [ac]}. To be able to search for P ′, the
text must be factored in exactly the same way.

The other possibility is to use non-overlapping q-grams. In this case we have
P ′
i [j] = Pi[(j − 1)q + 1 . . . jq], for j ∈ 1, . . . , ⌊m/q⌋, and for our running example

we get P ′ = {[ab], [bb]}{[ba], [ac]}. Again, the text must be factored similarly. But
the problem now is that only every qth text position is considered, and to solve this
problem we must consider all q possible shifts of the original patterns. That is, given
a pattern Pi, we generate a set P̂i = {Pi[1 . . . m], Pi[2 . . . m], . . . , Pi[q − 1 . . . m]}, and

then generate P̂ ′
i , and finally superimpose them.
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The above two alternatives both have some benefits and drawbacks. For overlap-
ping q-grams we have:

– pattern length is large (m− q + 1), which means less verifications

– text length is practically unaffected (n− q + 1)

Non-overlapping:

– pattern length is short (m/q), which means potentially more verifications, but
bit-parallelism works for bigger m

– text is shorter too (n/q)

– more patterns to superimpose (factor of q)

In the end, the benefits and drawbacks between the two approaches mostly cancel
out each other, except bit-parallelism remains more applicable to non-overlapping
q-grams.

To illustrate the power of this technique, let us have, for example, a random
text over an alphabet of size σ = 16 and patterns generated according to the same
probability distribution; q-grams are not used yet (i.e., we assume q = 1). If r = 16,
then the expected size of a character class in the superimposed pattern is about 10.3,
which means that a match probability for a single character position is about 64%.
Even if high, this value may yet be feasible for long enough patterns, but if we increase
r to 64, the character class expected size grows to over 15.7 and the corresponding
probability to over 98%. This implies that match verifications are likely to be invoked
for most positions of the text. Using q-grams has the effect of artificially growing the
alphabet. In our example, if we use q = 2 and thus σ′ = 162 = 256, the corresponding
probabilities for r = 16 and r = 64 become about 6% and 22%, respectively, so they
are significantly lower.

The main problem that remains is to decide between the two choices, properly
choose a suitable q, and finally find a good algorithm to search the superimposed
pattern. To this end, Salmela et al. [23] presented three algorithms combining the
known mechanisms: Shift-Or, BNDM [20] and BMH, with overlapping q-grams; the
former two of these algorithms are bit-parallel ones. The resulting algorithm were
called SOG, BG and HG, respectively. In general larger q means better filtering, but
on the other hand the size of the data structures (tables) that the algorithms use is
O(σq), which can be prohibitive. BGqus [25] tries to solve the problem by combining
BG with hashing.

In general, not many classic algorithms can be generalized to handle superimposed
patterns (character classes) efficiently, but bit-parallel methods generalize trivially.
In the next section we describe our choice, FAOSO [15].

3 Our algorithm

In [15] a general technique of how to skip text characters, with any (linear time)
string matching algorithm that can search for multiple patterns simultaneously was
presented, alongside with several applications to known algorithms. In the following
we review the idea, and for the moment assume that we already have done all factoring
to q-grams, and that we have only a single pattern.
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3.1 Average-optimal character skipping

The method takes a parameter k, and from the original pattern generates a set K of
k new patterns K = {P 0, . . . , P k−1}, each of length m′ = ⌊m/k⌋, as follows:

P j[i] = P [j + ik], j = 0, . . . , k − 1, i = 0, . . . , ⌊m/k⌋ − 1.

In other words, k different alignments of the original pattern P is generated, each
alignment containing only every kth character. The total length of the patterns P j

is k⌊m/k⌋ ≤ m.
Assume now that P occurs at T [i . . . i+m−1]. From the definition of P j it directly

follows that

P j[h] = T [i+ j + hk], j = i mod k, h = 0, . . . ,m′ − 1.

This means that the set K can be used as a filter for the pattern P , and that the
filter needs only to scan every kth character of T . Fig. 1 serves as an illustration.

P a b c d e f

i p

T x x a b c d e f x x x x

P 0 a d

P 1 b e

P 2 c f

P ∗ a d b e c f

Figure 1. An example. Assume that P = abcdef occurs at text position T [i . . . i+m− 1], and that
k = 3. The current text position is p = 10, and T [p] = b. The next character the algorithm reads is
T [p + k] = T [13] = e. This triggers a match of P p mod k = P 1, and the text area T [p− 1 . . . p− 1 +
m− 1] = T [i . . . i + m− 1] is verified.

The occurrences of the patterns in K can be searched for simultaneously using
any multiple string matching algorithm. Assuming that the selected string matching
algorithm runs generally in O(n) time, then the filtering time becomes O(n/k), as
only every kth symbol of T is read. The filter searches for the exact matches of k
patterns, each of length ⌊m/k⌋. Assuming that each character occurs with probability
1/σ, the probability that P j occurs (triggering a verification) in a given text position
is (1/σ)⌊m/k⌋. A brute force verification cost is in the worst case O(m). To keep the
total time at most O(n/k) on average, we select k so that nm/σm/k = O(n/k).
This is satisfied for k = m/(2 logσ(m)), where the verification cost becomes O(n/m)
and filtering cost O(n logσ(m)/m). The total average time is then dominated by the
filtering time, i.e. O(n logσ(m)/m), which is optimal [26].

3.2 Multiple matching with q-grams

To apply the previous idea to multiple matching, we just assume that the (single)
input pattern (for the filter) is the non-overlapping q-gram factored and superimposed
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pattern set. The verification phase just needs to be aware that there are possibly
more than one pattern to verify. The analysis remains essentially the same: now
the text length is n/q, pattern lengths are m/q, there are r patterns to verify, and
the probability of a match is p instead of 1/σ, where p = O(1 − (1 − (1/σq))qr) =
O((qr)/σq). That is, the filtering time is O(qn/(kq)) = O(n/k), verification cost is
O(rqm), and its probability is O(p⌊m/(kq)⌋) for each of the n/q text positions. However,
now we have two parameters to optimize, k and q, and the optimal value of one
depends on the other.

In practice we want to choose q first, such that the verification probability is as
low as possible. This means maximizing q, but the preprocessing cost (and space)
grows as O(σq), and we do not want this to exceed O(rm) (or the filtering cost for
that matter). So we select q = logσ(rm), and then choose k as large as possible.
Repeating the above analysis gives then

k = O

(

m

logσ(rm)
·

logσ 1/ρ

logσ(rm) + logσ 1/ρ

)

,

where ρ = logσ(rm)/m. We note that this is not average-optimal anymore, although
we are still able to skip text characters.

To actually search the superimposed pattern, we use FAOSO [15], which is based
on Shift-Or. The fact that the pattern consists of character classes is not a problem for
bit-parallel algorithms, since it only affects the initial preprocessing of a single table.
For details see [15]. The filter implemented with FAOSO runs in O(n/k · ⌈(m/q)/w⌉)
time in our case, where w is the number of bits in computer word (typically 64).

We note that Salmela et al. [23] have tried a similar approach, but dismissed it
early because it did not look promising for short patterns in their tests.

Implementation. In the algorithms’ point of view the q-gram, i.e. the super char-
acter, must have some suitable representation, and the convenient way is to compute
a numerical value in the range 0, . . . , σq − 1, which is done as

∑q
i=1 S[i] · σ

i−1 for a
q-gram S[1 . . . q]. This is computed using Horner’s method to avoid the exponentia-
tion. We have experimented with two different variants. The first encodes the whole
text prior to starting the actual search algorithm, which is then more streamlined.
This also means that the total complexity is Ω(n), the time to encode the text. We
call the resulting algorithm SMAG (short of Simple Multi AOSO on q-Grams). The
other alternative is to keep the text intact, and compute the numerical representa-
tion of the q-gram requested on the fly. This adds just constant overhead to the total
complexity. We call this variant MAG (short of Multi AOSO on q-Grams). We have
verified experimentally that MAG is generally better than SMAG.

3.3 Alphabet mapping

If the alphabet is large, then selecting a suitable q may become a problem. The
reason is that some value q′ may be too small to facilitate good filtering capability,
yet, using q = q′ + 1 can be problematic, as the preprocessing time and space grow
with σq (note that q must be an integer). The other view of using length q strings as
super characters, we may say that our characters have q log2 σ bits, and we want to
have more control of how many bits we use. One way to achieve this is to reduce the
original alphabet size σ.
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We note that in theory this method cannot achieve much, as reducing the alphabet
size generally only worsens the filtering capability and therefore forces larger q, but
in practice this allows better fine tuning of the parameters.

What we do is that we select some σ′ < σ, compute a mapping µ : Σ 7→ 0, . . . , σ′−
1, and use µ(c) whenever the (filtering) algorithm needs to access some character c
from the text or the pattern set. Verifications still obviously use the original alphabet.

A simple method to achieve this is to compute the histogram of character distribu-
tion of the pattern set, and assign code 0 to the most frequent character, 1 to second
most frequent, and so on, and put the σ′ − 1, . . . , σ − 1 most frequent characters to
the last bin, i.e. giving them code σ′ − 1. The text characters not appearing in the
patterns also will have code σ′ − 1.

A better strategy is to try to distribute the original characters into σ′ bins so that
each bin will have (approximately) equal weight, i.e. each µ(c), where c ∈ 0, . . . , σ′−1
will have (approximately) equal probability of appearance. This is NP-hard optimiza-
tion problem, so we use a simple greedy heuristic.

Alphabet mapping on the q-grams. We note that the above method can be
applied also on the q-gram alphabet. This allows a precise control of the table size,
and combined with hashing, it can accommodate very large q as well. That is, we
want to

1. Choose some (possibly very large) q;
2. compute the q-gram frequencies on the pattern set (using e.g. hashing to avoid

possibly large tables);
3. choose some suitable σ′, the size of the mapped q-gram alphabet;
4. use method of choice (e.g. bin-packing) to reduce the number of q-grams, i.e. map

the q-grams to range 0, . . . , σ′ − 1;
5. use hashing to store the mapping, along with the corresponding bitvectors needed

by FAOSO.

Combined alphabet mapping and q-gram generation. Yet another method to
reduce the alphabet is to combine the q-gram computations with some bit magic.
The benefit is that the mapping tables need not to be preprocessed, and this allows
further optimizations as we will see shortly. The drawback is that the quality of the
mapping is worse than what is achieved with approaches like bin-packing.

Consider a (text sub-)string S[1 . . . q] over alphabet Σ of size σ. A simple way
to reduce the alphabet is to consider only the ℓ low-order bits of each S[i], where
ℓ < log2 σ. We can then compute (qℓ)-bit q-gram s simply as

s = (S[1] & b) + (S[2] & b) << ℓ+ (S[3] & b) << 2ℓ+ · · ·+ (S[q] & b) << (q − 1)ℓ,

where b = (1 << ℓ)− 1 and << denotes the left shift and & the bitwise and.
The main benefit of this approach is that a sequence of shifts and adds can be

often replaced by a multiplication (which can be seen as an algorithm performing just
that). As an illustrative example, consider the case ℓ = 2 and hence b = 3 (which
coincides to DNA nicely). As an implementation detail, assume that the text is 8-
bit ASCII text, and it is possible to address the text, a sequence of characters, as a
sequence of 32-bit integers (which is easy e.g. in C). Then to compute a 8-bit 4-gram
s we can simply do

s = (((x >> 1) & 0x03030303) ∗ 0x40100401) >> 24,
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where x is the 32-bit integer containing the 4 chars S[1 . . . 4]. Assuming 4 letter DNA
alphabet, the right shift (by 1) and the (parallel) masking generate 2-bit unique
(and case insensitive) codes for all 4 characters. If the alphabet is larger (some DNA
sequences have rare additional symbols), those will be mapped in the same range,
0, . . . , 3. The multiplication then shifts and adds all those codes into an 8-bit quantity,
and the final shift moves the 4-gram to the low order bits. Larger q-grams can be
obtained by repeating the code.

We leave the implementation to future work.

4 Experimental results

In order to evaluate the performance of our approach, we run a few experiments,
using the 200MB versions of selected datasets (dna, english and proteins) from
the widely used Pizza & Chili corpus (http://pizzachili.dcc.uchile.cl/).

We test the following algorithms:

– BNDM on q-grams (BG) [23],
– Shift-Or on q-grams (SOG) [23],
– BMH on q-grams (HG) [23],
– Rabin-Karp algorithm combined with binary search and two-level hashing (RK) [23],
– Multibom and Multibsom are variants of the Set Backward Oracle Matching al-
gorithm [2],

– Succinct Backward DAWG Matching algorithm (SBDM) [14],
– Multi AOSO on q-Grams (MAG) (this work).

All codes were obtained from the original authors. Our MAG was implemented in
C++ and compiled with g++ version 4.8.1 with -O3 optimization. The experiments
were run on a desktop PC with an Intel i3-2100 CPU clocked at 3.1GHz with 128KB
L1, 512KB L2 and 3 MBL3 cache. The test machine was equiped with 4GB of
1333MHz DDR3 RAM and running Ubuntu 64-bit OS with kernel 3.11.0-17.

In Fig. 2 we show the results of all the listed algorithms on english, with a fixed
pattern length m and growing number of patterns r. The used pattern lengths (one
for each plot) are {8, 16, 32, 64}. Note that some algorithms (or rather their available
implementations) cannot handle longer patterns (m = 64). Our algorithm, MAG,
depends on several parameters: k, q and U . The first two were explained earlier, and
U serves for an unrolling technique which reduces the number of executed conditionals
in the search code (for more details, see [15]). We use two settings for MAG. In one
of them we chose the best configurations of k, q and U , for each dataset and each
value of r and m separately; this variant is presented as MAG-tuned. It dominates
for longer patterns (32, 64) and its performance is mixed for m = 8 and m = 16. As
expected, for all algorithms the search speed deteriorates with the number of patterns,
and for r = 10, 000 and relatively long patterns (m = 32) only MAG slightly exceeds
100MB/s (the worst ones here, SOG and RK, are 10 times slower).

Although the “optimal” MAG settings may be found in the construction phase,
assuming the patterns are randomly taken from the text, this approach is rather
inelegant (and the tuning phase may be time-consuming). Therefore, we ran another
test in which the parameters U and k (yet not q) are set for a particular dataset,
m and r according to the following simple rules found experimentally: if the “best”
value of q is greater than 5, we set U = 8 and k = 1, otherwise we set U = 4 and
k = 2. The case of english and m = 8 is an exception, where U = 8 and k = 1 was

http://pizzachili.dcc.uchile.cl/
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Figure 2. english, search speeds (MB/s) for varying number of patterns r. MAG is the same as
MAG-tuned for m = 8, hence the “mag-tuned” points for this case are not presented.

set no matter the value of q. These results are presented on the plots as MAG. As
expected, MAG is slower than MAG-tuned, but the differences are not huge.

In Fig. 3 the number of patterns r is fixed (1000), but m grows. MAG usually
wins on english and proteins (except for the shortest patterns), yet is dominated
by a few algorithms on dna. Overall, in the experiments the toughest competitor to
MAG was SBDM, but in some cases the winner was SOG.

We also show how MAG performance changes with growing q (Fig. 4). As ex-
pected, larger q makes sense for large r, but a too large value of it slows down the
search, presumably to many cache misses. The used MAG variant is MAG-tuned, the
alphabet is quantized for all datasets. The new alphabet size, σ′, was found (sepa-
rately for each case) from the set {4, 5, 13, 14, 22}. Note that due to the quantization
the original alphabet size does not (significantly) affect the choice of q.

5 Conclusions and future work

Multiple string matching is one of the most exploited problems in stringology. It is
hard to find really novel ideas for this idea, and our work can also be seen as a new
and quite successful combination of known building bricks. The presented algorithm,
MAG, usually wins with its competitors on the three test datasets (english and
proteins, dna). One of the key successful ideas was alphabet quantization (binning),
which is performed in a greedy manner, after sorting the original alphabet by fre-
quency. In the future, we are going to try other quantization techniques, also for
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Figure 3. Search speeds for the number of patterns r = 1000 and varying pattern length m.
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Figure 4. Search speeds for the pattern length m = 32 and varying q.
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quantization of the alphabet built on q-grams. This could give further improvement
in the algorithm performance and savings in memory consumption.

Apart from the mentioned issue, there are a number of interesting questions that
we can pose here. We analytically showed that the presented approach is sublinear on
average, yet not average optimal. Therefore, is it possible to choose the algorithm’s
parameters in order to reach average optimality (for m = O(w))?

Real computers nowadays have a hierarchy of caches in their CPU-related archi-
tecture and it could be interesting to apply the I/O model (or cache-obvious model)
for the multiple pattern matching problem. The cache efficiency issue may be crucial
for very large pattern sets.

The underexplored power of the SIMD instructions also seems to offer great op-
portunities, especially for bit-parallel algorithms.

It was reported that dense codes (e.g., ETDC) for words or q-grams not only serve
for compressing data (texts), but also enable faster pattern searches. Multiple pattern
searching over such compressed data seems unexplored yet and it is interesting to
apply our algorithm for this scenario (our preliminary results are rather promising).
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