
A Multiobjective Approach to the Weighted

Longest Common Subsequence Problem

David Becerra, Juan Mendivelso, and Yoan Pinzón

Universidad Nacional de Colombia
Facultad de Ingenieŕıa

Department of Computer Science and Industrial Engineering
Research Group on Algorithms and Combinatorics (ALGOS-UN)
Carrera 30 No. 45-03. Edificio 453. Oficina 207. Bogotá, Colombia

{dcbecerrar,jcmendivelsom,ypinzon}@unal.edu.co

Abstract. Finding the Longest Common Subsequence in Weighted Sequences (WLCS)
is an important problem in computational biology and bioinformatics. In this paper, we
model this problem as a multiobjective optimization problem. As a result, we propose a
novel and efficient algorithm that not only finds a WLCS but also the set of all possible
solutions. The time complexity of the algorithm depends primarily on the number of
length-1 common subsequences between the two input weighted sequences.

Keywords: longest common subsequence, weighted sequences, multiobjective opti-
mization, bioinformatics

1 Introduction

Algorithmic studies over molecular data have allowed the concomitant development of
valuable analysis in biological processes. Specifically, studies on comparative genomics
have lead to the development of powerful data analysis tools that have been success-
fully applied in several contexts from gene functional annotation to phylogenomics
and whole genome comparison [4].

Since the publication of the human genome in 2001 [11], weighted sequences, also
called position weight matrices [13], have become a major area of research in compu-
tational biology. A weighted sequence can be defined as a sequence of character-sets
where, at each position of the sequence, each character is associated to a weight
(or frequency). Thus, weighted sequences allow a newer and more precise encoding
paradigm that allows to model several biological processes. For instance, in a molecu-
lar weighted sequence, the characters can represent either nucleotides or amino acids,
and the weight can model either the occurrence probability of a character or the sta-
bility contributed by the character to a molecular complex [9]. Weighted sequences
can be used to represent a variety of sequence lengths from short sequences, like pro-
tein binding sites, to much larger sequences such as profiles of protein families or even
a complete chromosome sequence [6].

In recent years, different research groups have been modeling several other biolog-
ical processes through weighted sequences. In [14], weighted sequences were used to
propose a simple modeling of the translation of gene expression and regulation. Later,
new weighted sequence algorithms were given for DNA approximate matching [2].
Moreover, in [10], a novel data structure called weighted suffix tree was introduced.
This structure can be used to compute repeats and covers, as well as to detect the
longest common substring. More recently, weighted sequences were used to model
gene expression data derived from DNA micro-array analysis [15]. Despite its wide

David Becerra, Juan Mendivelso, Yoan Pinzón: A Multiobjective Approach to the Weighted Longest Common Subsequence Problem, pp. 64–74.

Proceedings of PSC 2012, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05095-8 c© Czech Technical University in Prague, Czech Republic

D.Becerra et al.: A Multiobjective Approach to the Weighted LCS Problem 65

range of utilities, it is important to consider that, in most sequence comparison meth-
ods, the quality of the results are significantly affected by small perturbations in the
algorithmic methods and the data. Furthermore, there is a dearth of computational
tools to compare sequences beyond a certain length and quality [3].

The Longest Common Subsequence (LCS) of a given set of sequences is one of
the most used similarity measures in computational biology. Computing the LCS has
been analytically shown to be intractable (NP- hard in the strong sense) even for
sequences over a binary alphabet [12]; however, it can be solved for a fixed number
of sequences in polynomial time via standard dynamic programming algorithms [7].
Then, the development of adequate algorithms for the variants of the LCS has be-
come an increasing necessity, considering that efficient algorithms are an undeniable
requirement for the analysis of high throughput sequencing data.

Particularly, the Weighted Longest Common Subsequence (WLCS) is a similarity
measure between weighted sequences. The WLCS of two weighted sequences, X and
Y , is the longest common subsequence such that the product of the weights associated
to each character in the subsequence is greater or equal to given bounds for X and
Y . It was proven that computing the WLCS is NP-hard for unbounded alphabets [1];
opposite to the case of the LCS, the tractability of the problem for a bounded alphabet
is still an open problem. To the best of our knowledge, there are only two algorithms
to solve the WLCS problem. Specifically, a (1/|Σ|)-approximation algorithm was
presented in [1]; more recently, this algorithm was improved by means of a polynomial-
time approximation scheme in [5]. In this paper, we propose an exact algorithm, based
on a new concept of dominance, to find the WLCS of two weighted sequences over
bounded alphabets (DNA). As an advantage, the proposed algorithm returns not only
the longest common subsequence (and its length), but also the set of all dominant
common subsequences.

The outline of the paper is as follows. The next section provides some definitions
necessary to understand the essential features of this paper. Then, the framework
to tackle the WLCS problem as a simple multiobjective problem is presented in §3.
In §4, the proposed algorithm is described along with its time complexity analysis
and an example. The concluding remarks are drawn in the last section.

2 Preliminaries

Let Σ be an alphabet of cardinality σ = |Σ| which consists of a set of symbols.

Definition 1 (longest common subsequence). The LCS problem for two input
strings x and y consists of finding the longest sequence p such that p is a subsequence
of both x and y.

Definition 2 (weighted sequence). A weighted sequence X = X[1] · · ·X[n] over
the alphabet Σ is a sequence of n sets X[i], 1 ≤ i ≤ n. Each set X[i] is comprised
of pairs (sj, π

X
i (sj)), where sj ∈ Σ and πX

i (sj) is the occurrence probability of the
character sj at location i. Additionally,

∑
j π

X
i (sj) = 1 for every position 1 ≤ i ≤ n.

For convenience and brevity, we will refer to X[i] as the set of characters occurring
at position i with a probability greater than zero.

For a finite alphabet Σ = {s1, . . . , sσ}, we can view a length-n weighted sequence
X as a |Σ|×n matrix A, where A[j, i] = πX

i (sj). The elements of this matrix represent
the occurrence probability of each character in every position of the sequence. Thus,

66 Proceedings of the Prague Stringology Conference 2012

matrix A is comprised of values within the real interval [0,1]. As an example, two
weighted sequences are illustrated in Fig. 1. Notice that for a given character the
occurrence probability can be different at each position; however, for a given position,
the occurrence probability of all characters must sum 1.

X = Y =

(a)

(b)

0a
0c
1g
0t

X =

1 3 52 4

0.6a
0.4c
0g
0t

0a
0c
0g
1t

0a
0.5c
0g

0.5t

1a
0c
0g
0t

0a
0c
1g
0t

Y =

1 3 52 4

0.5a
0.5c
0g
0t

1a
0c
0g
0t

0a
0c
0g
1t

0a
0c
1g
0t

6

0.8a
0c
0g

0.2t

Figure 1. Example of 2 weighted sequences drawn from the alphabet ΣDNA = {a, c, g, t} shown in
(a) as a matrix and in (b) as a 2-dimensional pictogram

Definition 3 (subsequence of a weighted sequence). For a given weighted
sequence X = X[1] · · ·X[n], p = pi1 · · · pi|p| (where pij ∈ Σ, 1 ≤ j ≤ |p| and 1 ≤ i1 <

i2 < · · · < i|p| ≤ n) is a subsequence of X iff pij ∈ X[ij] for 1 ≤ j ≤ |p|.

Definition 4 (occurrence probability of a subsequence). Let p = pi1 · · · pi|p|
be a subsequence of a weighted sequence X = X[1] · · ·X[n]. The occurrence probabil-

ity of the subsequence p with respect to X, denoted as πX(p), is given by
∏|p|

j=1 π
X
ij
(pij).

See Fig. 2 for an example illustrating this last definition.

p = acata with =(2,3,4,7,10)ij ¼Z()=0.6 1 0.3 0.25 0.3=0.0135p £ £ £ £

Z =

0a
0.2c
1g

0.8t

Z =

1 3 52 4

0.6a
0c
0g

0.4t

0a
1c
0g
0t

0.3a
0c

0.7g
0t

1a
0c
0g
0t

6

0a
1c
0g
0t

7

0.25a
0.25c
0.25g
0.25t

8

0a
0c
1g
0t

9

0a
0.2c
0.8g
0t

10

0.3a
0c

0.7g
0t

i1 i2 i3 i4 i5

Figure 2. Example of a subsequence p extracted from a weighted sequence Z. Note that p′ = acata
with ij = (2, 3, 5, 7, 10) is also a subsequence of Z but πZ(p′) = 0.045

Definition 5 (weighted longest common subsequence problem1). Let X =
X[1] · · ·X[n] and Y = Y [1] · · ·Y [m] be two weighted sequences. For two given con-
stants α1 and α2 with 0 < α1, α2 ≤ 1, the weighted longest common subsequence is

1 Also known as the Longest Common Weighted Subsequence Problem with Two Thresholds.

D.Becerra et al.: A Multiobjective Approach to the Weighted LCS Problem 67

the maximal integer length ℓ such that there is a common subsequence of length ℓ,
p = pi1 · · · piℓ, for which πX(p) ≥ α1 AND πY (p) ≥ α2.

Definition 6 (dominance between two common subsequences). Let X =
X[1] · · ·X[n] and Y = Y [1] · · ·Y [m] be two weighted sequences where n ≤ m. Also,
let p and q be two length-h common subsequences of both X and Y where p and q
occur in X at indices (ix1

, . . . , ixh
) and (jx1

, . . . , jxh
), respectively. Similarly, p and

q occur at Y at indices (iy1 , . . . , iyh) and (jy1 , . . . , jyh), respectively. We say that p
dominates q, denoted as p ≺ q, iff:

i) πX(p) ≥ πX(q)
ii) πY (p) ≥ πY (q)
iii) ixh

< jxh

iv) iyh < jyh

Notice that if p dominates q, then the positions of the last character of p, in
both X and Y , are lower than those of q. This fact is useful given that a common
subsequence that ends at a lower index will have a better chance of being extended;
thus, it may lead to longer common subsequences. On the other hand, the occurrence
probabilities of p, with respect to X and to Y , are greater or equal to the ones of q.
Consequently, if p dominates q, a possible LCS containing p will be at least as good
as the LCS containing q.

Definition 7 (multiobjective optimization problem – MOOP). Find a vec-

tor x = [x1, x2, . . . , xn]
T that:

i) satisfies the r equality constraints hi(x) = 0, 1 ≤ i ≤ r,
ii) is subject to the s inequality constraints gi(x) ≥ 0, 1 ≤ i ≤ s, and
iii) optimizes the vector function f(x) = [f1(x), . . . , fm(x)]

T .

Then, it is clear that a MOOP problem focuses on searching for the optimal values
of the decision variables (vector x) that minimize/maximize the objective function
vector f(x) while satisfying the constraints. The vector x is an n-dimensional decision
vector or solution and X is the decision space, i.e., the set of all expressible solutions.
The objective vector z = f(x) maps X into ℜm, where m ≥ 2 is the number of
objectives. The image of X in the objective space, denoted as Z, is the set of all
attainable points (see Fig. 3).

xn

x1

x2

z1

zm

X
Z

decision
space

objective
space

z2

Figure 3. The n-dimensional parameter space maps to the m-dimensional objective space

68 Proceedings of the Prague Stringology Conference 2012

3 WLCS as a Multiobjective Optimization Problem

In any multiobjective problem, two spaces should be defined: the decision space (the
set of all expressible solutions), and the objective space (the space where the image
of the solutions is the set of all attainable solutions). In general, to model any spe-
cific problem as a MOOP, three basic sets should be established: a set of objective
functions, a set of decision variables and a set of equality/inequality constraints.

Particularly, for the WLCS problem, the length of the LCS should be maximized
under two weight restrictions. Moreover, more than one possible direction of extending
the substrings must be considered. Given two input weighted sequences,X and Y , and
two constants α1 > 0 and α2 > 0, let p = pi1 · · · pih be a length-h common subsequence
of X and Y that occurs at indices (ix1

, . . . , ixh
) and (iy1 , . . . , iyh), respectively. Then,

we define the elements of the MOOP model as follows:

– Decision Space. A vector with three components will be used as the decision
vector. The first component is the list of symbols of the subsequence, i.e. pi1 · · · pih .
The second component is the list of indices at which the subsequence p occurs in
X, i.e., (ix1

, . . . , ixh
). Finally, the third component is the list of indices at which the

subsequence p occurs in Y , i.e., (iy1 , . . . , iyh).

– Objective space. A vector with four components will be used as the objective
function. The first objective, which will be maximized, is the occurrence probability
of the subsequence with respect to X, i.e., πX(p). The second objective, which will
also be maximized, is the occurrence probability of the subsequence with respect to
Y , i.e., πY (p). The third and fourth objectives, which will be minimized, are the
positions of the last symbol of the subsequence in X, i.e. ixh

, and in Y , i.e., iyh ,
respectively. Then, the dominance relation between two common subsequences can
be easily checked (c.f. see Definition 6).

– Feasible regions. The following constraints establish the feasible regions: the
occurrence probabilitities of the subsequence p with respect to X and to Y must be
greater or equal to α1 and α2, respectively. That is, π

X(p) ≥ α1 and πY (p) ≥ α2.

The proposed algorithm maximizes the length of the longest common subsequence
by means of the objective functions. Its core idea is building different pareto opti-
mum solutions, by using Definition 6, until the LCS is found in one of these optimum
sets. Specifically, the algorithm iteratively finds new decision spaces as the result of
the concatenation between the former pareto optimum set and the decision space of
matches. The new decision space contains all the subsequences of length ℓ, while the
former decision space contained all the subsequences of length ℓ− 1. Then, these so-
lutions are mapped to new objective spaces from which only the new pareto optimum
set is extracted. The algorithm will continue until a new decision space can no longer
be created (see Fig. 4, for an illustration of this process). In the next section, we
describe in detail the proposed algorithm.

4 MiCO: An Algorithm for the WLCS Problem

Given two input weighted sequences, X = X[1] · · ·X[n] and Y [1] · · ·Y [m], and two
given constants α1 and α2, where 0 < α1, α2 ≤ 1, our algorithm computes the

D.Becerra et al.: A Multiobjective Approach to the Weighted LCS Problem 69

Iteration 1

xn

x1

decision space with
1-length common

subsequences

zn

z1

objective space of
1- common

subsequences
length

Iteration 2

xn

x1

decision space with
2- common

subsequences
length

zn

z1

objective space of
2- common

subsequences
length

Iteration -n 1

xn

x1

decision space with
(-1)- common

subsequences
n length

zn

z1

objective space of
(-1)- common

subsequences
n length

Iteration n

xn

x1

decision space with
- common
subsequences

n length

.

.

.

.

.

.

.

.

.

.

All the
LCSs are
pareto

optimum

Figure 4. Iterations of the algorithm between the decision and objective spaces

weighted longest common subsequence of X and Y , along with all dominant common
subsequences. The algorithm’s framework is as follows:

– Step 1 [computing 1-length common subsequences]: Find a set ∆ of all
length-1 common subsequences of X and Y .

– Step 2 [finding dominant common subsequences]: Compute the set Di of
all the length-i common subsequences of X and Y that are not dominated by any
other common subsequence. First, the dominant subsequences from ∆ are added
to D1. Then, the following two phases are performed for each δ ∈ ∆:
– Phase 1 [inserting concatenations with δ]: Updates Di by inserting all the
new length-i common subsequences, for i ≥ 2, resulting from the concatenation
between each d ∈ Di−1 and the given δ.
– Phase 2 [deleting dominated subsequences]: Updates Di by deleting all
the elements that were dominated by the common subsequences inserted during
Phase 1.

While Step 1 is straightforward to implement, Step 2 is perhaps the trickiest step
and needs a bit more of attention. Both of these steps are described below in more
detail.

Step 1: To achieve the goal of this step, we begin by considering a matrix like the
matrix shown in Fig. 6(a). In such matrix X[i], 1 ≤ i ≤ n, and Y [j], 1 ≤ j ≤ m,
represent a column and a row, respectively. We now can proceed to compute all the
length-1 common subsequences in a row-wise fashion from top to bottom, as follows:
First, X is traversed (from left to right) and all the positions i for which πX

i (γ) ≥ α1,
for each character γ, are inserted into ListX [γ]. Thereafter, Y is traversed (from top
to bottom) and, for each position j in Y , all the lists ListX [γ] for which πY

j (γ) ≥ α2

are merged-sorted into a list Γ containing (ℓ, γ), where ℓ ∈ ListX [γ]. Then, we add

70 Proceedings of the Prague Stringology Conference 2012

the triplet (j, ℓ, γ) to ∆ for every (ℓ, γ) ∈ Γ . Fig. 6(b–c) illustrates this operation on
our running example.

Step 2: This is an iterative process that is performed once for each element δ ∈ ∆
computed in the previous step. Broadly, the main idea is to use ∆ to compute the set
Di of the common subsequences with the following invariant condition of stability:
no element (common subsequence) in Di dominates any other element in Di. This
basically means two things: i) a new common subsequence can be inserted into Di iff
it is not dominated by any other common subsequence currently in Di, and ii) all the
common subsequences that are dominated by the new arriving subsequence should
be deleted from Di.

MiCO Algorithm
Input: X, Y , Σ, α1, α2

Local Variables: n← |X|, m← |Y |, ∆← ∅
Output: D
1 for i← 1 to n do
2 forall γ ∈ Σ do
3 if πX

i (γ) ≥ α1 then ListX [γ].add(i)
4 for j ← 1 to m do
5 Γ ← ∅
6 forall γ ∈ Σ
7 if πY

j (γ) ≥ α2 then Γ.mergeSort(ListX [γ], γ)
8 forall (ℓ, γ) ∈ Γ do δ ← (j, ℓ, γ), ∆.add(δ)
9 if !Dominate(δ,D1) then
10 D1.add(δ)
11 i← 2
12 forall d ∈ Di−1 do
13 forall δ ∈ ∆ do
14 if (Concatenate(d, δ) and !Dominate(dδ,Di))then
15 Di.add(dδ)
16 Delete(dδ,Di)
17 if Di = ∅ then
18 return Di−1

19 i← i+ 1

Figure 5. MiCO Algorithm

The elements of D1 are the dominant length-1 subsequences extracted from ∆,
while the elements of Di, for i > 1, are the dominant length-i subsequences generated
by concatenating every d ∈ Di−1 with the elements δ ∈ ∆. When in Step 2 no
subsequence is inserted, i.e. Di = ∅, this means that the length of the weighted LCS
is i−1 and the algorithm returns all the set Di−1. In order to derive our final algorithm
we need to define the following procedures:

– Procedure Concatenate(d, δ): Returns true if subsequence d can be concatenated
with subsequence δ, (i.e. the positions of the row and the column of the last char-
acter of subsequence d are lower than the row and the column of δ, respectively),
or false otherwise.

– Procedure Dominate(dδ,D): Returns true if subsequence dδ is dominated by any
element d ∈ D, or false otherwise.

D.Becerra et al.: A Multiobjective Approach to the Weighted LCS Problem 71

– Procedure Delete(dδ,D): Deletes all the elements of D that are dominated by d.

The pseudocode for the MiCO algorithm is presented in Fig. 5. The time com-
plexity analysis and an example are presented in §4.1 and §4.2.

(a) (b)

ListX[] = 2,5a

ListX[] = 2,4c

ListX[] = 1g

ListX[] = 3,4t

for = 1, 1 =(1,1,)j { } 1 g, ±
for = 2, =(2,2,),j { } 2 a2,2,4,5 , =(2,2,), =(2,4,), =(2,5,)3 4 5c c a± ± ± ±

for = 4, =(4,3,),j { } 8 t3,4 , =(4,4,)9 t± ±
for = 5, =(5,1,)j { } 10 g1 , ±
for = 6, =(6,2,),j { } 11 a2,5 , =(6,5,)12 a± ±

for = 3, =(3,2,),j { } 6 a2,5 , =(3,5,)7 a± ±

(c)

1 2 3 4 5

1

2

3

4

5

6

X

Y

0.8
0.2

a
t

1g

0.5
0.5

a
c

1a

1t

1g

1g
0.6
0.4

a
c 1t 1a

0.5
0.5

c
t

1 2 3 4 5

1

2

3

4

5

6

X

0.8
0.2

a
t

1g

0.5
0.5

a
c

1a

1t

1g

1g
0.6
0.4

a
c 1t 1a

0.5
0.5

c
t

±2 a
±3 c

±1 g

±6 a

±8 t

±4 c ±5 a

±7 a

±9 t

±10g

±11a ±12a

Y

Figure 6. (a) Matrix representation of weighted sequences X and Y , (b) computation trace of Step
1, (c) resulting length-1 common subsequences for α1 = α2 = 0.2

4.1 Time Complexity Analysis

The time complexity of Step 1 (see MiCO pseudo-code, lines 1–8) is bounded by
O(σn + σm) = O(σm). This process can be done in O(m logm) time for the case
where the sequences are unweighted [8]. However, when this approach is used on
weighted sequences, its time complexity becomes O(σm log(σm)) which is worse than
the time complexity of the implementation proposed for Step 1. Step 2, computed in
lines 12–19 (see MiCO pseudo-code), can be implemented in O(ℓ|∆||D|), where |∆|
is the number of length-1 common subsequences between the two input sequences,
|D| is the size of the sets resulting from the concatenations, and ℓ is the length of the
computed WLCS. Clearly the overall time complexity of the algorithm is determined
by Step 2. The space complexity is bounded by O (|∆||D|). It should be remarked
that |∆| will decrease as the algorithm runs; on the other hand, |D| will tend to
increase during the first stages of the running time and decrease during the last ones.

4.2 Example

For the input weighted sequences X and Y shown in Fig. 1 and two constants
α1 = 0.2 and α2 = 0.2, Fig. 6(c) shows how to calculate the set of length-1 com-
mon subsequences, ∆, using the procedure described in Step 1 (MiCO pseudo-code,
lines 1–8). Then, Fig. 7 shows all the iterations during Step 2. The set D1 is calcu-
lated by calling !Dominate(δ,D1) (MiCO pseudo-code, line 9–10). In the first itera-
tion of the for loops (MiCO pseudo-code, lines 12–13), the set F2 is built by calling

72 Proceedings of the Prague Stringology Conference 2012

(1, 1)[6/5]

¢

F5 Concatenate= (,)¢ D4 = Â

it
er

a
ti
o
n

1
it
er

a
ti
o
n

2
it
er

at
io

n
3

iteration 5

±3 (0.4, 0.5)c [2/2]

±4 (0.5, 0.5)c [2/4]

±5 (1, 0.5)a [2/5]

±6 (0.6, 1)a [3/2]

±7 (1, 1)a [3/5]

±8 (1, 1)t [4/3]

±9 (0.5, 1)t [4/4]

±10 (1, 1)g [5/1]

±11 a

± (1, 1)g [1/1]1
±2 (0.6, 0.5)a [2/2]

±1 (0.6, 0,5)ga [1,2/1,2]

±1 (0.4, 0.5)gc [1,2/1,2]

±1 (0.5, 0.5)gc [1,2/1,4]

±1 (1, 0.5)ga [1,2/1,5]

±1 (0.6, 1)ga [1,3/1,2]

±1 (1, 1)ga [1,3/1,5]

±1 (1, 1)gt [1,4/1,3]

±1 (0.5, 1)gt [1,4/1,4]

±1 (0.6, 0.8)ga [1,6/1,2]

±10 (0.6, 0.8)ga [5,6/1,2]

±2
±3
±4
±5
±6
±7

±8
±9
±11

±1 (1, 0.8)ga [1,6/1,5]±12
±11

F2 Concatenate= (,)¢ D1

F3 Concatenate= (,)¢ D2

(0.6, 0.5)gaa [1,2,3/1,2,5]

(0.6, 0.5)gat [1,2,4/1,2,3]

(0.6, 0.4)gaa [1,2,6/1,2,5]

(0.4, 0.5)gca [1,2,3/1,2,5]

(0.4, 0.5)gct [1,2,4/1,2,3]

(0.5, 0.5)gca [1,2,3/1,4,5]±1
±1
±1
±1
±1

±1±2
±2
±2
±3
±3

±4±7
±8
±12
±7
±8

(0.4, 0.4)gca [1,2,6/1,2,5]±1±3±12

±7

±12 a
[6/2]

[6/5]

(0.6, 0.8)

(1, 0.8)

±10 (1, 0.8)ga [5,6/1,5]±12

(0.5, 0.4)gca [1,2,6/1,4,5]±1±4±12
(0.6, 1)gat [1,3,4/1,2,3]±1±6±8

it
er

at
io

n
4 F4 Concatenate= (,)¢ D3

(0.6, 0.4)gata [1,2,4,6/1,2,3,5]

(0.4, 0.4)gcta [1,2,4,6/1,2,3,5]

(0.6, 0.8)gata [1,3,4,6/1,2,3,5]

±1
±1
±1

±2
±3
±6

±8
±8
±8

±12
±12

± ±12

D1

± g1
±10 g

±

D2

±

D3

1 ga
±1 gc
±1 ga
±1 ga
±1 ga

±2
±3
±5
±6
±7

±1 gt±8

±
±10 ga±11

1 ga±11

gaa
gat

1
±1

±2
±2

±7
±8

gct±1±3±8

gta±1±8±12

± gat1±6±8

D4

gata
gcta
gata

±1
±1
±1

±2
±3
±6

±8
±8
±8

±12
±12

± ±12

(0.6, 0.8)gaa [1,3,6/1,2,5]±1±6±12
(1, 0.8)gta [1,4,6/1,3,5]±1±8±12

Figure 7. Computation trace of MiCO (Step 2). Each line represents a common subsequence p. The
values [/] are the indices where p occurs in Y /X; (,) are πX(p) and πY (p)

Concatenate(d,δ) (MiCO pseudo-code, line 14), and the set D2 is established by call-
ing !Dominate(dδ,D1) (MiCO pseudo-code, line 14). The algorithm performs the same
procedure for the second and third iterations in which sets D3 and D4 are respectively
computed. In the fifth iteration, the set D5 is empty after calling Concatenate(d,δ);
thus, the set D4, consisting of three length-4 common subsequences of X and Y ,
is returned as the answer. Fig. 8 depicts, in a more schematic form, these longest
common subsequences found by the proposed algorithm.

Notice that only the current setD needs to be stored; we do not need the additional
data structure Fi, it is only used for clarity purposes. Furthermore, there are some
additional optimizations of the algorithm that were not illustrated in the example.
For instance, the size of ∆ can be decreased in each iteration and, therefore, we do
not need to concatenate the elements d ∈ Di, at each iteration i, with all the elements
δ in the initial set.

5 Conclusions

In this work we presented a new algorithm for the LCS problem applied to weighted
sequences. This algorithm works under a multiobjective perspective, which allows
tackling the LCS problem as an optimization problem. The time complexity of the
algorithm depends on the total number of matches between the two input weighted

D.Becerra et al.: A Multiobjective Approach to the Weighted LCS Problem 73

1g 0.4c
0.6a

0.5t
0.5c

1t 1a

1g

1a

1t

1g

0.5c
0.5a

1 3 52 4

1

2

4

5

6

3

X

Y

0.2t
0.8a

±1

±2
±3

±6

±8

±12

t

a

g

a

c

a

¼X ()= () = 0.6gata±1±2±8±12 ¼X

¼Y ()= () = 0.4gata±1±2±8±12 ¼Y

¼X ()= () = 0.4gcta±1±3±8±12 ¼X

¼Y ()= () = 0.4gcta±1±3±8±12 ¼Y

¼X ()= () = 0.6gata±1±6±8±12 ¼X

¼Y ()= () = 0.8gata±1±6±8±12 ¼Y

Figure 8. WLCS reported by MiCO

sequences, the number of dominant common subsequences detected during the com-
putation and the length of the weighted longest common subsequence.

The main contributions of the paper can be summarized as follows: i) an algo-
rithm that returns all the dominant LCSs between two weighted sequences, and ii) a
framework to tackle the LCS problem as a multiobjective optimization problem.

References

1. A. Amir, Z. Gotthilf, and B. Shalom: Weighted LCS. Journal of Discrete Algorithms, 8
2010, pp. 273–281.

2. A. Amir, C. Iliopoulos, O. Kapah, and E. Porat: Approximate matching in weighted

sequences. Lecture Notes on Computer Science, 4009 2006, pp. 365–376.
3. S. Bhowmick, M. Shafiullah, H. Rai, and D. Bastola: A Parallel Non-Alignment Based

Approach to Efficient Sequence Comparison using Longest Common Subsequences. Journal of
Physics: Conference Series, 256 2010, p. 012012.

4. P. Bonizzoni, G. Vedova, R. Dondi, G. Fertin, R. Rizzi, and S. Vialette: Exem-

plar Longest Common Subsequence. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 4 2007, pp. 535–543.

5. M. Cygan, M. Kubica, J. Radoszewski, W. Rytter, and T. Walen: Polynomial-Time

Approximation Algorithms for Weighted LCS Problem, in Combinatorial Pattern Matching,
R. Giancarlo and G. Manzini, eds., vol. 6661 of Lecture Notes in Computer Science, Springer
Berlin - Heidelberg, 2011, pp. 455–466.

6. D. Gusfield: Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-

tional Biology, Cambridge University Press, 1997.
7. W. Hsu and M. Du: New algorithms for the LCS problem. J. Computer and Systems Sciences,

19 1984, pp. 133–152.
8. J. Hunt and T. Szymanski: A fast algorithm for computing longest common subsequences.

Communications of the ACM, 20(5) 1977, pp. 350–353.
9. C. Iliopoulos, C. Makris, Y. Panagis, K. Perdikuri, E. Theodoridis, and A. Tsaka-

lidis: Efficient algorithms for handling molecular weighted sequences. Exploring New Frontiers
of Theoretical Informatics, 155 2004, pp. 265–278.

10. C. Iliopoulos, C. Makris, Y. Panagis, K. Perdikuri, E. Theodoridis, and A. Tsaka-
lidis: The weighted suffix tree: An efficient data structure for handling molecular weighted

sequences and its applications. Fundamenta Informaticae, 71(2) 2006, pp. 259–277.
11. E. Lander: Initial sequencing and analysis of the human genome. Nature, 409 2001, pp. 860–

921.
12. D. Maier: The complexity of some problems on subsequences and supersequences. Journal of

the ACM (JACM), 25(2) 1978, pp. 322–336.

74 Proceedings of the Prague Stringology Conference 2012

13. C. Makris and E. Theodoridis: String Data Structures for Computational Molecular Biol-

ogy. Algorithms in Computational Molecular Biology: Techniques, Approaches and Applications,
1 2011, pp. 3–27.

14. K. Perdikuri and A. Tsakalidis: Motif extraction from biological sequences: Trends and

contributions to other scientific fields. Information Technology and Applications, 2005. ICITA
2005. Third International Conference on, 1 2005, pp. 453–458.

15. O. Saetrom, O. Snove Jr, and P. Saetrom: Weighted sequence motifs as an improved

seeding step in microRNA target prediction algorithms. RNA, 11(7) 2005, p. 995.

