
Compact Complete Inverted Files

for Texts and Directed Acyclic Graphs

Based on Sequence Binary Decision Diagrams

Shuhei Denzumi1, Koji Tsuda2,3, Hiroki Arimura1, and Shin-ichi Minato1,3

1 Graduate School of IST, Hokkaido University, Sapporo, Japan
2 AIST Computational Biology Research Center, Tokyo, Japan

3 JST ERATO MINATO Discrete Structure Manipulation System Project, Sapporo, Japan
{denzumi, arim, minato}@ist.hokudai.ac.jp, koji.tsuda@aist.go.jp

Abstract. A complete inverted file is an abstract data type that provides functions
for text retrieval. Using it, we can retrieve frequencies and occurrences of strings for
given texts. There have been various complete inverted files for texts. However, com-
plete inverted files for graphs have not been studied. In this paper, we define complete
inverted files based on sequence binary decision diagrams (SDD) for directed acyclic
graphs (DAG). Directed acyclic graphs are given as sequence binary decision diagrams.
We propose new complete inverted files called PosFSDD and PosFSDDdag for a text
and a DAG, respectively. We also present algorithms to construct them and to retrieve
occurrence information from them. Computational experiments are executed to show
the efficiency of PosFSDDs.

1 Introduction

Recent emergence of massive text and sequence data has increased the importance
of string processing technologies. In particular, complete inverted files for efficient
text retrieval and analysis has attracted much attention in many applications such
as bioinformatics, natural language processing, and sequence mining. A complete in-
verted file for a text w is a data structure that stores all factors of w allowing three
functions; find, freq, and locations. In many real applications, indices that store occur-
rence information are highly required. Sequence binary decision diagrams (sequence
BDDs or SDDs, for short) are compact representation for manipulating sets of strings,
proposed by Loekito, et al. [7]. In this paper, we consider the problem of construct-
ing a complete inverted file on SDD framework. We define complete inverted files
on SDDs, named PosFSDD (See Fig. 2), and propose an algorithm to construct a
PosFSDD from an input text. We also define a complete inverted file for a directed
acyclic graph (DAG) and present an efficient construction algorithm to construct a
PosFSDDdag from an input DAG, which is given as an SDD. There is research on
construction factor automata from automata [10]. On the other hand, complete in-
verted files for graphs have not been studied. We can construct complete inverted files
for multiple texts by concatenating them on existing data structures. However, those
methods cannot deal with very large number of strings such that DAGs can represent
by sharing its subgraphs. For example, regular expressions without infinite loop and
human genomes with many replacements can be represented much more compactly
by DAGs than by explicit representations. We also show some experimental results for
real data. Our method will be useful for wide variety of pattern matching applications
and sequence mining.

Shuhei Denzumi, Koji Tsuda, Hiroki Arimura, Shin-ichi Minato: Compact Complete Inverted Files for Texts and Directed Acyclic Graphs Based on Sequence

Binary Decision Diagrams, pp. 157–167.

Proceedings of PSC 2013, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05330-0 c© Czech Technical University in Prague, Czech Republic

158 Proceedings of the Prague Stringology Conference 2013

⊥

a b c

a c

a b c

Figure 1. An SDD for
the language {ǫ, aaa,
aab, aac, ab, ac, b, bcc, c,
ccc}. Circles denote non-
terminals. Squares de-
note terminals. The 0-
terminal ⊥ and 0-edges
coming to ⊥ are omitted.

0 1

1

⊥

1

1

0

1

0
B{1}

B{2} B{3}

B{4} B{5}

1

0

B{3, 5}

1

0

0 1

B{0,1,2,3,4,5}

0

1

0

B{2, 4}a b c

cb

bc

b

c

B{0,1,2,3,4,5}

B{1}

B{2}

B{3}

B{4}

B{5}

B{2, 4}

B{3, 5}

A. The factor part B. The position part

Figure 2. An example of a complete inverted file based on SDD, Pos-
FSDD, for w = abcbc. The 0-terminal ⊥ is omitted. All 0-edges coming
to ⊥ and ⊤ are indicated by a small black dot and white dot on the
right side, respectively.

2 Preliminaries

2.1 Strings and string sets

Let Σ = {a, b, . . .} be a countable alphabet of symbols, for which the equality =Σ

and a strict total order ≺Σ, such that a ≺Σ b ≺Σ · · · , are defined on Σ. We often
omit the subscript Σ if no confusion arises. A string on Σ of length n ≥ 0 is a
sequence s = a1 · · · an of symbols, where |s| = n is called the length of s and for every
i = 1, . . . , n, s[i] = ai ∈ Σ is called the i-th symbol of s for 1 ≤ i ≤ |s|.

Let ǫ be the empty string of length zero, and Σ∗ be the set of all possibly empty
finite strings . For strings x = a1 · · · am and y = b1 · · · bn, we define the concatenation
of x and y by x ·y = xy = a1 · · · amb1 · · · bn. For any symbol α ∈ Σ, let α·L = {α}·L =
{ αx | x ∈ L }. We denote the reversed string of x by xR = x[|x|] · · · x[1]. For a string
s, if s = xyz for x, y, z ∈ Σ∗, then we call x, y, and z a prefix , a factor , and a suffix
of s, respectively. The sets of prefixes, factors, and suffixes of a string s are denoted
by Prefix (s), Factor(s), and Suffix (s), respectively. Given a set S of strings, let the
sets of prefixes, factors, and suffixes of the strings in S be denoted by PREFIX (S),
FACTOR(S), and SUFFIX (S), respectively.

For any x ∈ Factor(w), eposw(x) denotes the set of all positions in w immediately
following the occurrences of x and bposw(x) denotes the set of all positions imme-
diately preceding occurrences of x. We denote binary representation of an integer i

by binstr(i) ∈ {0 , 1}∗ where the leading 0 s are omitted. Therefore, binstr(0) = ǫ. If
0 , 1 ∈ Σ, a ≺ 0 ≺ 1 for any symbol a ∈ Σ.

2.2 Finite Automata

We presume a basic knowledge of the automata theory. For comprehensive introduc-
tion to it, see [5,11] for example. A (partial) deterministic finite automaton DFA is
represented by a quintuple A = 〈Σ,Γ, δ, q0, F 〉, where Σ is the input alphabet, Γ is
the state set , δ is the partial transition function from Γ × Σ to Γ , q0 ∈ Γ is the
initial state and F ⊆ Γ is the set of acceptance states . The partial function δ can be

Shuhei Denzumi et al.: Notes on Sequence Binary Decision Diagrams 159

regarded as a subset δ ⊆ Γ×Σ×Γ . We define the size of a DFA A, denoted by |A|,
as the number of labeled edges in A, i.e., |A| = |δ|.

The set of strings that lead the automaton A from a state q to an acceptance
state is denoted by LA(q). The language L(A) accepted by A is LA(q0). We say that
ADFAs A and A′ are equivalent if L(A) = L(A′). A minimal DFA has no state q such
that LA(q) = ∅ and no distinct states q′ and q′′ such that LA(q

′) = LA(q
′′). Since

we are concerned with finite languages, all DFAs discussed in this section are acyclic
DFAs (ADFA, for short).

2.3 Sequence binary decision diagrams

In this subsection, we briefly give a formalization of sequence BDDs, introduced by
Loekito, Bailey, and Pei [7], and related concepts for further discussion. Let dom =
{u, v, v1, v2, . . .} be a countable set, where each element is called a node, and let Σ

be a countable alphabet with which a strict total order ≺Σ is associated. A labeled
binary directed acyclic graph (labeled binary DAG) is a directed acyclic graph (DAG)
in which every node has out-degree either zero (terminal) or two (non-terminal),
where each non-terminal node has a pair of distinguished edges called the 0-edge and
the 1-edge . We call the nodes pointed to by the 0- and 1-edges the 0-child and the
1-child, respectively. We define the subgraph of S rooted at node v by the connected
subgraph of S reachable from v and denote it by S(v).

Roughly speaking, a sequence binary decision diagram [7] on Σ is a node-labeled
binary DAG that encodes an acyclic DFA on Σ in the leftmost child and right-sibling
(LCRS , for short) representation (see, e.g., [1,6]), where the 0-child and 1-child of a
non-terminal node correspond to its leftmost child and the right sibling, respectively.
Formally, sequence binary decision diagram is defined as follows.

Definition 1. Let Σ be an alphabet. A sequence binary decision diagram (a sequence
BDD, for short) is a DAG S = 〈Σ, V, τ,⊥,⊤, r〉 satisfying the following conditions:

– V = V (S) ⊆ dom is a finite set of nodes and every node has unique ID,
– r ∈ V is a distinguished node called the root of S.
– ⊥ and ⊤ ∈ V are distinguished nodes called the 0- and 1-terminal, respectively.
The nodes in VN = V \{⊥,⊤} are called non-terminals.

– τ : VN → Σ × V 2 is the function that assigns to each v ∈ VN the triple τ(v) =
〈v.lab, v.0, v.1〉, called the node triple for v. Then, the triple indicates that (i)
v.lab ∈ Σ is the label of v, (ii) v.0 ∈ V is the child, called the 0-child, that is
pointed to by a 0-edge from v, and (iii) v.1 ∈ V is the child, called the 1-child,
that is pointed to by a 1-edge from v.

– S must be acyclic in its 0- and 1-edges, that is, there exists some strict partial
order ≻V on V such that for any v ∈ VN, both of v ≻V v.0 and v ≻V v.1 hold.

– S must be 0-ordered, that is, for every non-terminal node v, if v.0 is a non-terminal
node then v.lab ≺Σ (v.0).lab must hold. This means that siblings are determinis-
tically ordered from left to right by ≺Σ on their labels when S is interpreted as an
acyclic DFA in the LCRS representation.

In the figures of this paper, the terminals/nonterminals are denoted by squares/circles,
and the 0/1-edges are denoted by dotted/solid lines.

In the above definition, S is said to be well-defined if it is both acyclic and 0-
ordered. We define the size |S| of S by the number of non-terminals in S, i.e., |S| =
|VN| = |V |−2. In the rest of this paper, we often abbreviate a sequence BDD as SDD
if no confusion arises.

160 Proceedings of the Prague Stringology Conference 2013

An important class of sequence BDDs is that of reduced sequence BDDs [7], which
is a syntactic normal form of SDDs defined as follows.

Definition 2 (reduced SDD [7]). An sequence BDD is said to be reduced if it
satisfies the following two conditions:

– Node-sharing rule: For any non-terminal nodes u, v ∈ VN, τ(u) = τ(v) implies
u = v, i.e., no distinct non-terminal nodes have the same triple.

– Zero-suppress rule: For any non-terminal nodes v ∈ VN, v.1 6= ⊥ holds, i.e., no
non-terminal node has the 0-terminal as its 1-child.

The above two rules were originally introduced by Minato [8] for ZDDs [6]. A
sequence BDD S defines its language L(S) in the following way. The language of a
sequence BDD S is the language assigned to its root r.

Definition 3 (language). To each node v ∈ V , we inductively assign a language
LS(v) w.r.t. ≻V as follows: (i) LS(⊥) = ∅; (ii) LS(⊤) = {ε}; (iii) LS(v) = LS(v.0) ∪
(v.lab) ·LS(v.1).

In Fig. 1, we show an example of SDD for the language {ǫ, aaa, aab, aac, ab, ac, b, bcc, c,
ccc}.

In sequence BDD environment, we can create a new subgraph by combining one
or more existing subgraphs in an arbitrary way. As an invariant, all subgraphs are
maintained as minimal. In the environment, We use two hash tables uniqtable and
cache, explained below. The first table uniqtable, called the unique node table, assigns
a nonterminal node v = uniqtable(c, v0, v1) to a given triple t = 〈c, v0, v1〉 of a symbol
c and a pair of nodes v0 and v1. This table is maintained such that it is a function
from all triples t ∈ Σ×V 2 to the nonterminal node v in V such that τ(v) = t. If such
a node does not exist, uniqtable returns null. We define a procedure Getnode(c, v0, v1)
that returns a node with the triple 〈c, v0, v1〉. If there is such a node in V , Getnode
returns it. Otherwise, it creates such a node and returns it. The Getnode checks the
two reduction rules by using the uniqtable to avoid creating duplicated nodes. The
second table cache, called the operation cache, is used for a user to memorize the
invocation pattern “op(v1, . . . , vk)” of a user-defined operation op and the associated
return value u = op(v1, . . . , vk), where each vi, i = 1, . . . , k is an existing node in V .

For two given SDDs P and Q, we can compute a SDD R such that R is the
language obtained from primitive set operations, union, intersection and difference, on
the languages L(P) and L(Q) by recursive algorithms [4]. In addition, concatenation
of languages can be computed by Concat in Fig. 3. Using these algorithms, we can
construct SDDs for sets of strings of exponential size such as regular expressions
without infinite repeats.

2.4 Complete Inverted File

The notion of an inverted file for a textual database is common in the literature on
information retrieval, but precise definitions of this concept vary. We use the following
definition. Given a finite alphabet Σ, and a text word w ∈ Σ∗, a complete inverted
file for (Σ,w) is an abstract data type that implements the following functions:

– (1) find: Σ∗ → Factor(w), where find(x) is the longest prefix y of x such that
x ∈ Factor(w) and y occurs in w, that is, x = yz, x, y, z ∈ Σ∗, and y is a factor
of a text w.

Shuhei Denzumi et al.: Notes on Sequence Binary Decision Diagrams 161

✬

✫

✩

✪

Global variable: uniqtable, cache: hash tables.

Proc Concat(P,Q: SBDD):
Return: R: SDD;

1: if (P = ⊥ or Q = ⊥) return ⊥;
2: else if (P = ⊤) return Q;
3: else if (Q = ⊤) return P ;
4: else if ((R← cache[“Concat(P,Q)”]) exists) return R;
5: else

6: 〈x, P0, P1〉 ← τ(P);
7: R← Getnode(P.lab,⊥,Concat(P1, Q));
8: R← Union(R,Concat(P0, Q));
9: cache[“Concat(P,Q)”]← R;
10: return R;

Figure 3. An algorithm Concat that constructs the SDD for the language L(P) ·L(Q), for
given SDDs P and Q.

– (2) freq: Factor(w)→ N, where freq(x) is the number of times x occurs as a factor
of the text w.

– (3) locations: Factor(w)→ N
∗, where locations(x) is the set of end positions within

the text in which x occurs.

In this paper, we consider the problem of constructing a complete inverted file for
a text w. The function locations(x) returns the SDD that represents set of integers
eposw(x) as set of binary strings in our method. We describe SDDs can implement
complete inverted files compactly.

Example 4. Let w = abaababa be a given text. Then, find(baabbaab) = baab, freq(ba) =
3, and locations(ba) = {3, 6, 8}.

3 Position Factor SDD

We begin with a brief look at some aspects of the factor structure of a fixed, arbitrary
word w. In particular, for each factor x of w we will be interested in the set of positions
in w at the ends of occurrences of x. We describe the basic data structure used to
implement a complete inverted file for a text w based on an SDD.

In our method, occurrence positions are represented as a set of binary strings
instead of simple a list of integers. If a factor x occurs at position i, our inverted file
stores x · binstr(i). That is, a factor x of w is followed by its occurrence positions in
the complete inverted file. Then, we can know the occurrences of x after traversing the
path corresponding to x. All equivalent subgraphs are online minimized automatically
by always using Getnode when a node with some triple is needed. Therefore, the
subgraphs which represent binary strings also share their equivalent subgraphs and
become compact.

Definition 5. Let w be any string. Then, we define two languages.

– Lepos(w) = {x · binstr(k) : x ∈ Factor(w), k ∈ eposw(x)},
– Lbpos(w) = {x

R · binstr(k) : x ∈ Factor(w), k ∈ bposw(x)}.

Definition 6. The Position Factor SDD (PosFSDD) of w ∈ Σ∗ is the SDD
F = 〈Σ ∪ {0, 1}, V, τ,⊥,⊤, r〉 such that L(r) = Lepos.

162 Proceedings of the Prague Stringology Conference 2013

The PosFSDD for w = abcbc is given in Figure 2. Note that the SDDs that
represent binary strings play a role analogous to the identification pointers in the
compact DAWG [3].

Theorem 7. Using PosFSDD F = 〈Σ ∪ {0, 1}, V, τ,⊥,⊤, r〉 for a word w ∈ Σ∗,
for any word x ∈ Σ∗, y = find(x) can be determined in time O(|Σ||x|). For any
x ∈ Factor(w), freq(x) can be determined in time O(|Σ||x|) if Card(r) is already
executed at least once.

Proof. To implement find, we begin at the root r and trace a path corresponding to
the letters of x as long as possible. This “search path” is determined and continues
until the longest prefix y of x in Factor(w) has been found. To implement freq, we
note that freq(x) = |{z : xz ∈ Lepos(w)}| = |eposw(x)| for any x ∈ Factor(w).
The algorithm Card computes the cardinality of the language that each SDD node
represents and stores each result in cache [6]. So, freq(x) can be obtained by following
the procedure of find and then returning the result of Card of the node stored in the
cache. Card(r) is executed in linear time to the input SDD size. Since this node
represents the language M = {z : xz ∈ Lepos(w)}, we can obtain the node that
represents {b : b ∈M, b ∈ {0 , 1}∗} by traversing 0-edges until getting a node labeled
by 0 or 1. Clearly all queries are O(|Σ||x|). ⊓⊔

Our algorithm to construct PosFSDD is described in Fig. 4. The union operation
is computed in O(|P ||Q|) time for two SDDs P and Q [4]. In fig. 5, we shows the
algorithm BinSDD(k) that constructs an SDD that represents a binary representation
of a natural number k. That is, L(BinSDD(k)) is {binstr(k)}. We can also construct
an SDD for Lbpos with some modification of BuildPosFSDD. That is swapping |w|
with 0 in line 1 and line 5, and changing the for loop in line 2 from descending order
|w|, . . . , 1 to ascending order 1, . . . , |w|.

For a given text w and its factor x, it takes O(freq(x) logw) time to compute
occurrence list of x after obtaining the SDD for locations(x), because occurrences are
represented as binary strings and every node has just one label. On the other hand,
there are advantages due to SDD representation, especially when freq(x) is large. A list
of integers in ordinary representation requires O(freq(x)) space and time to examine
all positions. By sharing structures, these positions can be represented compactly
in our method. As a result, execution times for various operations are improved.
For example, for given two factors x and y, finding the positions that both occur
within l symbols is computed with some modifications. At first, we construct SDD
for L

′

epos(w) = {x · binstr(k + j) : x ∈ Factor(w), k ∈ eposw(x), 0 ≤ j ≤ l}. Next,
obtain the SDDs for locations(x) and locations(y). Then, the positions we want are
computed by the intersection operation of these two SDDs.

4 Position FSDD for SDD

We now show our algorithm that constructs a complete inverted file for a directed
acyclic graph given as an SDD. First we note that the complete inverted file for an
SDD S is defined as follows. In our method, we use node identifiers (IDs) instead of
positions for ordinary texts, and factors correspond to paths in the input SDD.

Given an SDD S, a complete inverted file for S for it is an abstract data type that
implements the following functions:

Shuhei Denzumi et al.: Notes on Sequence Binary Decision Diagrams 163

✬

✫

✩

✪

Global variable: uniqtable, cache: hash tables.

Proc BuildPosFSDD(w: string):
Return: F : PosFSDD;

1: P|w| ← BinSDD(|w|), F|w| ← P|w|;
2: for i = |w|, . . . , 1
3: Pi−1 ← Getnode(w[i],BinSDD(i− 1), Pi);
4: Fi−1 ← Union(Fi, Pi);
5: return F0;

Figure 4. An algorithm BuildPosFSDD for constructing the PosFSDD of an input string
w.✬

✫

✩

✪

Global variable: uniqtable, cache: hash tables.

Proc BinSDD(k: natural number):
Return: B: SDD such that L(B) = {binstr(k)};

1: return BinSDD0(k, ⌊log2(k + 1)⌋);

Proc BinSDD0(k, l: natural number):
Return: B: SDD that L(B) = {l length binary string of k};

2: if (l = 0) return ⊤;
3: else if (B ← cache[“BinSDD(k, l)”] exists) return B;
4: else

5: if (k&(1 << l) 6= 0) B ← Getnode(1 ,⊥,BinSDD0(k&((1 << l)− 1), l − 1));
6: else B ← Getnode(0 ,⊥,BinSDD0(k&((1 << l)− 1), l − 1));
7: cache[“BinSDD(k, l)”]← B;
8: return B;

Figure 5. An algorithm BinSDD for constructing the SDD for {binstr(k)}. Bitwise AND
operation and bit left shift operaton are denoted by & and <<, respectively.

✬

✫

✩

✪

Global variable: uniqtable, cache: hash tables.

Proc AppendID(P : SDD):
Return: R: SDD such that L(R) = {x · binstr(P.ID) : x ∈ FACTOR(L(Q)),
P is a SDD node reachable from root via the path corresponding to x

and traversing 0-edges};

1: if (P = ⊥) return BinSDD(0);
2: else if (P = ⊤) return BinSDD(1);
3: else if (R← cache[“AppendID(P)”] exists) return R;
4: else

5: 〈x, P0, P1〉 ← τ(P);
6: R← Union(Getnode(x,AppendID(P0),AppendID(P1)),BinSDD(P.id));
7: cache[“AppendID(P)”]← R;
8: return R;

Figure 6. An algorithm AppendID for constructing the SDD with node IDs by binary
strings.

– (1) find: Σ∗ → FACTOR(L(S)), where find(x) is the longest prefix y of x such
that x ∈ FACTOR(L(S)) and y occurs in L(S), that is, y is a factor of a string
in L(S).

164 Proceedings of the Prague Stringology Conference 2013

✬

✫

✩

✪

Global variable: uniqtable, cache: hash tables.

Proc BuildPosFSDDdag(S: SDD):
Return: F : Position FSDDdag for S;

1: return BuildPosFSDDdag0(AppendID(S));

Proc BuildPosFSDDdag0(P : SDD):
Return: G: SDD such that L(G) = {z : z ∈ SUFFIX (L(P)), z ∈ Σ+ ·
{0 , 1}∗};

1: if (P = ⊥ or P = ⊤) return P ;
2: else if (G← cache[“BuildPosFSDDdag(P)”] exists) return G;
3: else

4: 〈x, P0, P1〉 ← τ(P);
5: if (x ∈ {0 , 1}) return P ;
6: G← BuildPosFSDDdag0(P0) ∪ BuildPosFSDDdag0(P1) ∪ Getnode(x,⊥, P1) ;
7: cache[“BuildPosFSDDdag(P)”]← G;
8: return G;

Figure 7. An algorithm constructs the PosFSDDdag for the input SDD S. Union operations
are denoted by ∪.

a

a

a

b

b

c

b

a

⊥1

3

4

5

2

7

8

9

6

⊥
0

Figure 8. An
SDD for {aaab,
aac, abc, bab}.
Node IDs are
given on the side
of each nodes.

0 1

⊥

B{0,1,2,3,4,5,6,7,8,9}

B{0,1,3,5}

B{0,2,5,6,7,8}

B{0,1,5} B{0,2,5,7}

B{0,2}

B{1}

1

1

0

1

1

0

1

0 1

1

0

0 1

0

0 1

0

1

0

a

a

a

b

b

a c

b c

b c

c

B{0,1,2,3,4,5,6,7,8,9}

B{0,1,3,5}

B{0,2,5,6,7,8}

B{0,1,5}

B{0,2,5,7}

B{0,2}

B{1} A. The factor part B. The position part

Figure 9. An example of a complete inverted file based on SDD, PosFSDDdag,
for the SDD in Fig. 8. The 0-terminal ⊥ is omitted. All 0-edges incoming to
⊥ and ⊤ are indicated by a small black dot and white dot on the right side of
a node, respectively.

– (2) freq: FACTOR(L(S))→ N, where freq(x) is the number of nodes reachable by
paths corresponding to x that begins from any nodes in S.

– (3) locations: FACTOR(L(S))→ N
∗, where locations(x) is the set of IDs of nodes

in S to which paths lead that corresponding to x.

In our method, the set of node IDs that locations returns is represented by an SDD
for the set of binary strings of the IDs.

Let S be an SDD. For any x ∈ FACTOR(L(S)), enodeS(x) denotes the set of all
IDs of nodes in S following the paths corresponding to x and traversing some 0-edges,
bnodeS(x) denotes the set of all IDs of nodes in S which represent a language M such
that x ∈ PREFIX(M).

Definition 8. We define Lenode(S) = {x · binstr(i) : x ∈ FACTOR(L(S)), i ∈
enodeS(x)}, and Lbnode(S) = {x

R · binstr(i) : x ∈ FACTOR(L(S)), i ∈ bnodeS(x)}.
The PosFSDDdag for S is the SDD G such that L(G) = Lenode(S).

Shuhei Denzumi et al.: Notes on Sequence Binary Decision Diagrams 165

0

2500000

5000000

7500000

10000000

12500000

15000000

0 250000 500000 750000 1000000

O
u

tp
u

t
P

o
sF

S
D

D
 s

iz
e

Input text size (byte)

PosFSDD size

E.coli

bible.txt

world192.txt

Figure 10. SDD size of PosFSDD with increas-
ing length of input string.

0

25

50

75

100

125

150

175

0 250000 500000 750000 1000000

C
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

Input text size (byte)

PosFSDD construction time

E.coli

bible.txt

world192.txt

Figure 11. Computation time of BuildPos-

FSDD with increasing length of input string.

0

1000000

2000000

3000000

4000000

5000000

0 500000 1000000 1500000

O
u

tp
u

t
P

o
sF

S
D

D
d

a
g

 s
iz

e

Input SDD size

PosFSDDdag size

Ecoli150

Ecoli500

BibleAll

Figure 12. SDD size of PosFSDDdag with in-
creasing input SDD size.

0

1

2

3

4

5

0 500000 1000000 1500000

C
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

Input SDD size

PosFSDDdag construction time

Ecoli150

Ecoli500

BibleAll

Figure 13. Computation time of BuildPosFSD-
Ddag with increasing input SDD size.

The PosFSDDdag for an SDD S such that L(S) = {aaab, aac, abc, bab} is given in
Fig. 9, and Fig. 8 shows the input SDD.

Theorem 9. Using PosFSDDdag G, for any word x ∈ Σ∗, y = find(x) can be de-
termined in time O(|Σ||x|). For any x ∈ FACTOR(L(S)) can be determined in time
O(|Σ||x|).

Proof. We can implement find, freq and locations as in PosFSDD for a text. ⊓⊔

Fig. 7 shows an algorithm to build the PosFSDDdag for an SDD S. The algorithm
in Fig. 6 is used for prepocessing of PosFSDDdag. The basic action of the algorithm
for an SDD S is to construct the PosFSDDdag for each node recursively, synchronized
with the depth-first traversal of S. We can construct reversed version of the PosFS-
DDdag. It allows for the computation of the exact number of paths corresponding
to queries. It also allows for returning the node IDs at which the paths begin. Such
an SDD is constructed by executing BuildPosFSDDdag after appliying the algorithm
that construct an SDD for reversed L(S), which is proposed by Aoki et al. [2].

First, we append SDDs for node IDs to the input by AppendID. Next, we construct
reversed SDD of it, but we do not reverse the SDDs that represent node IDs as binary
strings. Then, we can construct the SDD for Lbnode(S) by execute BuildPosFSDDdag0
on the obtained SDD.

5 Experimental Results

Setting: In the experiments, we used the following data sets. As real data sets, we
used E.coli, bible.txt, and world192.txt obtained from the Canterbury corpus1.

1 http://corpus.canterbury.ac.nz/resources/

166 Proceedings of the Prague Stringology Conference 2013

From these data sets, we obtained the following derived data sets: BibleAll is the
set of all lines drawn from bible.txt. Ecoli150 and Ecoli500 are the set of factors
drawn from E.coli by cutting the whole sequence at every 150-th or 500-th letter,
respectively. We made subsets of these data sets by randomly taking l lines varying
l = 10, 30, 100, . . . for BibleAll, Ecoli150, and Ecoli500.

We implemented our shared and reduced SDD environment on the top of the
SAPPORO BDD package [9] for BDDs and ZDDs written in C and C++, where each
node is encoded in a 64-bit integer and a node triple occupies approximately 50 to 55
bytes on average including hash entries in uniqtable. We performed experiments on a
machine that consists of eight quad-core 3.1 GHz Intel Xeon CPU E7-8837 SE proces-
sors (i.e, 32 CPU cores in total) and 1 TB DDR2 memory shared among cores. For
PosFSDD and PosFSDDdag construction, we implemented BinSDD, BuildPosFSDD,
AppendID, and BuildPosFSDDdag.

Experiment 1: PosFSDD construction. First, Fig. 10, and Fig. 11 show the
results. From Fig. 10, we see that PosFSDDs are almost O(n log n) size for n length
text. The number of nodes are between 12n to 15n. As is illustrated in Fig. 11, the
proposed BuildPosFSDD runs in O(n log n).

Experiment 2: PosFSDDdag construction. Fig. 12 demonstrates that the
PosFSDDdags are close to linear in the size of the input SDDs. The number of nodes
are almost twice as that of the input SDD. As can be seen from Fig.13, BuildPosFS-
DDdag runs in almost O(N logN) time for N sized input SDDs, practically.

6 Conclusions

We proposed PosFSDD that is a complete inverted file for a text based on SDD. We
also defined complete inverted files for directed acyclic graphs and implemented it
as PosFSDDdag. They allow all queries to be solved in O(|Σ||x|) time for n sized
input. We gave algorithms that construct PosFSDD and PosFSDDdag. From the ex-
perimental results, their sizes are compact and our algorithms BuildPosFSDD and
BuildPosFSDDdag run in almost O(n log n) time. The exact size bound of PosFSDD
and the exact time complexity of our algorithms are not obvious. To propose more
efficient algorithms is our future work. Position restricted search with PosFSDD is
also a challenging problem.

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman: The Design and Analysis of Computer

Algorithms, Addison-Wesley, 1974.
2. H. Aoki, S. Yamashita, and S. Minato: An efficient algorithm for constructing a sequence

binary decision diagram representing a set of reversed sequences, in Proceedings of the 2011
IEEE International Conference on Granular Computing (GrC’2011), IEEE, 2011, pp. 54–59.

3. A. Blumer, J. Blumer, D. Haussler, R. M. McConnell, and A. Ehrenfeucht: Com-

plete inverted files for efficient text retrieval and analysis. J. ACM, 34(3) 1987, pp. 578–595.
4. S. Denzumi, R. Yoshinaka, H. Arimura, and S. Minato: Notes on sequence binary de-

cision diagrams: Relationship to acyclic automata and complexities of binary set operations, in
Proceedings of the Prague Stringology Conference 2011 (PSC’11), J. Holub and J. Žďárek, eds.,
Czech Technical University in Prague, 2011, pp. 147–161.

5. J. E. Hopcroft, R. Motwani, and J. D. Ullman: Introduction to Automata Theory,

Languages, and Computation, Addison-Wesley, 3rd. ed., 2006.
6. D. E. Knuth: The Art of Computer Programming, volume 4, fascicle 1, Bitwise Tricks &

Techniques; Binary Decision Diagrams, Addison-Wesley, 2009.

Shuhei Denzumi et al.: Notes on Sequence Binary Decision Diagrams 167

7. E. Loekito, J. Bailey, and J. Pei: A binary decision diagram based approach for mining

frequent subsequences. Knowledge and Information Systems, 24(2) 2010, pp. 235–268.
8. S. Minato: Zero-suppressed BDDs and their applications. Software Tools for Technology

Transfer, 3(2) 2001, pp. 156–170.
9. S. Minato: SAPPORO BDD package. Division of Computer Science, Hokkaido University,

2011, unreleased.
10. M. Mohri, P. Moreno, and E. Weinstein: Factor automata of automata and applications,

in Proceedings of the 12th International Conference on Implementation and Application of
Automata (CIAA’07), LNCS 4783, Springer, 2007, pp. 168–179.

11. D. Perrin: Finite automata, in Handbook of Theoretical Computer Science,, J. van Leuwen,
ed., vol. B. Formal Models and Semantics, Elsevier, 1990, pp. 1–57.

