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Abstract. We investigate the function σd(n) = max{s(x) | x is a (d, n)-string}, where
s(x) denotes the number of distinct primitively rooted squares in a string x and (d, n)-
string denotes a string of length n with exactly d distinct symbols. New properties
of the σd(n) function are presented. The notion of s-cover is presented and discussed
with emphasis on the recursive computational determination of σd(n). In particular,
we were able to determine all values of σ2(n) for n ≤ 53 and σ3(n) for n ≤ 42 and to
point out that σ2(33) < σ3(33); that is, among all strings of length 33, no binary string
achieves the maximum number of distinct primitively rooted squares. Noticeably, these
computations reveal the unexpected existence of pairs (d, n) satisfying σd+1(n + 2) −
σd(n) > 1 such as (2,33) and (2,34), and of three consecutive equal values: σ2(31) =
σ2(32) = σ2(33). In addition we show that σ2(n) ≤ 2n− 66 for n ≥ 53.

Keywords: string, square, primitively rooted square, maximum number of distinct
primitively rooted squares, parameterized approach, (d, n− d) table

1 Introduction

In [2] the notion of an r-cover was introduced as a means to represent the distribution
of the runs in a string and thus describe the structure of the run-maximal strings.
Ignoring the number of distinct symbols d, a key assertion from [2] states that es-
sentially any run-maximal string has an r-cover. A similar approach was adapted
for run-maximal (d, n)-strings in [1] and we show in Section 2 how this approach
can be adapted for square-maximal (d, n)-strings. This notion is used to speed up
computations of the maximum number of distinct primitively rooted squares.

We encode a square as a triple (s, e, p) where s is the starting position of the square,
e is the ending position of the square, and p is its period. Note that e = s + 2p − 1.
The join x[i1 .. ik] ∪ x[j1 .. jm] of two substrings of a string x = x[1 .. n] is defined
if i1 ≤ j1 ≤ ik + 1 and then x[i1 .. ik] ∪ x[j1 .. jm] = x[i1 .. max{ik, jm}], or if
j1 ≤ i1 ≤ jm + 1 and then x[i1 .. ik] ∪ x[j1 .. jm] = x[j1 .. max{ik, jm}]. Simply
put, the join is defined when the two substrings either are adjacent or overlapping.
The join S1 ∪ S2 of two squares of x encoded as S1 = (s1, e1, p1) and S2 = (s2, e2, p2)
is defined as the join x[s1 .. e1] ∪ x[s2 .. e2]. The alphabet of x is denoted by A(x),
(d, n)-string refers to a string of length n with exactly d distinct symbols, s(x) denotes
the number of distinct primitively rooted squares in a string x, and σd(n) refers to
the maximum number of distinct primitively rooted squares over all (d, n)-strings,
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i.e. σd(n) = max{s(x) | x is a (d, n)-string}. A singleton is a symbol which occurs
exactly once in the string under consideration. To simplify the notation, for an empty
string ε we set s(ε) = 0 and σd(0) = 0.

2 Computational approach to distinct primitively rooted
squares

In the computational framework for determining σd(n) we will be discussing later, we
first compute a lower bound of σd(n) denoted as σ−

d (n). It is enough to consider (d, n)-
strings x that could achieve s(x) > σ−

d (n) for determining σd(n), thus significantly
reducing the search space. The purpose of this section is to introduce the necessary
conditions that guarantee that for such an x, s(x) > σ−

d (n) for a given σ−
d (n). The

necessary conditions are the existence of an s-cover and a sufficient density of the
string, see Lemmas 5, 9, 10. The s-cover is guaranteed through generation, while the
density is verified incrementally during the generation at the earliest possible stages.
Note that the notion of s-cover, though similar to r-cover for runs, see [1,2], is slightly
different.

Definition 1. An s-cover of a string x = x[1 .. n] is a sequence of primitively rooted

squares {Si = (si, ei, pi) | 1 ≤ i ≤ m} so that

(1) for any 1 ≤ i < m, si < si+1 ≤ ei + 1 and ei < ei+1, i.e. two consecutive squares

are either adjacent or overlapping;

(2)
⋃

1≤i≤m

Si = x;

(3) for any occurrence of square S in x, there is 1 ≤ i ≤ m so that S is a substring

of Si, denoted by S ⊆ Si.

Lemma 2. An s-cover of a string is unique.

Proof. Let us assume that we have two different s-covers of x, {Si | 1 ≤ i ≤ m}
and {S ′

j | 1 ≤ j ≤ k}. We shall prove by induction that they are identical. By
Definition 1 (3), S1 ⊆ S ′

1 and, by the same argument, S ′
1 ⊆ S1, and thus S1 = S ′

1.
Let the induction hypothesis be Si = S ′

i for 1 ≤ i ≤ t. If
⋃

1≤i≤t Si = x, we have
t = m = k and we are done. Otherwise consider St+1. By Definition 1 (3), there is S ′

v

so that St+1 ⊆ S ′
v and v > t. We need to show that v = t+1. If not, then St+1 would

neither be a substring of S ′
t nor of S ′

t+1 contradicting Definition 1 (3). Therefore
St+1 ⊆ S ′

t+1. By the same argument, S ′
t+1 ⊆ St+1 and so St+1 = S ′

t+1. ⊓⊔

Lemma 3. If a string admits an s-cover, then it is singleton free.

Proof. Let {Sj | 1 ≤ j ≤ m} be the s-cover of x = x[1 .. n]. For any 1 ≤ i ≤ n,
x[i] ∈ St for some t by Definition 1 (2). Since St is a square, the symbol x[i] occurs
in x at least twice. ⊓⊔

Before we can define what a dense string is, we must first define the notion of a core

of a square, similarly to the core of a run, see [1,6]. For a square, its core is the set of
indices formed by the intersection of the indices of all its occurrences in the string.

Definition 4. The core vector k(x) of a (d, n)-string x is defined by ki(x) = the

number of cores of squares of x containing i for i = 1, . . . , n. A singleton-free (d, n)-
string x is dense, if its core vector k(x) satisfies ki(x) > σ−

d (n)−s(x[1 .. i−1])−mi for

i = 1, . . . , n, where mi = max {σd′(n−i) : d−|A(x[1 .. i−1])| ≤ d′ ≤ min(n−i, d)}.
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Lemma 5. If a (d, n)-string x is not dense, then s(x) ≤ σ−
d (n).

Proof. The proof follows from the basic observation that for any string x, s(x) ≤
s(x[1 .. i − 1]) + s(x[i + 1 .. n]) + ki(x) for any i. Note that the inequality occurs
when there are the same type of squares in both x[1 .. i − 1] and x[i + 1 .. n]. If
x is not dense, then for some i0, ki0(x) ≤ σ−

d (n) − s(x[1 .. i0 − 1]) − mi0 . Then
s(x) ≤ s(x[1 .. i0 − 1]) + s(x[i0 +1 .. n]) + ki0(x) ≤ s(x[1 .. i0 − 1]) +mi0 + ki0(x) ≤
s(x[1 .. i0 − 1]) +mi0 + σ−

d (n)− s(x[1 .. i0 − 1])−mi0 = σ−
d (n). ⊓⊔

Lemma 6. If the core vector k(x) of a (d, n)-string x satisfies ki(x) > 0 for

i = 1, . . . , n, then x has an s-cover.

Proof. We build an s-cover by induction: Since the k1(x) ≥ 1, 1 is in at least one core,
hence there must be at least one square starting at position 1. Among all squares
starting at position 1, set the one with the largest period to be S1. Suppose that
we have built the s-cover {Si = (si, ei, pi) : i ≤ t}. If

⋃
1≤i≤t Si = x, we are done.

Otherwise
⋃

1≤i≤t Si = x[1 .. et] where et < n. Since ket+1(x) ≥ 1, there is at least
one square (s, e, p) in x so that s ≤ et +1 ≤ s+2p− 1. From all such squares choose
the leftmost ones, and among them choose the one with the largest period and set
it as St+1. It is straightforward to verify that all the conditions of Definition 1 are
satisfied and that we have built the s-cover of x. ⊓⊔

Note that for a (d, n)-string, having an s-cover implies being singleton free. However
it does not imply that every ki(x) ≥ 1, even though it is quite close to it. Consider
the s-cover {Sj = (sj, ej, pj) : 1 ≤ j ≤ m} of x. If S1 has another occurrence in x
and there is no other square in x starting at position 1, then 1 is not in any core and
k1(x) = 0. Similarly, if the s-cover has two consecutive adjacent squares Sj and Sj+1,
if there is no other square occurring at position sj+1, and if the square Sj+1 has some
other occurrence, then ksj+1

(x) = 0. In this sense, the s-cover is a computationally
efficient structural generalization of the property that every ki(x) ≥ 1.

Lemma 7. Let {Si = (si, ei, pi) | 1 ≤ i ≤ m} be an s-cover of x. Let k = k(x) be

the core vector of x. Then for any 1 ≤ i < m and the core vector k′ = k(x[1 .. ei]),
(∀ 1 ≤ j < si+1)(k

′
j ≥ kj).

Proof. Let us assume that for some i = 1, 2, . . . m−1 there is a j so that kj > k′
j. Then

there must exists a square (s, e, p) in x = x[1 .. em] that is not a square of x[1 .. ei],
i.e. e > ei and s < si+1, so it is an intermediate square violating the definition of
s-cover, see Definition 1 (3). ⊓⊔

Lemma 8. If a square-maximal (d, n)-string x has an s-cover with two consecutive

adjacent squares, then σd(n) ≤ σd1(n1) + σd2(n2) for some 2 ≤ d1, d2 ≤ d ≤ d1 + d2
and some n1, n2, possibly equal to zero, such that n1 + n2 = n.

Proof. Let {Si : 1 ≤ i ≤ m} be the s-cover of x and let Sj ∩ Sj+1 = ∅. Then

s(x) ≤ s(x1) + s(x2), where x1 =
⋃

1≤i≤j

Si and x2 =
⋃

j<i≤m

Si. Therefore σd(n) =

s(x) ≤ s(x1)+s(x2) ≤ σd1(n1)+σd2(n2) where x1 and x2 are, respectively, a (d1, n1)-
and a (d2, n2)-string. ⊓⊔

Lemma 9. If a singleton-free square-maximal (d, n)-string x does not have an

s-cover, then σd(n) = σd(n− 1).
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Proof. Since x does not have an s-cover, there exist some i0 such that ki0 = 0 by
Lemma 6. Remove x[i0] to form a (d, n − 1)-string y. This will not decrease the
number of distinct squares in x since there is no core of any square containing i0.
Then σd(n) = s(x) ≤ s(y) ≤ σd(n − 1). Since σd(n) ≥ σd(n − 1) (see [4]), therefore
σd(n) = σd(n− 1). ⊓⊔

Lemma 10. If a square-maximal (d, n)-string has a singleton, then σd(n) =
σd−1(n− 1).

Proof. Remove the singleton to form a (d − 1, n − 1)-string y with σd(n) = s(x) ≤
s(y) ≤ σd−1(n−1). Since σd(n) ≥ σd−1(n−1) (see [4]), therefore σd(n) = σd−1(n−1).

⊓⊔

3 Heuristics for a lower bound σ
−

d (n)

Recall that σ−
d (n) denotes the best available lower bound for σd(n). The higher the

value of σ−
d (n), the less computational effort must be spent on determining σd(n).

For d = 2, generate L2(n), the set of (2, n)-strings which admit an s-cover and are
balanced over every prefix (the frequencies of a’s and b’s differ by at most a predefined
constant), have a maximum period bounded by at most a predefined constant, and
contain no triples (aaa or bbb). Then we set

σ−
2 (n) = max {σ2(n− 1), max

x∈L2(n)
s(x)}.

For d ≥ 3, we simply set σ−
d (n) = max {σd−1(n− 1), σd−1(n− 2) + 1, σd(n− 1)}.

The heuristic was found to be quite efficient in the fact that in almost all cases it
gave the appropriate maximum value.

4 Generating special (d, n)-strings admitting an s-cover

Rather than generating strings, we generate their s-covers. By special we mean only
s-covers that have no consecutive adjacent squares. The generation proceeds by ex-
tending the partially built s-cover in all possible ways. Every time a potential square
of the s-cover is to be extended by one position, all previously used symbols and the
first unused symbol are tried. For each symbol, the frequency counter is checked that
the symbol does not exceed n+2− 2d. Once a symbol is used, the frequency counter
is updated. When the whole s-cover is generated, the counter is checked whether
all d symbols occurred in the resulting string; if not, the string is rejected. A typ-
ical implementation of the generation of the s-cover would be through recursion as
backtracking is needed. For computational efficiency reasons we opted instead for a
user-stack controlled backtracking implemented as a co-routine Next() allowing us
to call the co-routine repeatedly to produce the next string. Note that the strings
are generated in a lexicographic order. The generation of the s-cover follows these
principles: The generator for the first square is created by iterative calls to Next()

producing all the possible generators. Each generator is checked for the additional
properties (must be primitive, did not create an intermediate square in the partial
string, etc.) before it is accepted. For each subsequent square, its generator may be
partially or fully determined. If it is partially determined, iterative calls to Next() are
used to generate all possible completions of the generator. The complete generator is
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checked and accepted or rejected. In addition, if the density of the string being gener-
ated is to be checked, we use Lemma 7 and the core vector of the partially generated
string to reject the string or allow it to be extended further.

5 Recursive computation of σd(n)

First, σ−
d (n) is computed by the heuristic of Section 3. Then it is verified that σd1(n1)+

σd2(n2) ≤ σ−
d (n) for any 2 ≤ d1, d2 ≤ d ≤ d1 + d2 and any n1 + n2 = n. Then Ud(n),

the set of all dense special (d, n)-strings admitting an s-cover is generated as described
in Section 4. It follows that

σd(n) = max {σ−
d (n), max

x∈Ud(n)
s(x)}.

To see that, first consider the existence of a square-maximal (d, n)-string with single-
tons: by Lemma 10, σd(n) = σd−1(n− 1). Then consider the existence of a singleton-
free square-maximal string x not in Ud(n):
(i) either x does not have an s-cover, in which case by Lemma 9, σd(n) = σd(n− 1);
(ii) or x has an s-cover with two consecutive adjacent squares and by Lemma 8,
σd(n) ≤ σd1(n1) + σd2(n2) for some 2 ≤ d1, d2 ≤ d and some n1 + n2 = n, and so
σd(n) ≤ σ−

d (n);
(iii) or x has a special s-cover, but is not dense and by Lemma 5, σd(n) ≤ σ−

d (n).

6 Recursive computation of σd(2d)

To compute the values on the main diagonal we can use s-covers satisfying additional
necessary parity condition. The s-cover {Si = (si, ei, pi) : 1 ≤ i ≤ m} of x = x[1 .. n]
satisfies the parity condition if for any 1 ≤ i < m, A(x[1 .. ei]) ∩ A(x[si+1 .. n]) ⊆
A(x[si+1 .. ei]).

Lemma 11. The singleton-free part of a square-maximal (d, 2d)-string x with all its

singletons at the end has an s-cover satisfying the parity condition.

Proof. We can assume that x has 0 ≤ v ≤ d−2 singletons, all at the end. Let k(x) be
the core vector of x. Suppose the singleton-free part x[1 .. 2d−v] does not have an s-
cover, then there exist some 1 ≤ i0 ≤ 2d−v such that ki0(x) = 0. Remove x[i0] to form
a (d, 2d− 1)-string y. Therefore, σd(2d) = s(x) ≤ s(y) ≤ σd(2d− 1) = σd−1(2d− 2),
a contradiction. So x[1 .. 2d− v] has an s-cover {Si : 1 ≤ i ≤ m}. Let us assume that
the s-cover does not satisfy the parity condition. Then either
(i)

⋃
1≤i≤t Si and

⋃
t<i≤m Si for some 1 ≤ t ≤ m are adjacent and their respective

alphabets have at least one symbol in common, say c. If we replace c in
⋃

1≤i≤t Si by
a new symbol ĉ /∈ A(x), we get a new (d+ 1, 2d)-string y so that s(y) ≥ s(x). Thus
σd(2d) = s(x) ≤ s(y) ≤ σd+1(2d) = σd(2d− 1) = σd−1(2d− 2), a contradiction, or
(ii)

⋃
1≤i≤t Si and

⋃
t<i≤m Si for some 1 ≤ t ≤ m are overlapping, and there is a

symbol c occurring in
⋃

1≤i≤t Si and in
⋃

t<i≤m Si, but not in the overlap St ∩ St+1. If
we replace c in

⋃
1≤i≤t Si by a new symbol ĉ /∈ A(x), we get a new (d+1, 2d)-string y so

that s(y) ≥ s(x). Thus σd(2d) = s(x) ≤ s(y) ≤ σd+1(2d) = σd(2d−1) = σd−1(2d−2),
a contradiction. ⊓⊔

With additional assumptions, Lemma 11 can be strengthen to exclude consecutive
adjacent squares from the s-cover of a square-maximal (d, 2d)-string.
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Lemma 12. Let σd′(2d
′) = d′ for any d′ < d. Either σd(2d) = d or for every square-

maximal (d, 2d)-string x with v singletons all at the end, 0 ≤ v ≤ d− 2, its singleton-
free part x[1 .. 2d − v] has an s-cover satisfying the parity condition and which has

no consecutive adjacent squares.

Proof. The existence of the s-cover {Si | 1 ≤ i ≤ m} of x[1 .. 2d − v] satisfying the
parity condition follow from Lemma 11. We need to prove that either σd(2d) = d
or there are no adjacent squares in the s-cover. Since σd′(2d

′) = d′ for any d′ < d,
σd′(n

′) ≤ n′ − d′ for any n′ − d′ < d. Let us assume that the s-cover of x has two
adjacent squares St and St+1. Let x1 =

⋃
1≤i≤t Si and let x2 =

⋃
t<i≤m Si. Then

s(x) ≤ s(x1) + s(x2) where x1 and x2 are, respectively, a (d1, n1)- and a (d2, n2)-
string with n1 + n2 = 2d − v and d1 + d2 ≥ d − v. Since the s-cover satisfies the
parity condition, A(x1) and A(x2) are disjoint and hence d1 + d2 = d− v. Therefore
(n1 − d1) + (n2 − d2) = d. Since both x1 and x2 are singleton-free, n1 − d1 > 0 and
n2 − d2 > 0. Hence n1 − d1 < d and n2 − d2 < d, and therefore σd(2d) = s(x) ≤
s(x1) + s(x2) ≤ σd1(n1) + σd2(n2) ≤ (n1 − d1) + (n2 − d2) = d. ⊓⊔

Since the number of distinct squares in a singleton-free (d, 2d)-string is at most d,
we do not need to consider singleton-free strings. Moving a singleton to the end
of a string does not decrease the number of distinct squares, therefore we shall only
consider (d, 2d)-strings that have singletons at the end. We can set σ−

d (2d) = σd−1(2d−
2) + 1 and thus consider only the strings that have the non-singleton part dense.
By Lemma 12 we need only to consider strings whose s-covers of the non-singleton
part satisfy the parity condition with no consecutive adjacent squares. Moreover,
the number of singletons must be at least ⌈2d

3
⌉, see [4]. Let Tv denote the set of all

singleton-free σ−
d (2d)-dense (d−⌈2d

3
⌉, 2d−⌈2d

3
⌉)-strings admitting an s-cover satisfying

the parity condition with no consecutive adjacent squares. Then we set

σd(2d) = max {d, max
x∈Tv

s(x)}.

7 Additional properties of σd(n)

Though fundamental properties of σd(n) were presented previously in [4], here we
present some additional properties concerning the gaps between consecutive values in
the (d, n−d) table where the value of σd(n) is the entry on the d-th row and the (n−d)-
th column. Lemma 13, respectively Lemma 14, shows that the difference between any
two consecutive entries along a row, respectively between any two consecutive entries
on the main diagonal, in the (d, n− d) table is bounded by 2.

Lemma 13. For any 2 ≤ d ≤ n, σd(n+ 1)− σd(n) ≤ 2.

Proof. Let (d, n+1)-string x = x[1 .. n+1] be square-maximal, then s(x) = σd(n+1).
Without a loss of generality we can assume that the first symbol of x is not a singleton
– otherwise we can move all singletons from the beginning of x to the end of x without
destroying any square type. Let y = x[2 .. n + 1]. Then y is a (d, n)-string and
s(y) ≤ σd(n). By Fraenkel-Simpson [5], there are at most two rightmost occurrences
of squares starting at the same position in a string. In other words, the removal
of x[1] destroyed at most two square types. That is, s(x) − 2 ≤ s(y). Therefore,
σd(n+ 1)− 2 ≤ s(y) ≤ σd(n), implying σd(n+ 1)− σd(n) ≤ 2. ⊓⊔
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Lemma 14. For any 2 ≤ d, σd+1(2d+ 2)− σd(2d) ≤ 2.

Proof. By Lemma 13, σd+1(2d + 2) − σd+1(2d + 1) ≤ 2. By the results from [4],
the entries under and on the main diagonal along a column are constant; that is,
σd+1(2d+ 1) = σd(2d). Therefore, σd+1(2d+ 2)− σd(2d) ≤ 2. ⊓⊔

Lemma 15. For any d ≥ 2, if there is a square-maximal singleton-free

(d, 2d + 1)-string x, then there exists a square-maximal (d, 2d + 1)-string y of the

form y = aaabbccdd . . .

Proof. Since x contains no singletons, then x contains exactly d−1 pairs and 1 triple.
To prove there exists a square-maximal string in the form that all pairs consist of
adjacent symbols and the triple also consists of adjacent symbols, we need to show
the non-adjacent symbols can be moved together without reducing the number of
distinct squares. Let us suppose that there is a non-adjacent pair of c’s in x.

(i) If the c’s did not occur in any square, then we could move both c’s to the end of
the string without destroying any square type. Moreover, we would gain a new square
cc, contradicting the square-maximality of x.
(ii) If the c’s occur in exactly one square ucvucv, where u and v are some strings, we
can move both c’s to the end of x to form a new string y. The new squares created
by this move are uvuv and cc while the old square ucvucv was destroyed. If uvuv
did not exist in any other part of x, then s(y) > s(x) which contradicts the square-
maximality of x; thus uvuv already existed in some other part of x, so we lost the
square ucvucv, but gained cc, so s(y) = s(x).
(iii) If the c’s occur in more than one square, these squares must form a non-trivial
run, i.e. a run with a non-empty tail. Since there is only one symbol t occurring in x
3 times, the only form of such a non-trivial run can be tucvtucvt. If u = v = ε, then
the run is tctct containing two distinct squares tctc and ctct. We can change it to
tttcc, destroying the two squares tctc and ctct, but gaining two new squares tt and
cc. If either u 6= ε or v 6= ε, then by moving both c’s to the end of x, we destroy
the two distinct squares tucvtucv and ucvtucvt, but gain three new squares tuvtuv,
uvtuvt, and cc. Note that neither tuvtuv nor uvtuvt can exist anywhere else in x
for the lack of t’s. Thus we have more distinct squares than x, which contradicts the
maximality of x.
Since we can move safely all pairs together to the end of x, the symbols of the triple
will end up also adjacent at the beginning of the string. ⊓⊔

Lemma 16 shows that the two entries of the (d, n− d) table in the same column just
above the main diagonal must be identical.

Lemma 16. For any 3 ≤ d, σd(2d+ 1) = σd−1(2d).

Proof. We prove it by induction. Let (Hd) be the statement that σd(2d+1) = σd−1(2d).
(Hd) for 2 ≤ d ≤ 10 is true from the values in the (d, n − d) table computed so far,
see [4]. This takes care of the base case of the induction. Thus let us assume that H1

through Hd−1 are true, and let us prove that (Hd) is true. Let (d, 2d+ 1)-string x be
square-maximal. If x contains a singleton, remove it to form a new (d− 1, 2d)-string
y. Then σd(2d + 1) = s(x) ≤ s(y) ≤ σd−1(2d) and since σd(2d + 1) ≥ σd−1(2d),
see [4], thus σd(2d + 1) = σd−1(2d). If x contains no singletons, by Lemma 15 we
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can assume that it has the form aaabbccdd . . . Remove a pair from z forming a new
(d − 1, 2d − 1)-string y. Then σd(2d + 1) − 1 = s(x) − 1 = s(y) ≤ σd−1(2d − 1) and
since σd(2d + 1) − 1 ≥ σd−1(2d − 1) by [4], therefore σd(2d + 1) = σd−1(2d − 1) + 1.
Since Hd−1, σd−1(2d) ≥ σd−2(2d− 2) + 1 and σd(2d+ 1) ≥ σd−1(2d) according to [4],
hence σd(2d+ 1) = σd−1(2d). ⊓⊔

Corollary 17 demonstrates the fact that the difference between any two consecutive
entries on the two diagonals immediately above the main diagonal of the (d, n − d)
table is also bounded by 2.

Corollary 17. For any 3 ≤ d, σd(2d + 1) − σd−1(2d − 1) ≤ 2 and σd(2d + 2) −
σd−1(2d) ≤ 2.

Proof. By Lemma 13, σd−1(2d) − σd−1(2d − 1) ≤ 2, and by Lemma 16, σd−1(2d) =
σd(2d+1). Therefore, σd(2d+1)−σd−1(2d−1) ≤ 2. Similarly, σd(2d+2)−σd(2d+1) ≤ 2
by Lemma 13, and σd(2d + 1) = σd−1(2d) by Lemma 16. Therefore, σd(2d + 2) −
σd−1(2d) ≤ 2. ⊓⊔

Remark 18. Fraenkel-Simpson [5] gave the upper bound of 2n − 8 for n ≥ 5 and
any d, and σ2(n) ≤ 2n − 29 for n ≥ 22. Ilie [8] provided an asymptomatic bound of
2n−Θ(log n). We slightly improve Fraenkel-Simpson’s bounds with: for any 2 ≤ d ≤ n
and n ≥ d0+2, σd(n) ≤ 2n−d0−2d, where d0 is the maximum d such that σd(2d) = d
is known. Currently, d0 = 23. In addition, since σ2(53) = 40 we get σ2(n) ≤ 2n− 66
for n ≥ 53. Similarly, since σ3(42) = 31, σ4(32) = 22, σ5(33) = 23, σ6(28) = 17,
σ7(30) = 18, σ8(25) = 14, σ9(23) = 12 and σ10(23) = 11, we get σ3(n) ≤ 2n− 53 for
n ≥ 42, σ4(n) ≤ 2n− 42 for n ≥ 32, σ5(n) ≤ 2n− 43 for n ≥ 33, σ6(n) ≤ 2n− 39 for
n ≥ 28, σ7(n) ≤ 2n− 42 for n ≥ 30, σ8(n) ≤ 2n− 36 for n ≥ 25, σ9(n) ≤ 2n− 34 for
n ≥ 23 and σ10(n) ≤ 2n− 35 for n ≥ 23.

Proof. By Lemma 14, σd(n) ≤ d0 + 2k, where n − d = d0 + k and k ≥ 1. Thus
σd(d0 + k + d) ≤ d0 + 2k = 2(d0 + k + d)− d0 − 2d. Therefore, σd(n) ≤ 2n− d0 − 2d
for n ≥ d0 + 2.

8 Computational Results

We implemented the described algorithms in C++, and ran the programs in parallel
on the SHARCNET computer cluster. We were able to compute all σ2(n) values for
n ≤ 53 in a matter of hours. The 10 largest new values are: σ2(44) = 33, σ2(45) =
34, σ2(46) = 35, σ2(47) = 36, σ2(48) = 36, σ2(49) = 37, σ2(50) = 37, σ2(51) =
38, σ2(52) = 39 and σ2(53) = 40. The results and sample square-maximal strings
may be found at [3]. Whenever the computation required determining the number
of distinct primitively rooted squares in a concrete string, a C++ implementation of
the Franek, Jiang, and Weng’s algorithm [7] was used. The values of interest include:
three consecutive equal values: σ2(31) = σ2(32) = σ2(33), the unexpected existence
of pairs (d, n) satisfying σd+1(n + 2) − σd(n) > 1 such as (2,33) and (2,34), and
σ2(33) < σ3(33); that is, among all strings of length 33, no binary string achieves the
maximum number of distinct primitively rooted squares.
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9 Conclusion

We presented the notion of s-cover as a structural generalization of a uniform dis-
tribution of squares in a string. We showed that it is sufficient to consider special
strings admitting an s-cover in order to recursively determine the maximum number
of distinct primitively rooted squares σd(n). Based on these observations, we pre-
sented an efficient computational framework with significantly reduced search space
for computations of σd(n) based on the notion of density and exploiting the tightness
of the available lower bound. We used an implementation of this algorithm to obtain
the previously unknown values of σd(n), and in particular σ2(n) up to n = 53.
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