
Computing Abelian Covers and Abelian Runs

Shohei Matsuda, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda

Department of Informatics, Kyushu University, Japan
{shohei.matsuda,inenaga,bannai,takeda}@inf.kyushu-u.ac.jp

Abstract. Two strings u and v are said to be Abelian equivalent if u is a permutation
of the characters of v. We introduce two new regularities on strings w.r.t. Abelian
equivalence, called Abelian covers and Abelian runs, which are generalizations of covers
and runs of strings, respectively. We show how to determine in O(n) time whether or
not a given string w of length n has an Abelian cover. Also, we show how to compute
an O(n2)-size representation of (possibly exponentially many) Abelian covers of w in
O(n2) time. Moreover, we present how to compute all Abelian runs in w in O(n2) time,
and state that the maximum number of all Abelian runs in a string of length n is Ω(n2).
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1 Introduction

The study of Abelian equivalence of strings dates back to at least the early 60’s, as
seen in the paper by Erdös [6]. Two strings u, v are said to be Abelian equivalent
if u is a permutation of the characters appearing in v. For instance, strings aabba

and baaba are Abelian equivalent. Abelian equivalence of strings has attracted much
attention and has been studied extensively in several contexts.

A variant of the pattern matching problem called the jumbled pattern matching
problem is to determine whether there is a substring of an input text string w that
is Abelian equivalent to a given pattern string p. There is a folklore algorithm to
solve this problem in O(n + m + σ) time using O(σ) space, where n is the length
of w, m is the length of p, and σ is the alphabet size. Assuming m ≤ n and all
characters appear in w, the algorithm runs in O(n) time and O(σ) space. The in-
dexed version of the jumbled pattern matching problem is more challenging, where
the task is to preprocess an input text string w so that, given a query pattern string
p, we can quickly determine whether or not there is a substring of w that is Abelian
equivalent to p. For binary strings, there exists a data structure which occupies O(n)
space and answers the above query in O(1) time. Burcsi et al. [2] and Moosa and
Rahman [16] independently developed an O(n2/ log n)-time algorithm to construct
this data structure, and later Gagie et al. [9] showed an improved O(n2/ log2 n)-time

algorithm. Very recently, Hermelin et al. [10] proposed an n2/2Ω(logn/ log logn)
1

2 -time so-
lution to the problem for binary strings. For any constant-size alphabets, Kociumaka
et al. [12] showed an algorithm that requires O(n2 log2 log n/ log n) preprocessing time
and O((log n/ log log n)2σ−1) query time. Amir et al. [1] showed lower bounds on the
indexing version of the jumbled pattern matching problem under a 3SUM-hardness
assumption.

Abelian periodicity of strings has also been extensively studied in string algorith-
mics. A string w is said to have a full Abelian period if w is a concatenation w1 · · ·wk

of k Abelian equivalent strings w1, . . . , wk with k ≥ 2, and the length of w1 is called
a full Abelian period of w. A string w is said to have an Abelian period if w = yz,
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where y has some full Abelian period d, and z is a non-empty string shorter than
d such that the number of each character a contained in z is no more than that
contained in the prefix y[1..d] of length d of y. A string w is said to have a weak
Abelian period d if w = xy, where y has some Abelian period d, and x is a non-
empty string shorter than d such that the number of each character a contained in
x is no more than that contained in the prefix y[1..d] of length d of y. Fici et al. [7]
proposed an O(n log log n)-time algorithm to compute all full Abelian periods and
O(n2)-time algorithm to compute all Abelian periods for a given string of length n.
Recently, Kociumaka et al. [13] showed an optimal O(n)-time algorithm to compute
all full Abelian periods, and an improved O(n(log log n + log σ))-time algorithm to
compute all Abelian periods, where σ is the alphabet size. Fici et al. [8] presented an
O(n2σ)-time algorithm to compute all weak Abelian periods, and later Crochemore
et al. [3] gave an improved O(n2)-time solution to the problem.

In the field of word combinatorics, Erdös [6] posed a question whether there ex-
ists an infinitely long string which contains no Abelian squares. A substring s of a
string w is called an Abelian square if s = s1s2 such that s1 and s2 are Abelian
equivalent. Entringer et al. [5] proved that any infinite word over a binary alphabet
contains arbitrary long Abelian squares. On the other hand, Pleasants [18] showed a
construction of an infinitely long string which contains no Abelian squares over an
alphabet of size 5, and later, Keränen [11] showed a construction over an alphabet of
size 4. An interesting question in the field of string algorithmics is how efficiently we
can compute the Abelian repetitions that occur in a given string of finite length n.
Cummings and Smyth [4] presented an algorithm to compute all Abelian squares in
O(n2) time. They also showed that there exist Ω(n2) Abelian squares in a string of
length n. Crochemore et al. [3] showed another O(n2)-time algorithm to compute all
squares in a string of length n.

In this paper, we introduce two new regularities on strings w.r.t. Abelian equiva-
lence, called Abelian covers and Abelian runs, which are generalizations of covers [15]
and runs [14] of strings, respectively, and we propose non-trivial algorithms to com-
pute these new string regularities. A set C of intervals is called an Abelian cover
of a string w if the substrings corresponding to the intervals in C are all Abelian
equivalent, and every position in w is contained in at least one interval in C. We
show that, given a string w of length n, we can determine whether or not w has an
Abelian cover in optimal O(n) time. Also, we present an O(n2)-time algorithm to
compute an O(n2)-size representation of all (possibly exponentially many) Abelian
covers of w. A substring s of w is said to be an Abelian run of w if s is a maximal
substring which has a weak Abelian period. As a direct consequence from the result
by Cummings and Smyth [4], it is shown that the maximum number of all Abelian
runs in a string of length n is Ω(n2). Then, we propose an O(n2)-time algorithm to
compute all Abelian runs in a given string of length n.

2 Preliminaries

Let Σ = {c1, . . . , cσ} be an ordered alphabet. We assume that for each ci ∈ Σ, its rank
i in Σ is already known and can be computed in constant time. An element of Σ∗ is
called a string. The length of a string w is denoted by |w|. The empty string ε is the
string of length 0, namely, |ε| = 0. For a string w = xyz, strings x, y, and z are called
a prefix, substring, and suffix of w, respectively. The i-th character of a string w of
length n is denoted by w[i] for 1 ≤ i ≤ n. For 1 ≤ i ≤ j ≤ n, let w[i..j] = w[i] · · ·w[j],
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aabbaabababa

1 2 3 4 5 6 7 8 9 10 11 12

Figure 1. String aabbaabababa over a binary alphabet Σ = {a, b} has an Abelian cover
{[1, 3], [4, 6], [6, 8], [8, 10], [10, 12]} of length 3 with Parikh vector 〈2, 1〉, an Abelian cover
{[1, 4], [4, 7], [7, 10], [9, 12]} of length 4 with Parikh vector 〈2, 2〉, an Abelian cover {[1, 5], [4, 8], [8, 12]}
of length 5 with Parikh vector 〈3, 2〉, and an Abelian cover {[1, 11], [2, 12]} of length 11 with Parikh
vector 〈6, 5〉. We remark that this string has other Abelian covers than the above ones.

i.e., w[i..j] is the substring of w starting at position i and ending at position j in w.
For convenience, let w[i..j] = ε if j < i. For any 0 ≤ i ≤ n, strings w[1..i] and w[i..n]
are called prefixes and suffixes of w, respectively.

For any string w of length n ≥ 2, a set I = {[b1, e1], . . . , [b|I|, e|I|]} of intervals is
called a cover of w if

⋃
1≤k≤|I|[bk, ek] = [1, n] and [bk, ek] 6= [1, n] for every 1 ≤ k ≤ |I|.

Whenever we write C = {[b1, e1], . . . , [b|C|, e|C|]} for a cover C of a string w, then we
assume that bj < bj+1 for all 1 ≤ k < |C|.

Two strings v, w ∈ Σ∗ are said to be Abelian equivalent if v is a permutation of
the characters in w. A Parikh vector [17] of a string w ∈ Σ∗, denoted Pw, is an array
of length σ such that for any 1 ≤ i ≤ σ, Pw[i] stores the number of occurrences of
character ci in w. Let � be a partial order of Parikh vectors Pv and Pw for any strings
v, w ∈ Σ∗ such that

Pv = Pw if Pv[i] = Pw[i] for all 1 ≤ i ≤ σ, and

Pv ≺ Pw if Pv 6= Pw and Pv[i] ≤ Pw[i] for all 1 ≤ i ≤ σ.

For instance, for strings v = aababc and w = baba over an ordered alphabet Σ =
{a, b, c}, Pv = [3, 2, 1] and Pw = [2, 2, 0], and therefore Pw ≺ Pv. Clearly, strings v, w
are Abelian equivalent iff Pv = Pw. For any two strings v, w ∈ Σ∗, let Pv ⊕Pw = Pvw,
namely, (Pv ⊕ Pw)[i] = Pv[i] + Pw[i] for each 1 ≤ i ≤ σ.

A cover C = {[b1, e1], . . . , [b|C|, e|C|]} of a string w is called an Abelian cover of
w if Pw[b1..e1] = Pw[bj ..ej ] for all 1 < j ≤ |C|. Clearly ej − bj = e1 − b1 holds for all
1 < j ≤ |C|. The length and size of an Abelian cover C = {[b1, e1], . . . , [b|C|, e|C|]} of
a string are e1 − b1 + 1 and |C|, respectively. See Figure 1 for examples of Abelian
covers of a string.

A non-empty substring u of a string w is called an Abelian repetition with period d

if |u| is a multiple of an integer d (1 ≤ d ≤ |u|
2
) and Pu[(k−1)d+1..kd] = Pu[kd+1..(k+1)d] for

all 1 ≤ k < |u|
d
. If d = |u|

2
, then u is called an Abelian square of w. A substring w[i..j]

of a string w is called a maximal Abelian repetition of w if w[i..j] is a non-extensible
Abelian repetition with period d in w, namely, if w[i..j] is an Abelian repetition
satisfying (1) Pw[i−d..i−1] 6= Pw[i..i+d−1] or i − d < 0 and (2) Pw[j−d+1..j] 6= Pw[j+1..j+d]

or j + d > n. A substring w[i − h..j + h′] of a string w is called an Abelian run
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aabbacbbaabbbb

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 2. String aabbacbbaabbbb over a ternary alphabet Σ = {a, b, c} has Abelian runs
(0, 1, 2, 1, 0), (0, 3, 4, 1, 0), (0, 7, 8, 1, 0), (0, 9, 10, 1, 0), and (0, 11, 14, 1, 0) of period 1, Abelian runs
(1, 2, 5, 2, 0), (1, 8, 11, 2, 1), and (0, 11, 14, 2, 0) of period 2, and an Abelian run (0, 7, 12, 3, 2) of period
3.

of w if w[i..j] is a maximal Abelian repetition with period d of w and h, h′ ≥ 0
are the largest integers satisfying Pw[i−h..i−1] ≺ Pw[i..i+d] and Pw[j+1..j+h′] ≺ Pw[j−d..j],
respectively. Each Abelian run w[i − h..j + h′] of period d in w is represented by a
5-tuple (h, i, j, d, h′), where h and h′ are called the left hand and the right hand of
the Abelian run, respectively. See Figure 2 for examples of Abelian runs in a string.

In this paper, we consider the following problems.

Problem 1 (Abelian cover existence). Given a string w, determine whether or not w
has an Abelian cover.

Problem 2 (All Abelian covers). Given a string w, compute all Abelian covers of w.

Problem 3 (All Abelian runs). Given a string w, compute all Abelian runs in w.

3 Algorithms

In this section, we present our algorithms to solve the problems stated in the previous
section. For simplicity, we assume that all characters in Σ appear in a given string w
of length n, which implies σ ≤ n.

3.1 Abelian cover existence

In this subsection, we consider Problem 1 of determining whether there exists an
Abelian cover of a given string w of length n. Note that there exists an infinite
sequence of strings over a binary alphabet which have no Abelian covers (e.g., an−1

b

has no Abelian covers), and therefore Problem 1 is of interest. The following lemma
is a key to our solution to the problem.

Lemma 4. If there exists an Abelian cover C = {[b1, e1], . . . , [b|C|, e|C|]} of arbitrary
size for a string w, then there exists an Abelian cover C ′ of size exactly 2 for w.

Proof. It is clear when |C| = 2. Consider the case where |C| ≥ 3. Since C is an
Abelian cover of w, Pw[b1,e1] = Pw[b|C|..e|C|]. This implies that Pw[b1..e1]⊕Pw[e1+1..b|C|−1] =

Pw[e1+1..b|C|−1] ⊕ Pw[b|C|..e|C|]. Therefore, C
′ = {[b1..b|C| − 1], [e1 + 1, e|C|]} = {[1..b|C| −

1], [e1 + 1, |w|]} is an Abelian cover of size 2 of w. (See also Figure 3.) ⊓⊔

Using the above lemma, we obtain the following.

Theorem 5. Given a string w of length n, we can determine whether w has an
Abelian cover or not in O(n) time with O(σ) working space.
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Figure 3. Illustration for Lemma 4. If a string w has a cover C, then w always has a cover C ′ of
size 2.

Proof. By Lemma 4, Problem 1 of deciding whether there exists an Abelian cover of a
given string w reduces to finding an Abelian cover of size 2 of w. Therefore, it suffices
to find a prefix and a suffix of the same length ℓ such that Pw[1..ℓ] = Pw[n−ℓ+1..n]. To
find such a prefix and a suffix, for each 1 ≤ j ≤ ⌊n

2
⌋ in increasing order, we maintain

an invariant dj which represents the number of entries of Pw[1..ℓ] and Pw[n−ℓ+1..n] whose
values differ, i.e.,

dj = {k | Pw[1..j][k] 6= Pw[n−j+1..n][k], 1 ≤ k ≤ σ}.

Clearly w has an Abelian cover of size 2 iff dj = 0 for some j. For any 1 ≤ j ≤ ⌊n
2
⌋,

let w[j] = cs and w[n− j+1] = ct. We can update Pw[1..j−1] (resp. Pw[n−j..n]) to Pw[1..j]

(resp. Pw[n−j+1..n]) in O(1) time, increasing the value stored in the sth entry (resp.
the tth entry) by 1. Also, dj can be computed in O(1) time from dj−1, Pw[1..j−1][s],
Pw[1..j][s], Pw[n−j..n][t], and Pw[n−j+1..n][t]. Hence, the algorithm runs in a total of O(n)
time. The extra working space of the algorithm is O(σ), due to the two Parikh vectors
we maintain. ⊓⊔

The following corollary is immediate from Lemma 4 and Theorem 5:

Corollary 6. We can compute the longest Abelian cover of a given string of length
n in O(n) time with O(σ) working space, if it exists.

3.2 All Abelian covers

In this subsection, we consider Problem 2 of computing all Abelian covers of a given
string w of length n. Note that the number of all Abelian covers of a string can be
exponentially large w.r.t. n. For instance, string an has

∑n−1
k=⌈n

2
⌉ 2

n−k−1 Abelian covers

of length at least ⌈n
2
⌉. This is because, for any k ≥ ⌈n

2
⌉, the union of {[1, k], [n− k +

1, n]} and any subset of {[2, k + 1], [3, k + 2], . . . , [n − k, n − 1]} is an Abelian cover
of length k for an. Therefore, we consider to compute a “compact” representation of
all Abelian covers of a given string.

Theorem 7. Given a string w of length n, we can compute an O(n2)-size represen-
tation of all Abelian covers of w in O(n2) time and O(n) working space. Given a set
I of s intervals sorted by the beginning positions of the intervals, the representation
allows us to check if I is an Abelian cover of w in O(s) time.

Proof. For each 1 ≤ ℓ ≤ n − 1, we compute a subset Sℓ of positions in w such that
Sℓ = {i | Pw[i..i+ℓ−1] = Pw[1..ℓ], 1 ≤ i ≤ n− ℓ+ 1}. Then, there exists an Abelian cover
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of length ℓ for w iff the distance between any two adjacent positions in Sℓ is at most ℓ.
If Sℓ satisfies the above condition, then we represent Sℓ as a bit vector Bℓ of length n
such that Bℓ[i] = 1 if i ∈ Sℓ, and Bℓ[i] = 0 otherwise. If Sℓ does not satisfy the above
condition, then we discard it. Now, given a set I of s intervals sorted by the beginning
positions of the intervals, we first check if I is a cover of w and if each interval is of
equal length ℓ in a total of O(s) time. If I satisfies both conditions, then we can check
if I is a subset of Sℓ in O(s) time, using the bit vector Bℓ. Using a similar method
to Theorem 5, for each 1 ≤ ℓ ≤ n − 1, Sℓ and its corresponding bit vector Bℓ can
be computed in O(n) time. Hence, the overall time complexity of the algorithm is
O(n2). The working space (excluding the output) is O(n), since |Sℓ| = O(n) for any
ℓ and σ = O(n). ⊓⊔

Given a set I of s intervals, a näıve algorithm to check whether I is an Abelian
cover of length ℓ requires O(sℓ) time. Therefore, the solution of Theorem 7 with O(s)
query time is more efficient than the näıve method.

3.3 All Abelian runs

In this subsection, we consider Problem 3 of computing all Abelian runs in a given
string w of length n. We follow and extend the results by Cummings and Smyth [4]
on the maximum number of all maximal Abelian repetitions in a string, and an
algorithm to compute them. We firstly consider a lower bound on the maximum
number of Abelian runs in a string.

Lemma 8 ([4]). String (aababbaba)n of length 8n has Θ(n2) maximal Abelian rep-
etitions (in fact maximal Abelian squares).

Since the number of Abelian runs in a string is equal to that of maximal Abelian
repetitions in that string, the following theorem is immediate:

Theorem 9. The maximum number of Abelian runs in a string w of length n is
Ω(n2).

Next, we show how to compute all Abelian runs in a given string.

Theorem 10. Given a string w of length n, we can compute all Abelian runs in w
in O(n2) time and space.

Proof. We firstly compute all Abelian squares in w using the algorithm proposed by
Cummings and Smyth [4]. For each 1 ≤ i ≤ n, we compute a set Li of integers such
that

Li = {j | Pw[i−j..i] = Pw[i+1..i+j+1], 0 ≤ j ≤ min{i, n− i}}.

Note that substring w[i− ℓ..i + ℓ + 1] is an Abelian square centered at position i iff
ℓ ∈ Li. After computing all Li’s, we store them in a two dimensional array L of size
⌊n
2
⌋×n−1 such that L[ℓ, i] = 1 if ℓ ∈ Li and L[ℓ, i] = 0 otherwise. All entries of L are

initialized unmarked. Then, for each 1 ≤ ℓ ≤ n − 1, all maximal Abelian repetitions
of period ℓ can be computed by in O(n) time, as follows. We scan the ℓth row of L
from left to right for increasing i = 1, . . . , n − 1, and if we encounter an unmarked
entry (ℓ, i) such that L[ℓ, i] = 1, then we compute the largest non-negative integer
k such that L[ℓ, i + pℓ + 1] = 1 for all 1 ≤ p ≤ k in O(k) time, by skipping every
ℓ − 1 entries in between. This gives us a maximal Abelian repetitions with period ℓ
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Figure 4. The two dimensional array L for string caaabababac. The maximal Abelian repetitions
aaa of period 1 starting at position 3 is found by concatenating two Abelian squares represented
by L[1, 2] and L[1, 3]. The maximal Abelian repetition ababab of period 2 starting at position 4
is found by concatenating two Abelian squares represented by L[2, 5] and L[2, 7]. The maximal
Abelian repetition bababa of period 2 starting at position 5 is found by concatenating two Abelian
squares represented by L[2, 6] and L[2, 8]. Finally, the maximal Abelian repetition aababa of period
3 starting at position 3 is found from L[3, 5] (this is not extensible to the right). Every concatenation
procedure (represented by an arrow) starts from an unmarked entry, and once an entry is involved
in computation of a maximal Abelian repetition, it gets marked. This way the algorithm runs in
time linear in the size of L, which is O(n2).

starting at position i − ℓ + 1 and ending at position i + (k + 1)ℓ. After computing
the largest integer k, we mark the entries L[ℓ, i + pℓ + 1] for all −1 ≤ p ≤ k in
O(k) time. Since each unmarked entry of the ℓth row is marked at most once and is
accessed by a constant number of times, and since the above procedure starts only
from unmarked entries, it takes a total of O(n) time for each ℓ. Therefore, this takes
a total of O(n2) time for all 1 ≤ ℓ ≤ ⌊n

2
⌋. (See also Figure 4 for a concrete example

of the two dimensional array L and how to compute all maximal Abelian repetitions
from L).

What remains is how to compute the left and right hands of each maximal Abelian
runs. If we compute the left and right hands näıvely for all the maximal Abelian
repetitions, then it takes a total of O(n3) time due to Theorem 9. To compute the
left and right hands in a total of O(n2) time, we use the following property on Abelian
repetitions: For each 1 ≤ i ≤ n, let Pi be the set of positive integers such that for
each ℓ ∈ Pi there exists a maximal Abelian repetition whose period is ℓ and beginning
position is i − ℓ + 1. For any 1 ≤ j ≤ |Pi|, let ℓj denote the jth smallest element of
Pi. We process ℓj in increasing order of j = 1, . . . , |Pi|. Let hj denote the left hand of
the Abelian run that is computed from the maximal Abelian repetition whose period
is ℓj and beginning position is i − ℓj + 1. For any 1 ≤ j < |Pi|, assume that we
have computed the length of the left hand hj−1 of the maximal Abelian repetition
beginning at position i− ℓj−1+1. We are now computing the left hand hj of the next
Abelian run. There are two cases to consider:

1. If j = 1 or ℓj−1 + hj−1 ≤ ℓj, then we compute the left hand hj of the maximal
Abelian repetition beginning at position i − ℓj + 1, by comparing the Parikh
vector Pw[i−ℓj−k..i−ℓj ] for increasing k from 0 up to hj + 1, with the Parikh vector
Pw[i−ℓj+1..i]. This takes O(hj) time. (See also Figure 5).

2. If ℓj−1 + hj−1 > ℓj, then

Pw[i−ℓj−1−hj−1+1..i−ℓj ] ≺ Pw[i−ℓj−1−hj−1+1..i−ℓj−1] ≺ Pw[i−ℓj−1+1..i] ≺ Pw[i−ℓj+1..i].

This implies that hj ≥ ℓj−1 + hj−1 − ℓj. We can compute Pw[i−ℓj−1−hj ..i−ℓj ] from
Pw[i−ℓj−1−hj−1+1..i−ℓj−1] in O(ℓj − ℓj−1) time. Then, we compute the left hand hj
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i

lj-1hj-1

hj lj

w

Figure 5. Illustration for Case 1 where j = 1 or ℓj−1 + hj−1 ≤ ℓj of Theorem 10. We can compute
the left hand hj in O(hj) time by extending the substring to the left from position i− ℓj .

i

ljhj

hj-1 lj-1

w

Figure 6. Illustration for Case 2 where ℓj−1 + hj−1 > ℓj of Theorem 10. In this case, we know
that hj is at least ℓj−1 + hj−1 − ℓj . The Parikh vector of w[i − ℓj−1 − hj ..i − ℓj ] can be computed
in O(ℓj − ℓj−1) time by a scan of substring w[i − ℓj + 1..i − ℓj−1] (dashed arrow). Then, we can
compute the left hand hj in a total of O(hj + ℓj − hj−1 − ℓj−1) time by extending the substring to
the left from position i− ℓj−1 − hj−1 (solid arrow).

by comparing the Parikh vector Pw[i−ℓj−1−hj−1+1−k..i−ℓj ] for increasing k from 0 up
to hj + ℓj − hj−1 − ℓj−1 + 1. This takes O(hj + ℓj − hj−1 − ℓj−1) time. (See also
Figure 6).

Let J1
i and J2

i be the disjoint subsets of [1, |Pi|] such that j ∈ J1
i if ℓj ∈ Pi corresponds

to Case 1, and j ∈ J2
i if ℓj ∈ Pi corresponds to Case 2. Then, the summations∑

j∈J1

i
(hj),

∑
j∈J2

i
(ℓj − ℓj−1), and

∑
j∈J2

i
(hj + ℓj − ℓj−1 − hj−1) corresponding to the

time costs for Cases 1 and 2 are all bounded by O(n). Therefore, it takes a total of
O(n) time to compute the left hands of all Abelian runs that correspond to Pi, and
the right hands can be computed similarly. Hence, it takes a total of O(n2) time to
compute all Abelian runs in w. The working space of the algorithm is dominated by
the two dimensional array L, which takes O(n2) space. ⊓⊔

4 Conclusions and future work

Abelian regularities on strings were initiated by Erdös [6] in the early 60’s, and since
then they have been extensively studied in Stringology. In this paper, we introduced
new regularities on strings with respect to Abelian equivalence on strings, which we
call Abelian covers and Abelian runs. Firstly, we showed an optimal O(n)-time O(σ)-
space algorithm to determine whether or not a given string w of length n over an
alphabet of size σ has an Abelian cover. As a consequence of this, we can compute
the longest Abelian cover of w in O(n)-time. Secondly, we showed an O(n2)-time
algorithm to compute an O(n2)-space representation of all (possibly exponentially
many) Abelian covers of a string of length n. Thirdly, we presented an O(n2)-time
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algorithm to compute all Abelian runs in a string of length n. We also remarked that
the maximum number of Abelian runs in a string of length n is Ω(n2).

Our future work includes the following:

– The algorithm of Theorem 7 allows us to compute a shortest Abelian cover of a
given string of length n in O(n2) time. Can we compute a shortest Abelian cover
in o(n2) time?

– The algorithm of Theorem 10 requires Θ(n2) time to compute all Abelian runs of
a given string w of length n. This is due to the two dimensional array L of Θ(n2)
space. Can we compute all Abelian runs in w in optimal O(n + r) time, where r
is the number of Abelian runs in w?
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