
Fast Regular Expression Matching

Based On Dual Glushkov NFA

Ryutaro Kurai1,2, Norihito Yasuda1, Hiroki Arimura2, Shinobu Nagayama3, and
Shin-ichi Minato1,2

1 JST ERATO MINATO Discrete Structure Manipulation System Project
060-0814 Sapporo, Japan

{kurai, yasuda, minato}@erato.ist.hokudai.ac.jp
2 Graduate School of Information Science and Technology

Hokkaido University, 060-0814 Sapporo, Japan
arim@ist.hokudai.ac.jp

3 Department of Computer and Network Engineering
Hiroshima City University, 731-3194 Hiroshima, Japan

s naga@hiroshima-cu.ac.jp

Abstract. This paper presents a new regular expression matching method by using
Dual Glushkov NFA. Dual Glushkov NFA is the variant of Glushkov NFA, and it has
the strong property that all the outgoing transitions to a state of it have the same
labels. We propose the new matching method Look Ahead Matching that suited to
Dual Glushkov NFA structure. This method executes NFA simulation with reading
two input symbols at the one time. We use information of next symbol to narrow down
the active states on NFA simulation. It costs additional working memory to apply Look
Ahead Matching to ordinal Thompson NFA. However, we can use this method with no
additional memory space if use it with Dual Glushkov NFA. Experiments also indicate
that the combination of Dual Glushkov NFA with Look Ahead Matching outperforms
the other methods on NFAs converted from practical regular expressions.

Keywords: regular expression matching, non-deterministic finite automata, ε-transition
removal, Thompson NFA, Glushkov NFA

1 Introduction

1.1 Background

Regular expression matching is one of the fundamental research topics in computer
science [13], since it plays such important role in emerging applications in large-scale
information processing fields, such as: Network Intrusion Detection System (NIDS),
Bioinformatics search engines, linguistic vocabulary, and pattern matching in cloud
computing [10,12,15].

1.2 Problems with previous approaches

For regular expression matching, there are three well-known approaches: backtracking ,
DFA, and NFA. Among them, backtracking is the most widely used in practical
applications. However, this approach is so slow if it manipulates some difficult patterns
and texts, like a?nan as pattern and an as text, which triggers many backtracking on
the input text [4]. The deterministic finite automaton (DFA) approach is extremely
fast if the input regular expression can be compiled into a DFA of small size, but it
is not practical if a given regular expression causes the exponential explosion of the
number of states.

Ryutaro Kurai, Norihito Yasuda, Hiroki Arimura, Shinobu Nagayama, Shin-ichi Minato: Fast Regular Expression Matching Based On Dual Glushkov NFA,

pp. 3–16.

Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

4 Proceedings of the Prague Stringology Conference 2014

The Nondeterministic Finite Automaton (NFA) approach can avoid such explo-
sion in the number of states, and is shown to be faster than the naive backtrack
approach for the case that the backtracking approach suffer from many near-misses.
Unfortunately, NFA approach is not so fast in practice. One of the major reasons is
the cost of maintaining a set of active states; every time next input symbol comes,
NFA has to update the all the active states to the next states or to just discard them.
If the number of active states becomes large, the updating cost will also increase.

We can further classify the NFA into three types; Thompson NFA, Glushkov
NFA and Dual Glushkov NFA. The most popular one is Thompson NFA, which is
easy to construct, and its number of transitions and states are constant multiple
of associated regular expression’s length. Thompson NFA includes many of epsilon
transitions. Those transitions make many of active states when we simulate such
NFA.

Glushkov NFA is the other popular NFA. It has strong property that it has no
epsilon transition and its all the incoming transitions to a state of Glushkov NFA
have the same labels. Dual Glushkov NFA is a variant of Glushkov NFA, but has a
special feature that is worth our attention. In an opposed manner of the Glushkov
NFA, all the outgoing transitions from a state of Dual Glushkov NFA have the same
labels.

1.3 Speed-up methods

We can simulate Glushkov NFA faster than Thompson NFA because of its property
that it has no epsilon transition. The property causes less active states. Nevertheless,
we have to manipulate amount of active state, and it slows down matching speed, if
we treat complex regular expression. To cope with this problem, we propose a new
method Look Ahead Matching.

That is the new matching method that reads two symbols of the input text at one
time. We call the first of the two symbols the “current symbol”, and second one the
“next symbol”. Ordinary matching methods read only current symbol, and calculate
NFA active states from current active states and the symbol. Our method uses the
next symbol to narrow down the active state size. We set states active only if the states
have incoming transition labeled by first symbol and outgoing transition labeled by
second symbol. However, fast matching by two input symbols creates large memory
demands if we use the Glushkov NFA. To treat this problem, we employ a Dual
Glushkov NFA. The structure of Dual Glushkov NFA is similar to that of Glushkov
NFA, but is better suited to building an index of transitions for look ahead matching.
We have to make transitions table for combination of two symbols to enable this new
matching method. We can generate such table without additional space if we use
the above Dual Glushkov NFA’s property. Therefore, we propose the new look ahead
matching method by using Dual Glushkov NFA.

1.4 Main Results

In this paper we propose a new matching method created by combining Dual Glushkov
NFA and look ahead matching. Then we compare our proposal against other methods
such as original Thompson NFA, Glushkov NFA, and a combination of Glushkov
NFA and look ahead matching. For reference, we also compare our method with NR-
grep [11]. In most cases our method is faster than Thompson NFA or Glushkov NFA.

Ryutaro Kurai et al.: Fast Regular Expression Matching Based On Dual Glushkov NFA 5

Our method is only slightly slower than the combination of Glushkov NFA and look
ahead matching, but it uses far less memory.

1.5 Related Works

Many regular expression matching engines use the backtracking approach. They tra-
verse the syntax tree of a regular expression, and backtrack if they fail to find a
match. Backtracking has a small memory footprint and high throughput for small
and simple regular expressions. However, in worst case, it takes exponential time in
the size of the regular expression [4].

Another approach, compiling regular expression has been used from the 1970s [1].
Such an algorithm converts a regular expression into an NFA, which is then converted
into a DFA. This intermediate NFA (called Thompson NFA) has linear size memory
in the length of the input regular expression. However, the final subset-constructed
DFA takes exponential space in the size of the NFA and overflows the main memory
of even recent computers.

In recent years, NFA evaluation for regular expression matching has been at-
tracting much attention. Calculations performed on GPU, FPGA, or some special
hardware cannot use abundant memory, but their calculation speed is much faster
and concurrency is larger than typical computers. Therefore, using just the basic
approach is adopted in some fields [3,7]. Cox proposed the NFA based regular expres-
sion library RE2 [14]. For fast evaluation, it caches a DFA generated from an NFA
on the fly. RE2 seems to be the NFA based library that is being used widely; it has
guaranteed computation time due to the NFA-oriented execution model.

Berry and Sethi indeed popularized Glushkov NFA [2]. Watson has finely re-
searched Glushkov NFA and its application. He also showed the relationship between
Thompson NFA and Glushkov NFA [16–18].

1.6 Organization

Sec. 2 briefly introduces regular expression matching, non-deterministic automata,
and their evaluation. Sec. 3 presents our methods including preprocessing and runtime
methods. Sec. 4 shows the results of computer experiments on NFA evaluation. Sec. 5
concludes this paper.

2 Preliminaries

2.1 Regular Expression

In this study, we consider regular expressions as follows. This definition is from [9].
Let Σ be an alphabet. The regular expressions over Σ and the sets that they

denote are defined recursively as follows.

1. ∅ is a regular expression and denotes the empty set.
2. ε is a regular expression and denotes the set ε.
3. For each symbol a in Σ is a regular expression and denotes the set a.
4. If r and s are regular expressions denoting the languages L(r) and L(s), re-

spectively then (r|s), (rs), and (r∗) are regular expressions that denote the sets
L(r) ∪ L(s), L(r)L(s) and L(r)∗, respectively.

6 Proceedings of the Prague Stringology Conference 2014

0

1

2

3
A

4
G

5
T

6
A

7

8

9

10

11
A

12
T

13
G

14
A

1615
A

Figure 1. T-NFA for R = (AT |GA)((AG|TAA)∗)

2.2 Thompson NFA

The NFA constructed by Thompson’s algorithm for regular expression R is called the
Thompson NFA (or T-NFA, for short). It precisely handles the language statement
Σ∗L(R), which represents the substring match of R against a substring of a text.

Formally, T-NFA for R is a 5-tuple NR = (V,Σ,E, I, F), where V is a set of
states , Σ is an alphabet of symbols, E ⊆ V × Σ ∪ {ε} × V is a set of symbol- and
ε-transitions, called the transition relation, I and F ⊆ V are the sets of initial and
final states respectively. Each transition e in E is called a symbol-transition if its label
is a symbol c in Σ, and an ε-transition if the label is ε. Each transition is described
as (s, char, t) ∈ E, in this expression, s and t mean source state and target state.
char is a label of the transition.

The T-NFA NR for R has nested structure associated with the syntax tree for R.
Let the length of associated regular expression be m. This length means the num-

ber of all symbols that appeared in the associated regular expression. The number
includes the special symbols like “*”, “(“, or “+”. For instance, the length of a regular
expression “abb*” is 4.

It has at most 2m states, and every state has in-degree and out-degree of two
or less. Specifically, state s in V can have at most one symbol-transition or two ε-
transitions from s. We show an example of T-NFA when R = (AT |GA)((AG|TAA)∗)
in Fig. 1.

2.3 Glushkov NFA

Another popular method of constructing an NFA from a regular expression is
Glushkov’s algorithm [2]. We call the automaton constructed by this method Glushkov
NFA (also known as Position Automata); abbreviated here to G-NFA. However, G-
NFA can also be converted from T-NFA by using the algorithm in Fig. 4 (Watson
showed in [18]). This algorithm removes the ε-transitions from T-NFA. For instance,
we show the new transitions that skip ε-transition by the bold transitions in Fig. 2
and the fully converted G-NFA from T-NFA in Fig. 3. Both examples show NFAs
that precisely handle R = (AT |GA)((AG|TAA)∗).

2.4 G-NFA Properties

G-NFA has some very interesting properties.

– It has no ε-transitions. We call this property ε-free.
– For any state, the state’s incoming transitions are labeled by the same symbol.
– It has only one initial state.
– It has one or more final states.

Ryutaro Kurai et al.: Fast Regular Expression Matching Based On Dual Glushkov NFA 7

0

1

2

3
A

4
G

5
T

6
A

7

8

9

10

11
A

12
T

13
G

14
A

1615
A

A

G

A

A

T

T
T

A
A

T

Figure 2. T-NFA and skip transitions of ε-transitions

0

3

4

5
T

6
A

11

12

13
G

14
A

15
A

A

G

A

A

T

T
T

A
A

T

Figure 3. G-NFA for R = (AT |GA)((AG|TAA)∗)

– Its number of states is m̃+1. m̃ is the length of the associated regular expression,
but the number excludes the special symbols like “∗”, “(”, or “+”.

– The number of transitions is m̃2 at worst.

2.5 Dual Glushkov NFA

As a variation of G-NFA, Dual Glushkov NFA is known [16]. We call it Dual G-NFA
for short. The algorithm that converts T-NFA into Dual G-NFA (Fig. 5) is similar to
the algorithm that converts T-NFA into G-NFA (fig. 4). The base algorithm of Fig. 5
was also shown by Watson [18].

When we convert T-NFA into G-NFA, we generate a skip transition as follows.
First, we search the path that started by epsilon-path and ended only one symbol-
transition. Then we create skip transition from the start state to the end state for
each such path. The label of new skip transition is taken from the last transition of
the path.

When we convert T-NFA into Dual G-NFA, we generate a skip transition as
follows. First, we search the path that started only one symbol-transition and ended
epsilon-path. Then we create skip transition from the start state to the end state for
each such path. The label of new skip transition is taken from the first transition of
the path.

In addition, an original T-NFA has same number of outgoing and incoming tran-
sitions for all section of T-NFA. In fact, Conjunction, Concatenation, and Kleene

8 Proceedings of the Prague Stringology Conference 2014

procedure BuildG-NFA(N = (V,Σ,E, I, F))
V ′ ← ∅, E′ ← ∅, F ′ ← F

GlushkovState← V \
⋃

s′,∃s∈V,(s,ε,s′)∈E

s′

for all s ∈ GlushkovState do

for s′ ∈ Eclose(s) do
if s′ ∈ F then

F ′ ← F ′ ∪ {s′}
end if

for (s′, char, t) ∈ E do

if char 6= ε then

E′ ← E′ ∪ {(s, char, t)}
end if

end for

end for

end for

return (V ′, Σ,E′, I, F ′)
end procedure

procedure Eclose(s ∈ E)
Closure← {s}
for (s, char, t) ∈ E do

if char = ε then

Closure← Closure ∪ Eclose(t)
end if

end for

return Closure

end procedure

Figure 4. Algorithm Converting T-NFA to G-NFA

procedure BuildDualG-NFA(N = (V,Σ,E, I, F))
V ′ ← ∅, E′ ← ∅, I ′ ← ∅

DualGlushkovState← V \
⋃

s′,∃s∈V,(s′,ε,s)∈E

{s′}

for s ∈ Eclose(I) do
if s ∈ DualGlushkovState then

I ′ ← I ′ ∪ {s}
end if

end for

for all s ∈ DualGlushkovState do

for (s, char, t) ∈ E do

for t′ ∈ Eclose(t) do
if t 6= t′ and char 6= ε and t′ ∈ DualGlushkovState then

E′ ← E′ ∪ {(s, char, t′)}
end if

end for

E′ ← E′ ∪ {(s, char, t)}
end for

end for

return (V ′, Σ,E′, I, F ′)
end procedure

Figure 5. Algorithm Converting T-NFA to Dual G-NFA

Ryutaro Kurai et al.: Fast Regular Expression Matching Based On Dual Glushkov NFA 9

0

1

2

3
A

4
G

5
T

6
A

7

8

9

10

11
A

12
T

13
G

14
A

1615
A

 G

G

G

T

T

T

A

A

A

A

A

A

Figure 6. T-NFA to Dual G-NFA

1

2

3
A

4
G

7

9

10

11
A

12
T

14
A

G

G

G

T

T

T

A

A

A

A

A

A

Figure 7. Dual G-NFA for R = (AT |GA)((AG|TAA)∗)

Closure section of T-NFA have same in-degree and out-degree. Because of this T-
NFA’s property, we can consider that above “Dual G-NFA” is dual of “G-NFA”.

For instance, we show the new transitions that skip ε-transition by bold transitions
in Fig. 6, and the fully converted Dual G-NFA from T-NFA in Fig. 7. Both examples
show NFAs that precisely handle R = (AT |GA)((AG|TAA)∗).

2.6 Dual G-NFA Properties

Dual G-NFA has properties similar to those of G-NFA.

– It is ε-free.

– For any state, the state’s outgoing transitions are labeled by the same symbol.

– It has only one final state.

– It has one or more initial states.

– Its number of states is m̃+ 1.

– The number of transitions is m̃2 at worst.

There is a duality between G-NFA and Dual G-NFA in the sense of the properties of
initial states, final states, and labels of transitions.

10 Proceedings of the Prague Stringology Conference 2014

procedure G-NFACountMatching(N = (V,Σ,E, I, F), T = t1t2t3...tn)
CurrentActive← ∅
NextActive← ∅
MatchCount← 0
Index← BuildIndex(E)
for pos ∈ 1, . . . , n do

CurrentActive← CurrentActive ∪ I

for s ∈ CurrentActive do

NextActive← NextActive ∪ Index[tpos][s]
end for

if NextActive ∩ F 6= ∅ then
MatchCount←MatchCount+ 1

end if

CurrentActive← NextActive

NextActive← ∅
end for

return MatchCount

end procedure

procedure BuildIndex(V,Σ,E)
for s ∈ V do

for char ∈ Σ do

Index[char][s] = ∅
end for

end for

for (s, char, t) ∈ E do

Index[char][s] = Index[char][s] ∪ {t}
end for

return Index
end procedure

Figure 8. Regular Expression Matching Using NFA

2.7 Regular Expression Matching Method

For both G-NFA and Dual G-NFA, ε-free NFAs have the same simulation algorithm
like that of Fig. 8. The basic idea of this algorithm was also shown by Watson [17].

This algorithm reads input symbol ti one by one, then searches for a state that has
outgoing transition labeled ti from current active state set (CurrentActive in Fig. 8).
For fast search we use the index created by BuildIndex . If such states are found, we
add a transitive state to next state set (NextActive in Fig. 8). At the end of a step,
we check if the NextActive includes a final state. If a final state is found, we recognize
that the input symbols match a given regular expression.

3 Our Method

3.1 Look ahead matching

The above NFA simulation method reads input symbols one by one, and calculates
state transitions. However, it is quite easy to read a next input symbol. We consider
how to more effectively calculate state transitions. Let the current input symbol be ti,
next input symbol ti+1. When we know ti+1, we want to treat the states that satisfy
the next formula as active states.

LookAheadActive(s, ti, ti+1) = {s
′ : (s, ti, s

′) ∈ E, (s′, ti+1, s
′′) ∈ E}

Ryutaro Kurai et al.: Fast Regular Expression Matching Based On Dual Glushkov NFA 11

And we formally define normal active states as follows.

Active(s, ti) = {s
′ : (s, ti, s

′) ∈ E}

For any LookAheadActive(s, ti, ti+1), the size of LookAheadActive(s, ti, ti+1) is
equal or less than the size of Active(s, ti). Because of this difference in size of active
states, we consider that look ahead matching can calculate transitions faster than
normal matching. We formally show this algorithm in Fig. 9. This look ahead mathing
idea have been used in some studies [5, 6].

The problem of this matching method is the large size of the state transition table
associated with ti and ti+1. The state transition table has duplicate transitions and
costs O(|E|2) space to build from G-NFA.

For example, we show the transition table of Fig. 1 as Table 1. This table has 19
records, more than the number of original G-NFA’s transitions. The difference is due
to the duplication of transitions.

id ti ti+1 source state target state
1 T A 3 5
2 T A 5 12
3 T A 6 12
4 T A 13 12
5 T A 15 12
6 T T 3 5
7 A A 4 6
8 A A 12 14
9 A A 14 15
10 A T 4 6
11 A T 14 15
12 A T 0 3
13 G A 11 13
14 G A 0 4
15 G T 11 13
16 A G 5 11
17 A G 6 11
18 A G 13 11
19 A G 15 11

Table 1. Look Ahead Transition Table for G-NFA
and Dual G-NFA

id ti ti+1 source state target state
1 A T 1 3
2 A T 4 10
3 A T 14 10
4 G A 2 4
5 G A 11 9
6 A G 9 11
7 T A 10 12
8 T A 3 9
9 A A 12 14
10 A A 4 9
11 A A 14 9
12 T * 3 7
13 T T 3 10
14 A * 4 7
15 A * 14 7
16 G * 11 7
17 G T 11 10

Table 2. Look Ahead Transition Table for Dual
G-NFA

3.2 Dual G-NFA Look Ahead Transition Function

As shown in the above section, Dual G-NFA has the very desirable property that all
outgoing transition of a state have the same label. Because of this property, when the
source state and ti are given, the pairs of ti+1 and the target state are determined
uniquely. Therefore, the transition tables size is O(|E|). This is effectively smaller
than G-NFA’s size of O(|E|2).

For instance, we show the transition table of Fig. 7 in Table 2. This table has 17
records, equaling the number of original Dual G-NFA’s transitions. A final state of
Dual G-NFA has no outgoing transition, so we show the “∗” on ti+1 column for the
transitions that go to final state.

12 Proceedings of the Prague Stringology Conference 2014

procedure DualG-NFACountLookAheadMatching(N = (V,Σ,E, I, F), T = t1t2t3...tn)
CurrentActive← ∅
NextActive← ∅
MatchCount← 0
(Index, F inalIndex)← BuildLookAheadIndex(E)
for pos ∈ 1, . . . , n− 1 do

CurrentActive← CurrentActive ∪ I

for s ∈ CurrentActive do

for (t ∈ Index[tpos][tpos+1][s]) do
NextActive← NextActive ∪ {t}

end for

end for

for s ∈ CurrentActive do

for (t ∈ FinalIndex[tpos+1][s]) do
NextActive← NextActive ∪ {t}

end for

end for

if NextActive ∩ F 6= ∅ then
MatchCount←MatchCount+ 1

end if

CurrentActive← NextActive

NextActive← ∅
end for

return MatchCount

end procedure

procedure BuildLookAheadIndex(V,Σ,E, F)
for s ∈ V do

for char1 ∈ Σ do

for char2 ∈ Σ do

Index[char1][char2][s] = ∅
end for

FinalIndex[char1][s] = ∅
end for

end for

for (s, char1, t) ∈ E do

for (t, char2, t
′) ∈ E do

Index[char1][char2][s] = Index[char1][char2][s] ∪ {t}
end for

if t ∩ F 6= ∅ then
FinalIndex[char1][s] = FinalIndex[char1][s] ∪ {t}

end if

end for

return (Index, FinalIndex)
end procedure

Figure 9. Look Ahead Regular Expression Matching Using Dual G-NFA

Ryutaro Kurai et al.: Fast Regular Expression Matching Based On Dual Glushkov NFA 13

4 Experiments and Results

To confirm the efficiency of Dual G-NFA with Look Ahead matching (for short,
Dual G-NFA with LA), we conducted three experiments. All experiments use “En-
glish.100MB” text in Pizza&Chili Corpus [8] as the input texts, and we compared our
method with G-NFA, and G-NFA with Look ahead matching (for short G-NFA with
LA). For reference, the results of a simple T-NFA implementation by Russ Cox [4],
and NR-grep, a bit parallel implementation of G-NFA by Gonzalo Navarro are shown.
All experiments were executed 10 times and the average time is shown.

The first experiment examines fixed string patterns. In this experiment, pat-
terns were generated as follows. n fixed strings were randomly chosen from a fixed
strings dictionary and then patterns were joined by conjunction symbol “|”. We used
/usr/share/dict/words file on Mac OS X 10.9.2 as the fixed strings dictionary.
None of patterns included special symbols of regular expressions like “∗”, “?”, or
“+”. Thus, the Aho-Corasick algorithm is clearly the most suited method for this
problem. However, to measure trends of our methods, we make this experiment.

Table 3 shows the time (in seconds) needed to convert regular expression to NFAs.
From Table 3, the converting time is so shorter than matching time. T-NFA (by Cox)
was so fast to measure the converting time accurately (It was under micro seconds).

n G-NFA Dual G-NFA
20 immeasurable immeasurable
40 0.01 0.01
60 0.01 0.01
80 0.02 0.02
100 0.02 0.02
120 0.03 0.03
140 0.04 0.04
160 0.05 0.05
180 0.06 0.06
200 0.07 0.07

Table 3. Needed time converting regular expression to NFAs in seconds

Fig. 10 shows the time (in seconds) needed to match with the whole text of
“English.100MB”. From Fig. 10, the time taken linearly increases with the number of
patterns with T-NFA, G-NFA or Dual G-NFA. In contrast, G-NFA with LA or Dual
G-NFA with LA, which uses look ahead matching method took almost constant time
regardless of n. We assume this is because look ahead matching kept the active state
size small.

NR-grep could not treat large regular expressions, so we only measured patterns
for n = 20, 40, and 60;

Fig. 11 shows the average active state size, total number of active states divided
by the number of all input symbols. As the graph shows, there is strong correlation
between the average active state size and matching time.

In the second experiment, we generated patterns as follows. We inserted special
symbols of regular expressions such as “∗”,“?”, or “+” into the patterns used in
the first experiment. Insert positions were randomly selected excluding the first and
last pattern positions. We then joined these generated regular expression patterns
by conjunction. In this case, the Aho-Corasick algorithm is clearly the most suited

14 Proceedings of the Prague Stringology Conference 2014

 0

 100

 200

 300

 400

 500

 600

 20 40 60 80 100 120 140 160 180 200

tim
e

(s
ec

)

#pattern

TNFA
nrgrep
GNFA

GNFA-Look-Ahead
D-GNFA

D-GNFA-Look-Ahead

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140 160 180 200

tim
e

(s
ec

)

#pattern

TNFA
nrgrep
GNFA

GNFA-Look-Ahead
D-GNFA

D-GNFA-Look-Ahead

Figure 10. Needed time (sec) to matching whole text of “English.100MB” for 1st experiment.
Right part is the part of left part.(Right pert is scaled-up)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 n
um

be
r

of
 a

ct
iv

e
st

at
es

#pattern

GNFA
GNFA-Look-Ahead

D-GNFA
D-GNFA-Look-Ahead

Figure 11. Average number of active states for 1st experiment.

 0

 100

 200

 300

 400

 500

 600

 20 40 60 80 100 120 140 160 180 200

tim
e

(s
ec

)

#pattern

TNFA
nrgrep
GNFA

GNFA-Look-Ahead
D-GNFA

D-GNFA-Look-Ahead

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140 160 180 200

tim
e

(s
ec

)

#pattern

TNFA
nrgrep
GNFA

GNFA-Look-Ahead
D-GNFA

D-GNFA-Look-Ahead

Figure 12. Needed time (sec) to matching whole text of “English.100MB” for 2nd experiment.
Right part is the part of left part.(Right pert is scaled-up)

method since the pattern is a set of fixed string. However, we can see the basic speed
of pattern matching by treating the pattern as a regular expression.

Fig. 12 shows the results. The trends resemble those of first experiment. G-NFA-
Look-Ahead or Dual G-NFA-Look-Ahead was superior in terms of calculation time.

In the third experiment, we challenged our method with some actual regular
expression patterns in Table 4. First pattern “suffix” matches to words that have some
specific suffixes. There were 35 suffixes. Second pattern “prefix” matches to words that
have some specific prefixes. There were 32 prefixes. Third pattern “name” matches

Ryutaro Kurai et al.: Fast Regular Expression Matching Based On Dual Glushkov NFA 15

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 20 40 60 80 100 120 140 160 180 200
A

ve
ra

ge
 n

um
be

r
of

 a
ct

iv
e

st
at

es

#pattern

GNFA
GNFA-Look-Ahead

D-GNFA
D-GNFA-Look-Ahead

Figure 13. Average number of active states for 2nd experiment.

to some people’s names. The names were combination of ten common given names
and ten common surnames. Fourth pattern “user” matches to popular expression
of user and computer name. Fifth pattern “title” matches strings that composed of
capitalized words like a chapter title in books. These patterns include symbol classes
like “[a-zA-Z]”.

name pattern sample
suffix [a-zA-Z]+(able|ible|al|...|ise)

prefix (in|il|im|infra|...|under)[a-zA-Z]+

names (Jackson|Aiden|...|Jack) (Smith|Johnson|...|Rodriguez|Wilson)

user [a-zA-Z]+@[a-zA-Z]+

title ([A-Z]+)+

Table 4. Regular expression patterns used in third experiment.

As shown in Table 5, Dual G-NFA with LA is the fastest in some cases, once again
to the reduction in active state size. Look ahead methods never match slower than T-
NFA, G-NFA and Dual G-NFA. If that input consists of only small regular expression
like pattern “name”, “user” or “title”, NR-grep is the fastest. For such patterns, bit
parallel method implemented in NR-grep can manipulate G-NFAs effectively.

pattern T-NFA (by Cox) ngrep G-NFA G-NFA with LA Dual G-NFA Dual G-NFA with LA
suffix 113.48 20.24 9.74 7.51 106.64 3.35
prefix 14.33 5.295 2.74 3.97 78.39 3.82
names 12.95 0.216 2.97 2.74 3.21 2.76
user 78.14 0.08 12.11 7.41 185.22 3.36
title 38.88 0.186 2.93 2.38 2.68 2.21

Table 5. Needed time (sec) to matching with whole text of “English.100MB”

5 Conclusion

We proposed the new regular expression matching method that based on Dual G-
NFA and Look Ahead Matching. We have shown that Dual G-NFA can construct
a look ahead matching index without additional space. Simulations have shown the
effectiveness of look ahead matching in accelerating NFA. From the experimental

16 Proceedings of the Prague Stringology Conference 2014

pattern G-NFA G-NFA with LA Dual G-NFA Dual G-NFA with LA
suffix 2.33 1.65 50.44 1.15
prefix 1.50 1.15 8.11 0.33
names 1.01 1.00 0.01 0.001
user 1.77 1.59 40.67 0.59
title 1.03 1.01 0.75 0.01

Table 6. Average number of active states

results, our method can be useful for regular expression matching in practical usage.
G-NFAs are used in some bit parallel methods, so we now plan to apply bit parallel
techniques to Dual G-NFA methods.

References

1. A. V. Aho and J. E. Hopcroft: The Design and Analysis of Computer Algorithms, Addison-
Wesley, 1st ed., 1974.

2. G. Berry and R. Sethi: From regular expressions to deterministic automata. Theoretical
computer science, 48 1986, pp. 117–126.

3. N. Cascarano, P. Rolando, F. Risso, and R. Sisto: iNFAnt: NFA pattern matching on
GPGPU devices. ACM SIGCOMM Computer Comm. Review, 40(5) 2010, pp. 20–26.

4. R. Cox: Regular Expression Matching Can Be Simple And Fast (but is slow in Java, Perl,
PHP, Python, Ruby, ...). http://swtch.com/~rsc/regexp/regexp1.html, January 2007.

5. N. de Beijer: Stretching and jamming of automata. Masters thesis, Faculty of Computing
Science, Eindhoven University of Technology, The Netherlands, 2004.

6. N. de Beijer, L. G. Cleophas, D. G. Kourie, and B. W. Watson: Improving auto-
mata efficiency by stretching and jamming, in Proceedings of the Fifteenth Prague Stringologic
Conference, September 2010, pp. 9–24.

7. P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes: An efficient
and scalable semiconductor architecture for parallel automata processing. IEEE Transactions on
Parallel and Distributed Systems, 2013.

8. P. Ferragina and G. Navarro: The Pizza & Chili Corpus.
http://pizzachili.dcc.uchile.cl/ .

9. J. E. HOPCROFT, R. MOTWANI, and J. D. ULLMAN: Introduction to Automata The-
ory, Languages, and Computation, Third Edition, Addison Wesley, 2006.

10. Y. Kaneta, S. Yoshizawa, S. Minato, H. Arimura, and Y. Miyanaga: Dynamic recon-
figurable bit-parallel architecture for large-scale regular expression matching, in Proc. FPT’10,
Dec 2010, pp. 21–28.

11. G. Navarro: Nr-grep: a fast and flexible pattern-matching tool. Software: Practice and Expe-
rience, 31(13) 2001, pp. 1265–1312.

12. G. Navarro and M. Raffinot: Flexible pattern matching in strings — practical on-line
search algorithms for texts and biological sequences., Cambridge, 2002.

13. D. Perrin: Finite automata, in Handbook of Theor. Comput. Sci, Vol.B, Chap. 1, J. van
Leeuwen, ed., 1990, pp. 1–57.

14. RE2 an efficient, principled regular expression library: https://code.google.com/p/re2/.
15. Y. Wakaba, M. Inagi, S. Wakabayashi, and S. Nagayama: An efficient hardware matching

engine for regular expression with nested kleene operators, in Proc. FPL’11, 2011, pp. 157–161.
16. B. W. Watson: A taxonomy of finite automata construction algorithms, tech. rep., Faculty of

Computing Science, Eindhoven University of Technology, The Netherlands, 1993.
17. B. W. Watson: The design of the FIRE engine: A C++ toolkit for FInite automata and Regular

Expressions, tech. rep., Faculty of Computing Science, Eindhoven University of Technology, The
Netherlands, 1994.

18. B. W. Watson: Taxonomies and Toolkits of Regular Language Algorithms, PhD thesis, Faculty
of Computing Science, Eindhoven University of Technology, The Netherlands, September 1995.

