
An Efficient Parallel Determinisation Algorithm

for Finite-state Automata

Thomas Hanneforth and Bruce W. Watson

1 Universität Potsdam, Germany
2 Stellenbosch University, South Africa

Thomas.Hanneforth@uni-potsdam.de Bruce@fastar.org

Abstract. Determinisation of non-deterministic finite automata (NFA) is an impor-
tant operation not only for optimisation purposes, but also the prerequisite for the com-
plementation operation, which in turn is necessary for creating robust pattern matchers,
for example in string replacement and robust parsing. In the paper, we present an ef-
ficient parallel determinisation algorithm based on a message-passing graph approach.
In a number of experiments on a multicore machine we show that the parallel algorithm
behaves very well for acyclic and cyclic NFAs of different sizes, especially in the worst
case, where determinisation leads to an exponential blow-up of states.

Keywords: finite-state automata, determinisation, parallel algorithms, message pass-
ing, flow graphs, Kahn process networks, replacement rules

1 Introduction

Given a nondeterministic finite automaton (an NFA), determinisation is the con-
struction of an equivalent deterministic finite automaton (DFA), where ‘equivalence’
means that the NFA and DFA accept the same language. Many real-life applica-
tions involve the relatively straightforward construction and manipulation initially of
NFA’s, for example when compiling regular expressions, regular grammars, or other
descriptive formalisms (such as replacement rules in computational linguistics) to fi-
nite automata. While NFAs are often very compact and easily manipulated, several
situations motivate the subsequent construction of a DFA:

– The standard approach for considering equivalence of two automata [4] is to
minimize their respective equivalent DFA’s and compare those (thanks to the
uniqueness-modulo-isomorphism of minimal DFA’s per language).

– Effective complementation of regular languages requires the construction of a DFA
(cf. [4]).

– Complementation is also the key for robust natural language processing applica-
tions based on finite-state automata, e.g. shallow parsing systems etc. Many of
these systems are build upon regular conditional [6] and unconditional replacement
rules [7] which heavily rely on complementation to ensure robust application.

– The end-goal of constructing automata is often to apply it to a string, e.g. for
pattern matching, network security applications, and computational linguistics.
Determinism of the DFA means that only a single ‘current state’ needs to be
tracked while processing input. By contrast, in the worst case, all of an NFA’s
states may become active while processing input – an enormous computational
overhead as each symbol is processed, and usually impractical. In all of those
applications, a DFA is essential [1].

Thomas Hanneforth, Bruce W. Watson: An Efficient Parallel Determinisation Algorithm for Finite-state Automata, pp. 42–52.

Proceedings of PSC 2012, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05095-8 c© Czech Technical University in Prague, Czech Republic

T.Hanneforth et al.: An Efficient Parallel Determinisation Algorithm for FSA 43

The classical ‘subset construction’ algorithm1 follows directly from Rabin & Scott’s
proof of NFA/DFA equivalence, and also shows that an equivalent DFA can be ex-
ponentially larger than the NFA in the worst-case [4]. Most real-life implementations
combine reachability with the subset construction, which can subsequently be tuned
quite effectively. In addition to tuning for memory and speed performance, vari-
ous toolkits also implement incremental determinisation in which the DFA is con-
structed on-the-fly while processing an input string. Recent work by van Glabbeek &
Ploeger [3] presents five determinisation algorithms, classifying them in lattice (based
on the resulting DFA size), and giving benchmarking results.

Despite these algorithmic advances, there has been little work on parallel de-
terminisation. Clock-speeds of modern processors and memory have plateaued and
Moore’s Law advances in silicon chip production are now devoted to more processor
cores, enabling cheap multi-threading, with the caveat that parallel algorithms are
less well-known and much more difficult to get correct. This paper presents one of
the first such parallel algorithms.

Before we turn to the algorithm, we define the relevant technical notions in the
next section. Then, Section 3 restates the standard reachability-based serial deter-
minisation algorithm, before it develops an efficient parallel one. In Section 4, we
give a short C++ code fragment which implements the parallel algorithm. Finally,
in Section 5, we report on several experiments we conducted to compare serial and
parallel determinisation.

2 Preliminaries

An alphabet Σ is a finite set of symbols. A string x = a1 · a2 · · · an over Σ is a finite
concatenation of symbols ai taken from Σ (the concatenation operator · is normally
omitted). The length of a string x = a1 · · · an – symbolically |x| – is n. The empty
string is denoted by ε and has length zero. Let Σ∗ denote the set of all finite-length
strings (including ε) over Σ.
A non-deterministic finite-state automaton (NFA) A is a 5-tuple 〈Q,Σ, q0, δnd, F 〉
with Q being a finite set of states; Σ, an alphabet, q0 ∈ Q, the start state; δnd :
Q×Σ 7→ 2Q, the transition function; and F ⊆ Q, the set of final states.
Define δ∗nd : Q×Σ∗ 7→ 2Q as the reflexive and transitive closure of δnd:

– ∀q ∈ Q, δ∗nd(q, ε) = {q} and
– ∀q ∈ Q, a ∈ Σ,w ∈ Σ∗ : δ∗nd(q, aw) =

⋃
p∈δnd(q,a)

δ∗nd(p, a).

δnd may be a partial function. In case δnd(S, a) is undefined for some state set
S ⊆ Q and a ∈ Σ, we take δnd(S, a) be equal to ∅. The language of a NFA A =
〈Q,Σ, q0, δnd, F 〉, symbolically L(A), is defined as L(A) = {w ∈ Σ∗ | δ∗nd(q0, w)∩F 6=
∅}.

A deterministic finite-state automaton (DFA)A is defined as a 5-tuple 〈Q,Σ, q0, δd, F 〉
where A, Q, q0, and F are the same as in the NFA case and δd is a (partial) function
mapping Q×Σ to Q. The notions of δ∗d and L(A) are defined analogously to the ones
in NFAs.

A state q is reachable if there exists a word w ∈ Σ∗ such that δ∗d(q0, w) = q.
For every NFA, an equivalent DFA (with respect to the recognized language) can

be constructed. The key idea is the subset construction:

1 Sometimes known as the ‘powerset construction’, see the next section.

44 Proceedings of the Prague Stringology Conference 2012

Definition 1 (Subset construction). Let A = 〈Q,Σ, q0, F, δnd〉 be an NFA. Define
A′, the equivalent DFA with L(A′) = L(A) as A′ = 〈2Q, Σ, {q0}, F

′, δd〉 with:

– F ′ = {S ⊆ Q | S ∩ F 6= ∅}
– δd(S, a) =

⋃
q∈S δnd(q, a), ∀a ∈ Σ, ∀S ⊆ Q

The next section describes serial and parallel determinisation algorithms based on
the subset construction.

3 Determinisation algorithms

This section recapitulates the standard serial determinisation algorithm and intro-
duces our parallel version of it.

3.1 Serial determinisation

A näıve NFA determinisation algorithm implementing Definition 1 directly would lead
to worst-case behaviour in every case. In practice, it turns out that most of the states
in the powerset of Q are not reachable from the start state of the DFA. Thus, their
creation can be completely avoided by incorporating a reachability constraint into
the algorithm. This leads directly to the queue-based version shown in Algorithm 1.

Algorithm 1: Serial NFA determinisation algorithm

Input: NFA A = 〈Q,Σ, q0nd
, δnd, F 〉

Output: DFA A′ = 〈Q′, Σ, q0d , δd, F
′〉

1 R({q0nd
})← c← q0d ← 0

2 L← ∅
3 Q′ ← F ′ ← ∅
4 Enqueue(L, 〈{q0nd

}, q0d〉)
5 while L 6= ∅ do
6 〈S, q〉 ← Dequeue(L)
7 Q′ ← Q′ ∪ {q}
8 if S ∩ F 6= ∅ then
9 F ′ ← F ′ ∪ {q}

10 C = {〈a,
⋃

p∈S δnd(p, a)〉 ∈ Σ × 2Q | ∃r ∈ S : δnd(r, a) 6= ∅}

11 for each 〈a, S′〉 ∈ C do

12 p← R(S′)
13 if p = ⊤ then

14 c← c+ 1
15 R(S′)← p← c

16 Enqueue(L, 〈S′, p〉)

17 δd(q, a)← p

Algorithm 1 uses several auxiliary data structures: First of all, R : 2Q 7→ N∪ {⊤}
is a state register mapping subsets of Q to natural numbers. If some set S is not
in the register, R(S) returns ⊤. Initially, the set containing q0d is mapped to zero.
Furthermore, the algorithm maintains a queue L holding pairs 〈S, q〉 ∈ 2Q×N and a
global state counter c initially set to 0. In line 4, the initial pair 〈{q0nd

}, 0〉 is added
to the queue which is subsequently processed in the while-loop between lines 5 and
17. In line 6, a pair 〈S, q〉 is removed from L. If S contains a final state, q is added

T.Hanneforth et al.: An Efficient Parallel Determinisation Algorithm for FSA 45

to the final states of the DFA. In line 10, a set C of candidate states is constructed.
For this purpose, a set Σ ′ ⊆ Σ is created such that a is in Σ ′ if δnd(r, a) is defined
(that is, δnd(r, a) 6= ∅) for some r ∈ S. Then, for each a ∈ Σ ′, a new state set S ′ is
assembled holding all the destination states δnd(p, a) for all p ∈ S. In the following,
we will refer to this step as the symbol indexing step. The for-loop in lines 11–17
processes all pairs 〈a, S ′〉. Line 12 looks up state set S ′ in the register R. If S ′ is not
found in R, it is added to R by assigning it a new state number p by incrementing
the global state counter c (line 14–15). Furthermore, the pair 〈S ′, p〉 is added to the
queue L (line 16). In both cases, a new transition from q to p with a is added to δd
(line 17).

By maintaining a queue L, the algorithm ensures that each state q added to Q′

in line 7 is reachable from that start state q0d . Nevertheless, in the worst case, all
subsets of Q are added to the queue resulting in a running time in O(|2Q||Σ|).

Given an alphabet Σ = {a, b}, the worst case is exihibited by NFAs resulting from
regular expressions r(k) of the form Σ∗a(a+b)k which leads to DFA with 2k+1 states.
Figure 1 shows an NFA constructed from r(2), while Figure 2 shows the equivalent
DFA. Note that DFA constructed from regular expressions r(k) are also complete,
that is, δd is a total function.

Figure 1. NFA created from regular expression Σ∗a(a+ b)2

Figure 2. Equivalent DFA to the NFA of Figure 1

This worst case of exponential blow-up may not be so uncommon in practice as
one might expect. Consider a pattern matching problem [1] where some finite set P
of patterns is to be efficiently found in some given input text. In automata-theoretic
terms, this amounts to constructing an NFA for Σ∗ · P , the infinite regular language
consisting of all strings having some p ∈ P as a suffix. If P has the form a(a+ b)k or
something similar, then determinisation is exponential.

46 Proceedings of the Prague Stringology Conference 2012

3.2 Parallel determinisation

When looking at Algorithm 1 for parts which could be run in parallel and which can
not, the following observations could be made:

– The while-loop between lines 5 and 17 is a good candidate for parallel processing,
since several pairs 〈S, q〉 could be removed from the queue (line 6) and further
processed in parallel.

– This is in particular the case for the symbol indexing step in line 10, since the
creation of follower candidate states for each state set S is completely independent
for all state sets S.

– The for-loop (lines 11–17) could in principle be parallelised, but the main actions
in its body – querying/adding to the state register and adding new transitions to
the DFA – must certainly be serialised.

– The same is true for adding final states to the DFA (line 8–9). Assuming a suitable
data structure for the DFA, adding final states (line 9) and adding transitions (line
17) can certainly be done in parallel.

– Incrementing the state counter (line 14) must again be serialised.

A straightforward way to link parallel and serial components of the algorithm are
the concepts of Kahn Process Networks, (cf. [5]) and Labeled Transition Systems ([2]).

Definition 2 (Labelled Transition System (LTS), cf. [2]). Let a channel c be
an unbounded FIFO-queue (first-in-first-out queue) with elements taken from some
alphabet Σc. Let Chan denote the set of all channels.
An LTS is a tuple 〈S, s0, I, O,Act,→〉 consisting of a set S of states, an initial state
s0 ∈ S, a set I ⊆ Chan of input channels, a set O ⊆ Chan (distinct from I) of output
channels, a set Act of actions consisting of input actions {c?a | c ∈ I, a ∈ Σc} ⊆ Act,
output actions {c!a | c ∈ O, a ∈ Σc} ⊆ Act and a labelled transition relation → ⊆
S × Act× S.

Definition 3 (Kahn Process Network (KPN), cf. [2]). A Kahn process network
is a tuple 〈P,C, I, O,Act, {LTSp | p ∈ P}〉 with the components as follows:

– P is a finite set of processes.
– C, I and O (⊆ Chan) are finite and pairwise disjunct sets of internal channels,
input channels and output channels, respectively.

– Act = {c?a, c!a | c ∈ C ∪ I ∪O, a ∈ Σc}
– Every process p ∈ P is defined by a sequential labelled transition system2 LTSp =

〈Sp, sp0 , Ip, Op, Act,
p
−→〉, with Ip ⊆ I ∪ C and Op ⊆ O ∪ C.

– For every channel c ∈ C ∪ I, there is exactly one process p ∈ P that reads from it
(c ∈ Ip) and for every channel c ∈ C ∪ O, there is exactly one process p ∈ P that
writes to it (c ∈ Op).

Since KPNs are essentially graph structures, they admit an intuitive graphical
representation. Figure 3 shows a KPN for the parallel version of the determinisation
algorithm.

The start state labelled s0 in Figure 3 starts the network by passing the initial
pair 〈{q0nd

}, q0d〉 to the state labelled process state set. This corresponds to enqueuing
the initial pair in line 4 of Algorithm 1. State process state set – which basically
implements the body of the while-loop in Algorithm 1 – is connected with 3 other
nodes:
2 Basically, a sequential LTS accepts at most one input/output operation at a given point in time.

T.Hanneforth et al.: An Efficient Parallel Determinisation Algorithm for FSA 47

q ∈ F

〈{q0nd
}, 0〉 ∈ 2

Q × N

〈S, q〉 ∈ 2
Q × N

〈q, a, p〉 ∈ N× Σ× N

process state sets0

add delta

make final

Figure 3. KPN for the parallel determinisation algorithm. Nodes with octogon shape are parallel
nodes

1. with itself. This corresponds to line 15 of Algorithm 1: a state set S may lead
to the creation of further state sets if these are not already present in the state
register.

2. with state add delta which reflects line 17 of the serial algorithm and
3. with state make final which corresponds to line 9.

All states except s0 work in principle in parallel, but they share three common
resources: the state register, the state counter and the emerging DFA. Access to these
resources must be synchronised by using appropriate locking mechanisms.

4 Implementation

The algorithm of Section 3.2 is implemented on the basis of the flow graph construct
in Intel’s ThreadBuildingBlocks C++ library (TBB, [8]). TBB defines a number of
different graph nodes classes like broadcast node, function node and multifunction node,
which can be connected to each other by data flow edges.

Unlike instances of function node, which are required to always compute a result,
instances of multifunction node are connected to other flow graph nodes by a tuple of
channels, to which output actions are send. This is exactly what is required by state
process state set in Figure 3, since a NFA state set currently processed may not lead
to further new state sets.

The serial and parallel version of the determinisation algorithm are basically based
on the same data structures. State sets of NFAs were implemented as sorted vectors.
To allow an efficient test for equality of state sets and to speed up look-up in the
state register, each state set also stores a permanent hash value. The δ-function
of the class representing serial DFAs is based on a STL hash map, while the one of
the concurrent DFA uses TBB’s concurrent hash map, a map data structure where
the keys can be individually locked. The state registers for the serial and parallel
algorithms are implemented in a similar fashion. Figure 4 states some of the relevant
definitions of the parallel algorithm in C++. ParallelDeterminizerBody, AddDeltaBody,
and MakeFinalBody are classes which implement the actions executed by the three
parallel nodes of Figure 3.

5 Experiments

For the experiments, we choose two different types of NFAs:

1. Acyclic NFAs compiled from word lists and
2. Cyclic NFAs exhibiting the worst case along the lines of Figure 1 with various

number of states and alphabet sizes.

48 Proceedings of the Prague Stringology Conference 2012

1 typedef int STATE;

2 typedef StateSet <STATE > NFAStateSet;

3 typedef std::pair <NFAStateSet ,STATE > NFAStateSetToState;

4 typedef tbb:: concurrent_hash_map <NFAStateSet ,STATE > StateRegister;

5 typedef std::tuple <NFAStateSetToDFAState ,AddDelta ,MakeFinal > NFAStateSetToDFAStateTuple;

6 typedef tbb::flow:: multifunction_node <NFAStateSetToState ,NFAStateSetToStateTuple > ParDetWorkerNode ;

7 typedef tbb::flow:: function_node <AddDelta > AddDeltaNode;

8 typedef tbb::flow:: function_node <MakeFinal > MakeFinalNode;

10 NFA nfa;

11 ConcurrentDFA dfa;

12 StateRegister state_register;

13 tbb::atomic <STATE > state_counter;

14 unsigned num_workers = tbb::flow:: unlimited;

16 tbb::flow:: graph g;

17 tbb::flow:: broadcast_node <NFAStateSetToState > pardet_root_node (g);

18 ParallelDeterminizerBody pardet_worker_body(nfa ,state_register ,state_counter);

19 ParDetWorkerNode pardet_node(g, num_workers , pardet_worker_body);

20 AddDeltaNode add_transition_node(g, num_workers , AddDeltaBody(dfa));

21 MakeFinalNode make_final_node(g, num_workers , MakeFinalBody(dfa));

22 tbb::flow:: make_edge(pardet_root_node , pardet_node);

23 tbb::flow:: make_edge(tbb::flow:: output_port <0>(pardet_node), pardet_node);

24 tbb::flow:: make_edge(tbb::flow:: output_port <1>(pardet_node), add_delta_node);

25 tbb::flow:: make_edge(tbb::flow:: output_port <2>(pardet_node), make_final_node);

Figure 4. C++ definitions of the parallel algorithm based on Intel’s TBB framework

The acyclic NFAs derived from two different English words lists are maximally
non-deterministic, that is, each word inserted into the NFA constitutes a separate
chain from the start state to a distinct final state.

Table 1 summarises the different test automata.

NFA |Σ| |Qnd| |δnd| |Fnd| |Qd| |δd| |Fd|
NFAdict1 56 681,719 681,718 49,999 271,194 271,193 49,999
NFAdict2 45 994,676 994,675 128,972 270,411 270,410 128,972

NFAr(k),2, k ∈ [10 . . . 22] 2 k + 1 2(k + 1) + 1 1 2k+1 2 · 2k+1 2k+1

2

NFAr(k),10, k ∈ [10 . . . 19] 10 k + 1 10(k + 1) + 1 1 2k+1 10 · 2k+1 2k+1

2

NFAr(k),100, k ∈ [10 . . . 16] 100 k + 1 100(k + 1) + 1 1 2k+1 100 · 2k+1 2k+1

2

Table 1. Input NFA for the determinisation algorithms

All subsequent experiments were run on a Linux machine with 2 Intel-XEON
64bit-2.93GHz 4-core-CPUs. Hyperthreading was turned on. In hyperthreaded archi-
tectures, each physical core is supplemented by a virtual core which takes over control
if the physical one is currently stalled because it is waiting for CPU cache data etc.
Virtual cores duplicate only certain sections of their physical counterpart, mainly
those holding the current thread’s state, but not the main computing resources.

Let us now turn to the experiments. In Figure 5, we compare the serial and the
parallel version of the determinisation algorithm for NFAr(k),2 on a logarithmic time
scale. Unsuprisingly, the processing time for both versions grows exponentially with
the number k of disjunctions3 in the NFA. Starting with 211+1 ≈ 4, 000 DFA states,
the parallel algorithm outperforms the serial one, with k = 13, it is already more than
twice as fast. With bigger ks, the processing time of the parallel version converges at
approximately one-third of the serial one.

The advantage of the parallel algorithm becomes even better when the alphabet
size is increased. Figure 6 compares the serial and parallel determinisation of NFAr(k)

with |Σ| = 10 and |Σ| = 100, respecitively. For an alphabet size of 10, the parallel
algorithm is, depending on k, approximately 2 to 3.5 times faster than the serial one.
For |Σ| = 100, the ratio is between 3.7 to 1 for k = 10 and 4.7 to 1 for k = 16.

3 Also known as alternations.

T.Hanneforth et al.: An Efficient Parallel Determinisation Algorithm for FSA 49

0.001

0.01

0.1

1

10

10 11 12 13 14 15 16 17 18 19 20 21 22

ti
m
e
(s
)

k

parallel
serial

Figure 5. Serial vs. parallel determinisation of NFAr(k),2

An explanation for the speedup for bigger alphabet sizes could be, that the number
of DFA states depends only on k and thus the number of pairs 〈S, q〉 forwarded on
the looping channel in Figure 3 is independent of the alphabet size. Furthermore,
the state register shared between the parallel determinisation workers – even when
queried |Σ| times for each state set – doesn’t seem to slow down processing very
much.

To assess the amount of the contribution of the other shared resource – the DFA
under construction – we ran a further experiment where we turned off the channels
to the states add delta and make final in Figure 3 and made a similar move in the
serial version. The results for the NFAr(k),100 are shown in Figure 7.

Figure 7 shows that for the serial case whether DFA construction is turned on
or off makes almost no difference with respect to processing time. But the situation
is different for the parallel algorithm where the DFA construction contributes with
more than 40% to the overall processing time.

Since both serial and concurrent DFA implementations rely on efficient hash maps,
the difference must be explained with locking issues and the administrative overhead
for implementing micro locks.

In our second-last experiment, we compare serial and parallel determinisation
applied to acyclic NFAs, namely, the NFAs derived from the two word lists. Table 2
summarises the results.

NFA serial parallel

dict1 0.465 s 0.197 s
dict2 0.550 s 0.230 s

Table 2. Serial and parallel determinisation of the dictionary NFAs

50 Proceedings of the Prague Stringology Conference 2012

0.001

0.01

0.1

1

10

10 11 12 13 14 15 16 17 18 19

ti
m
e
(s
)

k

r(k),10, parallel
r(k),10, serial

r(k),100, parallel
r(k),100, serial

Figure 6. Serial vs. parallel determinisation of NFAr(k),10 and NFAr(k),100, resp.

0.01

0.1

1

10

10 11 12 13 14 15 16

ti
m
e
(s
)

k

r(k),100, parallel
r(k),100, parallel, no DFA

r(k),100, serial
r(k),100, serial, no DFA

Figure 7. Serial and parallel determinisation of NFAr(k),100, with DFA construction turned on
and off

The parallel version exhibits a speed-up of a factor of approximately 2.4 compared
to the serial algorithm. Even though the alphabet sizes are bigger, this is less than
the speed-up in the cyclic case with an alphabet of size 2.

But, (serial) determinisation of acyclic NFA is very efficient anyway, since it is
linear in the size of the NFA, so parallelising the algorithm is normally not worth the
effort.

T.Hanneforth et al.: An Efficient Parallel Determinisation Algorithm for FSA 51

Intel’s ThreadBuildingBlocks framework allows the control of the amount of paral-
lelism by specifying the number of flow graph node copies concurrently active. A
value of unlimited means that the framework chooses an optimal amount of concur-
rency.

Figure 8 shows the dependencies between the number of workers and the time
consumed for two NFA (r(17), 2 and dict2).

The relative plateau in both graphs for 8 to 16 workers could perhaps be explained
with Intel’s hyperthreading feature. Since the non-virtual cores are not idle when the
parallel algorithm is executed, the virtual ones cannot take over control and thus do
not contribute at all. Also apparent from the graphs is, that the parallel algorithm
performs best if TBB’s scheduler is allowed to control the amount of parallelism.

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 unlimited

ti
m
e
(s
)

workers (N)

r(17),2
dict2

Figure 8. Dependency between the processing time and the number of workers for NFAs r(17), 2
and dict2

6 Conclusion and further work

In the preceding sections, we developed an efficient parallel determinisation algorithm
based on Kahn process networks. Experiments showed that the algorithm performed
particularly well in cases of highly-cyclic result DFAs over realistically sized alphabets.

The worst-case pattern Σ∗a(a + b)k we choose for the cyclic test automata is
not as artifical as it looks at first glance. For example, compiling replacement rules
α→ β [7] relies on a does-not-contain operator Σ∗ · α ·Σ∗ to achieve robust behaviour
by identity-mapping all strings to themselves which do not contain an instance of α.
Since the standard complementation operation depends on a deterministic DFA for
Σ∗ · α ·Σ∗, choosing a(a+ b)k for α creates the worst case.

In further work, we try to improve the algorithm in the following ways:

– Examine and profile the algorithm to reduce the number of locking situations,
– apply randomisation techniques to further reduce locking,

52 Proceedings of the Prague Stringology Conference 2012

– make use of graph theoretic notions to divide the determinisation problem into
largely independent subproblems which can be solved without making much use
of shared resources, and

– study a redundant work approach where each parallel determinisation worker may
process a limited number of state sets already processed by other workers to
increase the relative independence of the workers from the shared resources.

References

1. A. V. Aho: Algorithms for Finding Patterns in Strings, in Handbook of Theoretical Computer
Science, J. van Leeuwen, ed., vol. A, North-Holland, 1990, pp. 257–300.

2. M. Geilen and T. Basten: Requirements on the Execution of Kahn Process Networks, in
Proc. of the 12th European Symposium on Programming, ESOP 2003, Springer Verlag, 2003,
pp. 319–334.

3. R. Glabbeek and B. Ploeger: Five Determinisation Algorithms, in Proceedings of the 13th
International Conference on Implementation and Applications of Automata, CIAA ’08, Berlin,
Heidelberg, 2008, Springer-Verlag, pp. 161–170.

4. J. E. Hopcroft and J. D. Ullman: Introduction to Automata Theory, Languages and Com-

putation, Addison-Wesley, 1979.
5. G. Kahn: The Semantics of a Simple Language for Parallel Programming. Information Process-

ing, 1974, pp. 471–475.
6. R. M. Kaplan and M. Kay: Regular Models of Phonological Rule Systems. Computational

Linguistics, 20(3) 1994, pp. 331–378.
7. L. Karttunen: The Replace Operator, in ACL, 1995, pp. 16–23.
8. J. Reinders: Intel Threading Building Blocks. Outfitting C++ for Multi-core Processor Paral-

lelism, O’Reilly, 2007.

