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Abstract. In the last couple of years many research papers have been devoted to
Abelian complexity of words. Recently, Constantinescu and Ilie (Bulletin EATCS 89,
167–170, 2006) introduced the notion of Abelian period. In this article we present two
quadratic brute force algorithms for computing Abelian periods for special cases and a
quasi-linear algorithm for computing all the Abelian periods of a word.
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1 Introduction

An integer p > 0 is a (classical) period of a word w of length n if w[i] = w[i+ p] for
any 1 6 i 6 n−p. Classical periods have been extensively studied in combinatorics on
words [16] due to their direct applications in data compression and pattern matching.

The Parikh vector of a word w enumerates the cardinality of each letter of the
alphabet in w. For example, given the alphabet Σ = {a, b, c}, the Parikh vector of
the word w = aaba is (3, 1, 0). The reader can refer to [6] for a list of applications of
Parikh vectors.

An integer p is an Abelian period for a word w over a finite alphabet Σ =
{a1, a2, . . . , aσ} if w can be written as w = u0u1 · · ·uk−1uk where for 0 < i < k
all the ui’s have the same Parikh vector P such that

∑σ
i=1P [i] = p and the Parikh

vectors of u0 and uk are contained in P [11]. For example, the word w = ababbbabb
can be written as w = u0u1u2u3, with u0 = a, u1 = bab, u2 = bba and u3 = bb, and
3 is an Abelian period of w with Parikh vector (1, 2) over Σ = {a, b}.

This definition of Abelian period matches that of weak repetition (also called
Abelian power) when u0 and uk are the empty word and k > 2 [12].

In the last couple of years many research papers have been devoted to Abelian
complexity [13,1,8,3,14,2,4,20]. Efficient algorithms for Abelian Pattern Matching
(also known as Jumbled Pattern Matching) have been designed [10,5,6,17,18,7].

Recently [15] gave algorithms for computing all the Abelian periods of a word of
length n in time O(n2 × σ). This was improved to time O(n2) in [9].

In this article we present a quasi-linear time algorithm for computing the Abelian
periods of a word. In Section 2 we give some basic definitions and notation. Section 3
presents brute force algorithms while Section 4 presents our main contribution. Fi-
nally, Section 5 contains conclusions and perspectives.
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2 Notation

Let Σ = {a1, a2, . . . , aσ} be a finite ordered alphabet of cardinality σ and Σ∗ the set
of words on alphabet Σ. We denote by |w| the length of the word w. We write w[i]
for the i-th symbol of w and w[i . . j] for the factor of w from the i-th symbol to the
j-th symbol, with 1 6 i 6 j 6 |w|. We denote by |w|a the number of occurrences of
the symbol a ∈ Σ in the word w.

The Parikh vector of a word w, denoted by Pw, counts the occurrences of each
letter of Σ in w; that is Pw = (|w|a1 , . . . , |w|aσ). Notice that two words have the
same Parikh vector if and only if one word is a permutation of the other.

Given the Parikh vector Pw of a word w, we denote by Pw[i] its i-th component
and by |Pw| the sum of its components. Thus for w ∈ Σ∗ and 1 6 i 6 σ, we have
Pw[i] = |w|ai and |Pw| =

∑σ
i=1 Pw[i] = |w|.

Finally, given two Parikh vectors P ,Q, we write P ⊂ Q if P [i] 6 Q[i] for every
1 6 i 6 σ and |P| < |Q|.

Definition 1 ([11]). A word w has an Abelian period (h, p) if w = u0u1 · · ·uk−1uk

such that:

– Pu0
⊂ Pu1

= · · · = Puk−1
⊃ Puk

,
– |Pu0

| = h, |Pu1
| = p.

We call u0 and uk resp. the head and the tail of the Abelian period. Notice
that the length t = |uk| of the tail is uniquely determined by h, p and |w|, namely
t = (|w| − h) mod p.

The following lemma gives a bound on the maximum number of Abelian periods
of a word.

Lemma 2 ([15]). The maximum number of Abelian periods for a word of length n
over the alphabet Σ is Θ(n2).

Proof. The word (a1a2 · · · aσ)n/σ has Abelian period (h, p) for any p ≡ 0 mod σ and
h < p. ⊓⊔

A natural order can be defined on the Abelian periods.

Definition 3. Two distinct Abelian periods (h, p) and (h′, p′) of a word w are ordered
as follows: (h, p) < (h′, p′) if p < p′ or (p = p′ and h < h′).

Definition 4 ([9]). Let w be a word of length n. Then the mapping pr : Σ → A,
where A is the set of the first σ prime numbers, is defined by:

pr(σi) = i-th prime number.

The P-signature of w is defined by:

P-signature(w) = Πn
i=1pr(w[i]).

Definition 5 ([9]). Let w be a word of length n. Then the mapping s : Σ → B,
where B is the set of the first σ − 1 powers of n+ 1 and 0, is defined by:

s(σi) =

{

0 if i = 1

(n+ 1)i−2 otherwise.
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The S-signature of w is defined by:

S-signature(w) =
n

∑

i=0

s(w[i]).

Observation 1 ([9]) For a word w of length n the array Pr of n elements is defined
by

Pr[i] = Π i
j=1pr(w[j]),

then

P-signature(w[k . . ℓ]) =

{

Pr[ℓ]/Pr[k − 1] if k 6= 0

Pr[ℓ] otherwise.

Observation 2 ([9]) For a word w of length n the array S of n elements is defined
by

S[i] =
i

∑

j=1

s(w[j]),

then

S-signature(w[k . . ℓ]) =

{

S[ℓ]− S[k − 1] if k 6= 0

S[ℓ] otherwise.

Example 6. w = abaab:

i 1 2 3 4 5
w[i] a b a a b

pr(w[i]) 2 3 2 2 3
Pr[i] 2 6 12 24 72

i 1 2 3 4 5
w[i] a b a a b

s(i) 0 1 0 0 1
S[i] 0 1 1 1 2

P-signature(w[3 . . 5]) = S-signature(w[3 . . 5]) =
P-signature(aab) = S-signature(aab) =

Pr[5]/Pr[2] = 72/6 = 12 S[5]− S[2] = 2− 1 = 1

3 Brute Force Algorithms

We will first focus on the case where we consider periods without head nor tail.
In the remaining of the article we will write that a word w has Abelian period p

whenever it has Abelian period (0, p). When the tail is also empty, for a word w of
length n an Abelian period p must divide n. We define:

– P [i] is the set of Abelian periods of w[1 . . i];
– V [i] = P(w[1 . . i]) is the Parikh vector of w[1 . . i].

3.1 Abelian periods with neither head nor tail

In a first step we set P [i] = {i} for all the divisors of n. Then we process the positions
i of w in ascending order: if j ∈ P [i] and Pw[i+ 1 . . i+ j] = Pw[1 . . j], then we add
j to P [i+ j]. This test can be done in O(σ) time by precomputing the Parikh vectors
of all the prefixes of w or in constant time using signatures. At the end of the process
P [n] contains all the Abelian periods of w with neither head nor tail (see algorithm
in Figure 1).
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AbelianPeriodsNoHeadNoTail(w, n)
1 V [i]← P(w[1 . . i]), ∀ 1 ≤ i ≤ n
2 P [i]← ∅, ∀ 1 ≤ i ≤ n
3 for i← 1 to n/2 do

4 if n mod i = 0 then

5 P [i]← {i}
6 for i← 1 to n− 1 do

7 for j ∈ P [i] do
8 if V [i+ j]− V [i] = V [j] then
9 P [i+ j]← P [i+ j] ∪ {j}

10 return P [n]

Figure 1. Compute the Abelian periods with no head and no tail of a word w of length n

AbelianPeriodsNoHeadWithTail(w, n)
1 V [i]← P(w[1 . . i]), ∀ 1 6 i 6 n
2 P [i]← {i}, ∀ 1 6 i 6 n/2
3 P [i]← ∅, ∀n/2 < i 6 n
4 for i← 1 to n− 1 do

5 for j ∈ P [i] do
6 if i+ j > n then

7 if V [n]− V [i+ 1] ≤ V [j] then
8 P [n]← P [n] ∪ {j}
9 else if V [i+ j]− V [i] = V [j] then

10 P [i+ j]← P [i+ j] ∪ {j}
11 return P [n]

Figure 2. Compute the Abelian periods without head and with a possibly non-empty tail of a word
w of length n

Example 7. w = abaababbbabaabbabbaaabbababbaa:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

w[i] a b a a b a b b b a b a a b b a b b a a a b b a b a b b a a

P {1}{2}{3} {5}{6} {10} {15} {10} {10}

{3}

Theorem 8. The algorithmAbelianPeriodsNoHeadNoTail computes all the Abe-
lian periods with neither head nor tail of a word w of length n in time O(n2 × σ) if
the test in line 8 is performed by comparing Parikh vectors and in time O(n2) if the
test in line 8 is performed by using S-signatures or P-signatures.

3.2 Abelian periods without head with tail

Now we consider Abelian periods without head and with a possibly non-empty tail.
We adapt the previous algorithm by setting P [i] = {i} for 1 6 i 6 n/2 (see algorithm
Figure 2).

Theorem 9. The algorithm AbelianPeriodsNoHeadWithTail computes all the
Abelian periods without head and with tail of a word w of length n in time O(n2× σ)
if the tests in lines 7 and 1 are performed by comparing Parikh vectors and in time
O(n2) if the test in lines 7 and 1 are performed by using S-signatures or P-signatures.
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4 Quasi-Linear Time Computation of Abelian Periods with
neither Head nor Tail

In a linear-time preprocessing phase we compute Pw[j], j = 1, 2, . . . , σ, the compo-
nents of the Parikh vector of the word w. Also we compute

g = gcd(Pw[1],Pw[2], . . . ,Pw[σ])

and q = n/g. Without loss of generality we suppose σ ≥ 2 and g > 1. In O(
√
g) time

we compute a stack D of all divisors 1 ≤ d ≤ g of g in ascending order.

Definition 10. The word w is an Abelian repetition of period p and exponent

e if p | n and each of the e substrings

w[1 . . p],w[p+ 1 . . 2p], . . . ,w[n− p+ 1 . . n]

contains (p× Pw[j])/n = Pw[j]/e occurrences of the letter σj ∈ Σ for any j.

In other words, an Abelian repetition of period p and exponent e is the concate-
nation of e strings all having the same Parikh vector P of length p.

Observation 3 The only possible Abelian periods p of w are of the form p = d× q,
where d is an entry in D. Thus the smallest period is d× q, where d is the least such
entry.(Note that the last element of D is g.)

Definition 11 (Segment). A factor w[i . . j] is a segment of w if:

1. i = k × q + 1 with k > 0;
2. j − i+ 1 = t× q with t > 1;
3. Pw[i..j][k]/(j − i+ 1) = Pw[k]/|w| for every letter σk ∈ Σ;
4. there does not exist a j′ < j such that j′−i+1 = t′×q and Pw[i..j′][k]/(j

′−i+1) =
Pw[k]/|w| for every letter σk ∈ Σ.

In other words segments:

– start at positions multiples of q plus one;
– are non-empty and of length multiple of q;
– have the same proportion of every letter as the whole word w;
– are of minimal length.

Since we suppose that w has Abelian period p ∈ 1 . . n/2, it follows that either w
itself is a segment or else consists of a concatenation of segments. Note that a segment
is a minimum-length substring of Abelian period p.

Lemma 12. The word w has Abelian period d × q if and only if for every k =
0, 1, . . . , n/(d× q)− 1, k × d× q + 1 is the starting position of a segment of w.

We begin by computing the segments of w (see Figure 3), making use of the
precomputed values q and Pw. We compute a Boolean array L of n elements: for
1 6 i 6 n, L[i] = 1 iff i is the starting position of a segment, L[i] = 0 otherwise.

Observation 4 If p is an Abelian period of w with neither head nor tail and T is
the length of the longest segment of w divided by q, then p > T .
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ComputesSegments(w, n, q,Pw)
1 (i, T )← (1, 0)
2 L← 0n

3 while i 6 n do

⊲ Start a new segment
4 (i0, j, t, count)← (i, 0, 0, 0σ)
5 while j 6 σ do

⊲ See if t partitions of length q form a segment
6 t← t+ 1
7 for k ← 1 to q do

8 j ← w[i]
9 count[j]← count[j] + 1

10 i← i+ 1
⊲ Check counts of letters 1 . . j from position i0

11 j ← 1
12 t′ ← t× q
13 while j 6 σ and count[j] = (t′ × Pw[j])/n do

14 j ← j + 1
⊲ Update the array L and the maximum segment length T

15 L[i0]← 1
16 T ← max{T, t}
17 return (L, T )

Figure 3. Compute a Boolean array L of the starting positions of the segments of w ordered from
left to right, also the maximum number T of factors of length q in any segment

The procedure that computes L visits each position i inw once, and corresponding
to each i performs constant-time processing: the internalwhile loop updates j at most
σ times corresponding to each partition of length q > σ.

Proposition 13. The algorithm ComputesSegments(w, n, q,Pw) computes the
segments of a word w of length n on an alphabet of size σ in time O(n).

Example 14. w = abaababbbabaabbabbaaabbababbaa: n = 30, Pw = (15, 15)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

w[i] a b a a b a b b b a b a a b b a b b a a a b b a b a b b a a

L[i] 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0
T 0 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

w is thus a concatenation of segments: w = ab · aababb · ba · ba · ab · ba · bbaa · ab ·
ba · ba · bbaa and T = 3.

The procedure, given in Figure 4, scans all the multiples of the divisors d ∈ D,
their number is equal to the sum of the divisors of g which is in O(n log log n) [19].

In practice, the case where d = 1 is treated in lines 5 and 7. If T = 1, it means
that w can be segmented into factors of length q: q is then an Abelian period of w.
The case where d = g is treated outside the main loop, at the end of the algorithm:
it corresponds to the trivial case where the Abelian period is n.

Example 15. w = abaababbbabaabbabbaaabbababbaa: n = 30, Pw[1] = Pw[2] =
15, g = 15, q = 2, D = (1, 3, 5, 15) and T = 3. Since T 6= 1, q is not an Abelian
period: case d = 1 is done. When d = 3, p = 7 and 7 is not a starting position of a
segment. When d = 5, p = 11 and 11 is a starting position of a segment then p = 21
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ComputesPeriod(w, n)
1 Compute Pw, g,D
2 q ← n/g
3 (L, T )← ComputesSegments(w, n, q,Pw)
4 R← ∅

⊲ Deal quickly with easy cases
5 if T = 1 then

6 R← R ∪ {q}
7 d← Pop(D)

⊲ Fast forward in D past impossible cases
8 repeat

9 d← Pop(D)
10 until d > T
11 while d < g do

12 p← d× q + 1
⊲ Test if all multiples of p are starting positions of segments

13 while p < n do

14 if L[p] = 1 then

15 p← p+ d× q
16 else break

17 if p > n then

18 R← R ∪ {d× q}
19 d← Pop(D)
20 if q 6= n then

21 R← R ∪ {n}
22 return R

Figure 4. In ascending order of divisors d of g, use the array L to determine whether or not w is
an Abelian repetition of period d× q

and 21 is a starting position of a segment: 10 is an Abelian period. The case where
d = 15 is trivial since it corresponds to Abelian period n. Thus the algorithm returns
{10, 30}. In the worst case the algorithm could have scanned all the multiples of 3
(they are 5) and all the multiples of 5 (they are 3) less than or equal to 15.

Theorem 16. The algorithm ComputesPeriod(w, n) computes all the Abelian pe-
riods of w in time O(n log log n).

5 Conclusions and perspectives

In this article we gave brute force algorithms for computing Abelian periods for a
word w of length n in the two following cases: no head, no tail and no head with tail.
These algorithms run in time O(n2) but is this complexity tight? We also present a
quasi-linear time algorithm for computing all the Abelian periods of a word in the
case no head, no tail. Does an algorithm of the same complexity exist for a word w

of length at most n + q − 1 containing a substring of length n that is an Abelian
repetition with neither head nor tail of some period dq ≤ n?
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