
Algorithmics of Posets Generated by Words over

Partially Commutative Alphabets⋆

 Lukasz Mikulski, Marcin Pia֒tkowski, and Sebastian Smyczyński

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University

Chopina 12/18, 87-100 Toruń, Poland
frodo@mat.umk.pl, martinp@mat.umk.pl, smyczek@mat.umk.pl

Abstract. It is natural to try to relate partially ordered sets (posets in short) and
classes of equivalent words over partially commutative alphabets. Their common graph-
ical representation are Hasse diagrams. We will investigate this relation in detail and
propose an efficient on-line algorithm that decompresses a string to Hasse diagram.
Further we propose a definition of the canonical representatives of classes of equivalent
words. The advantage of this representation lies in the fact that we can enumerate the
classes of equivalent words in a lexicographical order. We will give an algorithm which
enumerates all distinct classes of words over partially commutative alphabets by their
lexicographically minimal representatives.

Keywords: poset, Hasse diagram, partially commutative alphabets, algorithms, gen-
erations

Introduction

Many practical problems related to partially ordered sets have a very high time of
computation. The examples of very hard tasks are #P-complete problem of counting
number of posets linearisations [1] or NP-complete problem of computing the minimal
number of jumps [10]. From less complex problems we can provide a problem of
computing transitive reduction of a poset graph which has cubic time complexity.

One of the main reasons for such a situation is the dependence of the complexity
exclusively on the number of elements of a poset. We show a stringologic approach
to the posets that uses words over partially commutative alphabets and allows us to
exploit the inner structure of a given poset. As a result, we achieve algorithms with
complexity dependent not only on the number of elements but also on the size of the
concurrent alphabet.

In the first section, we give some basic notions related to the formal languages
theory, partial orders and the concurrent systems modeling. In Section 2 we will look
more closely at the connections between words over semi-commutative alphabets,
their dependency graphs and Hasse diagrams and graphs of partial orders. In the
following section we will deal with decoding Hasse diagrams from strings and give an
O(nk2) complexity algorithm. Here and subsequently n denotes the size of the poset
and k – the size of the (possibly significantly smaller) alphabet.

The studies on the properties of words over partially commutative alphabets re-
quire an efficient tool for enumeration of distinct classes of equivalent words (in the
sense of the independency relation). In the fourth section we deal with this practical

⋆ The research partially supported by Ministry of Science and Higher Education of Poland, grant
N N206 258035.

 Lukasz Mikulski, Marcin Pia֒tkowski, Sebastian Smyczyński: Algorithmics of Posets Generated by Words over Partially Commutative Alphabets,

pp. 209–219.

Proceedings of PSC 2011, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04870-2 c© Czech Technical University in Prague, Czech Republic

210 Proceedings of the Prague Stringology Conference 2011

problem. The solution is motivated by a well known SEPA algorithm [4,5] and has
similar complexity of a single step. Basically we will identify classes of equivalent
words with their lexicographically smallest representatives. Those representatives are
called canonical. Further we will show how to compute the considered representatives
of all classes in the lexicographical order. The single step of this computation is based
on the function which for a given class returns the next class in an order implied by
the lexicographical order of their canonical representatives.

1 Basic notions

We use some basic notions of formal languages theory. By Σ we denote an arbitrary
finite set, called alphabet. Elements of the alphabet are called letters. Words are
sequences over the alphabet Σ. The sets of all finite words will be denoted by Σ∗.

The concurrent alphabet is a pair (Σ,D), where Σ is a common alphabet (finite set)
and D ⊆ Σ × Σ is an arbitrary reflexive and symmetric relation, called dependency
relation. With dependency we associate, as another relation, an independency relation
I = Σ × Σ \D. Having the concurrent alphabet we define a relation that identifies
similar words. We say that word σ ∈ Σ∗ is in relation ≡D with word τ ∈ Σ∗ if and
only if there exists a finite sequence of commutation of subsequent, independent letters
that leads from σ to τ . Relation ≡D⊆ Σ∗ ×Σ∗ is a congruence relation (whenever it
will not be confusing, relation symbol D will be omitted).

After dividing set Σ∗ by the relation ≡ we get a quotient monoid. The elements
of Σ∗/≡ are often called traces (see [3,8,9]). This way, every word σ is related to a
trace α = [σ], containing this word.

Example 1. To the alphabet Σ = {a, b, c, d} we add a dependency relation

a

D

b

cd

or, equivalent, an independency relation
a

I

b

cd

Words abbaacd and abbcaad are equivalent.

The partial order in a set X is a relation ≤ ⊆ X × X, such that ≤ is reflexive,
antisymmetric and transitive. Pair (X,≤) is called partially ordered set, or shortly
poset. With every poset we can associate its directed graph (digraph in short) G =
(X,E). The vertices are the elements of the poset. There is an edge between two
vertices x, y ∈ X if and only if x < y (ie. x ≤ y but x 6= y). Such a graph is always
acyclic. We can also define a Hasse diagram of poset (X,≤) by the transitive reduction
of graph G.

Definition 2. Let G = (X,E) be an acyclic graph. The Hasse diagram of graph G i
acyclic graph H = (X,E ′ ⊆ E), such that an edge (x, y) ∈ E ′ if and only if (x, y) ∈ E
and if there is z ∈ X such that there are both path from x to z and from z to y then
x = z or y = z.

 L. Mikulski et al.: Algorithmics of Posets Generated by Words over Partially Commutative. . . 211

Example 3. The graph of a poset. The dashed edges are not contained in Hasse dia-
gram.

• • • • • • •

2 From partially commutative words to posets

With every word w over partially commutative alphabet (Σ,D) we can associate a
poset. The preorder of this poset is induced by the dependency graph of a word w.
A letter wj is greater than a letter wi if and only if i < j and wiDwj. It is worth
noting that two words are equivalent if and only if their dependency graphs are the
same (isomorphic and respecting labelling).

Reflexive transitive closure of dependency graph of a word is basically a graph of
a poset associated with the word. We can represent it by the graph of its transitive
reduction, called Hasse diagram.

Example 4. A concurrent alphabet (Σ,D), dependency graph and Hasse diagram of
word abbacad over that alphabet.

Σ = { a, b, c, d} D =
a b

cd

a b b a c a d

a b b a c a d

Lemma 5. Every poset (P,≤) can be generated by a word over concurrent alphabet.

Proof. For given poset (P,≤) let us define a concurrent alphabet (Σ,D) in such a
way that Σ = P and p1Dp2 if and only if p1 ≤ p2 or p2 ≤ p1. An abitrary linearisation
of poset (P,≤) corresponds in natural way with a word v ∈ Σ∗ which generates a
poset equal to (P,≤). ⊓⊔

212 Proceedings of the Prague Stringology Conference 2011

The above observations allow us to represent every poset in a compressed way by
a pair consisting of concurrent alphabet and a single word over that alphabet. In the
next section we will provide an efficient algorithm that produces a Hasse diagram by
decompressing a given word to its associated poset.

Further optimisation, possible only for Hasse diagrams which are minimal series-
parallel graphs [14], lead us to another data structure which can be used to solve many
problems in a simpler way (for instance #P-complete problem of counting number of
linear expansions [1] is linear for such posets).

Definition 6. Minimal Series-Parallel digraph (MSP) is a graph consisting of a
single vertex and no edges or is constructed from two MSP – G1 = (V1, E1) and
G2 = (V2, E2) – by the following operations:

– Parallel composition: GP = (V1 ∪ V2, E1 ∪ E2);
– Serial composition: GP = (V1 ∪ V2, E1 ∪ E2 ∪ T1 × S2);

where T1 is the set of sinks of G1 and S2 is a set of sources of G2. In other words,
series-parallel graphs can be represented as an expression built by series and parallel
composition of graphs with single-vertex graphs as atoms.

Example 7. The dependent alphabet D, the word w and its Hasse diagram divided
to series-parallel blocks.

a

b c

d
acbaddbaacabd

D

a1

c2
b3 a4

d5 d6

b7

a8 a9

c10

a11 b12

d13

The properties of series-parallel graphs are deeply studied (see for instance
[2,11,14]). A very useful determinant for sequential parallel graphs is their N-
freeness [13].

Definition 8. N-poset is a poset consisting of four elements a, b, c, d with relations
a < c, b < c and b < d (drawing a graph of such poset with greater elements higher
brings to mind capital letter N).[7]

Definition 9. N-free posets are posets whose Hasse diagrams do not contain an in-
duced subgraph isomorphic with Hasse diagram of N-poset.
In the case of undirected graphs, analogue is P4-free graph (a graph that does not
contain induced path of length 3).

 L. Mikulski et al.: Algorithmics of Posets Generated by Words over Partially Commutative. . . 213

Example 10. N-poset, simple N-free poset and P4-free graph

a b

c d

•

•

•

• •

•

•

•

• •

In general, this type of graphs, also in context of partial orders, is deeply studied
(see [6,12,14] and the references therein). However, observations worth mentioning
are the following:

Lemma 11. If a dependency graph D of an alphabet Σ is P4 − free then Hasse
diagram of every partially commutative word w ∈ Σ∗ is N − free.

The above discution gives another motivation for studies over efficient algorithms
that constructs Hasse diagram.

3 Construction of Hasse diagram

This section is devoted to the problem of constructing the Hasse diagram (see Defini-
tion 2) for a given word over a concurrent alphabet (which is a transitive reduction of
some poset). At the beginning we give an algorithm and its pseudo-code. After that,
we discuss the complexity of our solution.

The algorithm exploits the knowledge of the structure of resulting diagram. We
can summarize it in the following facts:

Lemma 12. Let w ∈ Σ∗ be a word and H(w) = (V,EH) be a Hasse diagram of w.
If there exists the edge connecting vertices labeled wi = a and wj = b then letters a
and b do not appear in word w between indexes i and j.

Proof. Let us denote the dependence digraph G = (V,E) of a word w over concuurent
alphabet (Σ,D). The existance of an edge between wi and wj in graph H implies that
there is also an edge in graph G, hence letters a and b are dependent (formally aDb).
Let us suppose that there exists a letter wk = c (for i < k < j) that is dependent both
with a and b. Then by the Definition 2 there is a path in graph G between vertices
wi and wj of length longer than one, so there is no edge between wi and wj in graph
H(w), which provides to contradiction and completes the proof. ⊓⊔

Lemma 13. Let w ∈ Σ∗ be a word and H(w) be a Hasse diagram of w. For each
vertex there are no more than k = |Σ| outgoing edges and no more than k ingoing
edges.

214 Proceedings of the Prague Stringology Conference 2011

Proof. Let us denote the dependence digraph G = (V,E) of a word w over concuurent
alphabet (Σ,D). Let us suppose that there is a vertex wi which has k + 1 outgoing
edges. There are k letters in alphabet Σ, so two of these outgoing edges lead to two
distinct vertices wj and wk (i < j < k) labelled with the same letter. Withaout loss
of genrality we can assume that wi = a and wj = wk = b. From the Lemma 12 there
is no edge in graph H(w) between vertices wi and wk, which proves that there are at
most k outgoing edges. Similar reasonig allows us to prove second part of thesis and
limit the number of ingoing edges. ⊓⊔

Lemma 14. Let w ∈ Σ∗ be a word and H(w) = (V,E) be a Hasse diagram of w.
Ingoing edges of the given vertex v are fully determined by the last occurrences of the
letters dependent with v = wi. More formally, (wj, wi = v) ∈ E if and only if j < i
and there is no vertex wkDwi such that j < k < i and there is a path from wj to wk.

Proof. Let (wj = a, wi) be an edge in H(w). Lemma 12 implies that wj must be the
last occurrence of letter a in word w that preceedes wi. Second part of the thesis
follows direclty from the Definition 2 (see proof of the Lemma 12). ⊓⊔

Using foregoing observations we propose an additional structure that saves infor-
mation about last occurrences of each letter processed so far. It allows us to immedi-
ately add new vertex to Hasse diagram, with all of its ingoing edges. Our structure
consists of a list of dependency, a set of visibility (both of size at most k) and a
pointer to last occurrence, for each letter of the alphabet Σ. The list Da contains all
letters dependent with a in LIFO (last in – first out) order of their last occurrence
in the currently constructed part of the diagram. Set Va contains all letters b whose
last occurrences are visible from the last vertex labeled with a. In other words, there
exists a path from vi = b to vj = a where vi and vj represent the last occurrences of
those letters in hitherto diagram. Such elements vi will be called sources of vj. The
last element is a pointer La which is basically a pointer to the last vertex labeled with
the letter a in hitherto diagram. We will also use a temporary set V .

Before we start generating a Hasse diagram we set all pointers to null and all sets
to be empty. The lists of dependences should be complete with all dependent letters,
but the initial order does not matter. With such data we are ready to process a new
letter a of a word w in on-line manner, updating the proposed structure after each
step and creating a new vertex and edges. During adding the new vertex labeled with
the letter a we clear set V and browse the list Da. For each letter b from that list
we check if the pointer Lb is not empty and if b does not belong to V (is not already
visible from new vertex). If we succeed, we add a new edge from the vertex pointed
by Lb to the newly created vertex. Addition of a new edge implies that there is also
a path from every source of b to the recently created vertex. Therefore we add set Vb

to our temporary set V . It is worth noting that the order of processing letters form
list Da is important because of dynamically changing set V .

After adding new edges, we have to update our structure. Firstly, we remove the
letter a from each set Vb – the new vertex is now the last occurrence of letter a so it
can not be a source at all. Next we switch the position of the letter a in every list Db

– the letter a is the most recent letter now. The last operation is the update of the
set Va to V ∪ a and pointer La to the position of the new vertex.

 L. Mikulski et al.: Algorithmics of Posets Generated by Words over Partially Commutative. . . 215

Algorithm 1: Hasse diagram

1 foreach a ∈ Σ do

2 La := 0; Va := ∅;

3 for i := 1 to n do

4 a := wi; V := ∅;
5 foreach b ∈ Da in order of the last occurrence do

6 if Lb 6= 0 and b /∈ V then

7 Insert an edge wLb
→ wi;

8 V := V ∪ Vb;

9 foreach b ∈ Σ do

10 Vb := Vb/{a};

11 foreach b ∈ Da do

12 Move a to the beginning Db;

13 Va := V ∪ a; La := i;

The correctness of the algorithm presented above bases on lemmas formulated at
the beginning of this section. Let us discuss the memory and time complexity of our
solution. The proposed data structure consists of k lists D of at most k items. It gives
us k2 elements. The k sets V can be implemented using k log k memory, we also need
k pointers L. Summing up, the most significant part of this data structure is a set of
list and the memory complexity is O(k2).

The presented algorithm is on-line, which gives a linear factor in time complexity.
Let us analyze a single step of extending the diagram with a new vertex (processing
a new letter). We can see there a sequence of three loops. The first one is the most
significant. We have to compute at most k sums of subsets of set Σ. It gives us a
factor k2. The operation in the second loop (line 10) can be done in constant time.
Furthermore, the operation in last loop (line 12) has logarithmic time complexity if we
make use of priority queue but can be implemented in constant time. Summarizing,
we have a complexity of O(k2) for each step of algorithm that in total gives O(nk2)
time complexity for processing the whole word.

4 Generation of all disjoint traces

The problem with the compressed presentation of a poset discussed in the pre-
vious sections is that it is not unique. For a given ordered concurrent alphabet
(Σ = {a1 < a2 < · · · < ak}, D) and a word w, every other word v equivalent with w
represents the same poset. To overcome this disadvantage we can use the notion of
canonical representative. Basically, from all the representatives we choose the lexico-
graphically minimal one as a canonical representative. All words that are canonical
representatives of a trace are called canonical words. Obviously, all the words of the
length not greater then one are canonical. The natural problem that arises, is to enu-
merate all nonequivalent words (in fact canonical representatives of traces) of length
n for a given concurrent alphabet. In this section we deal with this problem.

The proposed algorithm is motivated by the well known SEPA algorithm. We iden-
tify and modify only the working suffix – the suffix of the given canonical word which
makes it different from its successor in the lexicographic order. We begin enumeration
with lexicographically minimal word w = a1a1 · · · a1. Then, we consecutively modify

216 Proceedings of the Prague Stringology Conference 2011

the current word to its successor in lexicographic order, skipping all noncanonical
ones. To perform this enumeration effectively we will use the following facts:

Lemma 15. If wv is a canonical word then both words w and v also are canonical.
In other words prefixes and suffixes of canonical words are canonical.

Proof. Let us suppose that word w is not canonical. Then there is a lexicographical
smaller and equivalent with respect to the relation ≡D word w′. From the equivalence
of words w and w′ we conclude that also words wv and w′v are equivalent. The word
w′v is lexicographically smaller then word wv. Therefore the word wv cannot be
canonical. Simlar argumentation shows that v is also a canonical word. ⊓⊔

Lemma 16. In every canonical word w if there exists i such that letters wi and wi+1

are independent then wi < wi+1.

Proof. Suppose that wi ≥ wi+1. If they are equal then by the definition they are
dependent which contradicts the assumption of their independence, hence wi > wi+1.
We can assume that w = uwiwi+1v which is equivalent with respect to the relation
≡D to the word uwi+1wiv that is lexicographically smaller than w. That is in conflict
with the assumption of cononicality of the word w and completes the proof. ⊓⊔

Lemma 17. If there exists a substring wiwi+1 · · ·wj−1wj of canonical word w such
that letter wj is independent with all letters wi, wi+1, . . . , wj−1 then wj is the maximal
amongst these letters. More precisely,

∀l∈{i,i+1,...,j−1}wj > wl.

Proof. Let us denote the word w = uwi · · ·wjv and suppose that one of the letters
wk ∈ {wi, wi+1, . . . , wj−1} is smaller then wj. Then, from the independence of each
of these letters with wj we have an equivalent with respect to the relation ≡D to
w word w′ = uwi · · ·wk−1wjwk · · ·wj−1. Obviously the word w′ is lexicographically
smaller then w, hence w cannot be a canonical word. ⊓⊔

Lemma 18. If there exists a substring wiwi+1 · · ·wj−1wj of canonical word w such
that letter wj is independent with all letters wi+1, . . . , wj−1, wj then wi is the minimal
amongst these letters. More precisely,

∀l∈{i+1,...,j−1,j}wi < wl.

Proof. Proof of the lemma is similar to the proof of Lemma 17. ⊓⊔

Definition 19. Let a ∈ Σ be a letter. By Cn
a we denote the set of all canonical words

of length n which start with the letter a.

It is an easy observation that the set Cn
a is nonempty. It contains at least the word

an. Moreover, C1
a = {a}.

Lemma 20. Let w1 ∈ Σ be an arbitrary but fixed letter and w = w1w2 · · ·wn be
the lexicographically smallest word from Cn

w1
(for n > 1). Then the letter w2 is the

smallest letter dependent with the letter w1 and the word w2 · · ·wn is the lexicograph-
ically smallest word from Cn−1

w2
. Moreover, the sequence of letters w1, w2, . . . , wn is

nonencreasing and every two consecutive letters from this sequence are dependent.

 L. Mikulski et al.: Algorithmics of Posets Generated by Words over Partially Commutative. . . 217

Proof. We give the proof by induction on the length n.
Let w ∈ C2

w1
. Then w is of the form w1w2, where w2 is dependent with w1 or strictly

greater then w1. Therefore, the smallest element of C2
w1

is the word w1w2, where w2

is the smallest letter dependent with w1 (maybe w1 itself). Other parts of the thesis
are clearly satisfied.

Let us suppose that the thesis holds for all letters and lengths n smaller than k. We
prove the case of letter w1 and length k. Let us suppose, that word w = w1w2 · · ·wk

is the lexicographically smallest word from Ck
w1

. Then the letter w2 is (similary to the
case of length 2) dependent to w1 and not greater then w1. Moreover, from Lemma 15
the word w2 · · ·wk is canonical. If it would not be the smallest word from the set
Ck−1

w2
, we could change it to the word of such property achieving better candidate for

minimum, and the proof is complete. ⊓⊔

The foregoing lemmas provide us enough information of the structure of the canon-
ical words to design the algorithm transforming given canonical word w into its suc-
cessor. The algorithm consists of three steps:

1. Finding the last index i such that wi 6= ak. We know that index i is the starting
position of the working suffix.

2. Computing the minimal letter a greater than wi such that w1w2 · · ·wi−1a is canon-
ical. It is implied by Lemma 15.

3. Generating the rest of the working suffix to obtain the minimal canonical word
that starts from wi.

To implement the second step we will introduce the oracle V . For every posi-
tion i and every letter a the Vi(a) answers to the question – is there a substring
wjwj+1 · · ·wi−1 such that all letters wj, wj+1, . . . , wi−1 are independent from wi and
at least one letter from this substring is greater than wi? In case of positive answer
Vi(a) gives the maximal letter from the longest of such substrings as a witness, other-
wise it simply returns a. Such oracle can be constructed in linear time (with respect
to n) using the following formula:

V1(a) = a

Vi(a) =

{

a : aDwi−1

max(a, Vi−1(a)) : otherwise

For every letter a such that Vi(a) = a, the string w1w2 · · ·wi−1a is canonical.
For the efficient generation of the working suffix in step three we will use a pre-

computed table Dmin such that

∀a∈Σ Dmin(a) = min{b ∈ Σ : aDb}.

After generating a new canonical word we have to update the oracle V . The value
of Vj(a) depends only on Vj−1(a) and letter wj−1. Therefore, we only have to update
oracle from Vi+1 to Vn (for the whole working suffix). Moreover, if there exists such
index l in the working suffix that wl = wl+1, then the rest of the suffix is constant
(all letters equal to wl) and computation of missing oracle values are trivial (Vl+2 =
Vl+3 = · · · = Vn = Vl+1).

218 Proceedings of the Prague Stringology Conference 2011

Algorithm 2: Enumerate Canonical Words

1 w := a1a1 · · · a1;

2 OUTPUT w;

3 for i := 1 to n do

4 Update Oracle Vi;

5 repeat

6 i := last index such that wi 6= ak;

7 repeat

8 wi := succ(wi);
9 until Vi(wi) = wi;

10 for j := i+ 1 to n do

11 wj := Dmin(wj−1); // Generate suffix

12 for j := i+ 1 to n do

13 Update Oracle Vj ;

14 OUTPUT w ;

15 until w = akak · · · ak;

Algorithm 3: Update Oracle Vi

1 if i = 1 then

2 foreach a ∈ Σ do V1(a) := a;

3 else if i > 2 and wi−2 = wi−1 then

4 Vi := Vi−1;

5 else

6 foreach a ∈ Σ do

7 if aDwi−1 then

8 Vi(a) := a;

9 else

10 Vi(a) := max(wi−1, Vi−1(a));

The observations mentioned above lead us to the Algorithms 2 and 3. Let us
discuss the memory and time complexity. The used memory is obviously O(nk),
mostly used for oracle V . The time complexity of steps needed for generating the
next canonical word depends on the length #SUFF of the working suffix (lines from
6 to 13 of Algorithm 2). The line 6 is linear with respect to #SUFF . Loop in lines 7–9
perform at most k iterations. The next loop (lines 10 – 11), which generates a suffix,
makes exactly #SUFF operations. The most complex work is done in the last loop,
which updates the oracle. At most k times the execution of the procedure Update
Oracle is nontrivial and computes whole Vi. The rest of computation (at maximum
#SUFF times) will end up at line 4 of the Update Oracle procedure, which can by
simply implemented as a reference copying. It gives O(k2 + #SUFF) complexity of
the last loop.

If we set k as a constant enlarging only n, the time complexity of the single step
of successor generation is O(#SUFF) and is therefore optimal. Nevertheless, it would
be very interesting to investigate the case when k is close to n. Probably this case
needs another kind of optimization and new algorithms.

 L. Mikulski et al.: Algorithmics of Posets Generated by Words over Partially Commutative. . . 219

5 Summary and future work

In the paper we have discussed an approach to encode posets by strings. We used
concurrent alphabets and well known notion of Hasse diagram, which is significantly
smaller than the graph of a poset. We have shown that every poset can be represented
by a pair consisting of a concurrent alphabet and a word over this alphabet. However,
it is very interesting how to choose the best pair. The first criterion is the size of
the concurrent alphabet (the one from the proof is taken in a very inefficient way).
The second important property is preservation of N-freeness by achieving the P4-free
dependency relation graph.

In the third section we gave an efficient algorithm that enables us to decompress
a word into a Hasse diagram. Extending those results, we would like to equip Hasse
diagrams (using additional data structures) with efficient concatenation and star op-
erations.

Section four is devoted to the algorithm which enumerates all nonequivalent
strings (in the sense of dependency relation). The main idea is motivated by SEPA
algorithm. However, the innovative idea of using oracle allows us to construct an algo-
rithm that is optimal (for constant size k of the alphabet) with respect to performed
changes. The case of k close to n needs further work and new algorithms.

We believe that our results will have many theoretical and practical applications.
For example, the extending of the results related to Hasse diagram may be very useful
in verification of models, where partial orders or concurrent words play a key role.

References

1. G. Brightwell and P. Winkler: Counting linear extensions is #P-complete, in STOC:
ACM Symposium on Theory of Computing (STOC), 1991.

2. O. Cogis and M. Habib: Nombre de sauts et graphes série-parallèles. ITA, 13(1) 1979.
3. V. Diekert and G. Rozenberg, eds., The Book of Traces, World Scientific, Singapore, 1995.
4. D. E. Knuth: The Art of Computer Programming, Volume 3, Addison-Wesley, Reading, 1973.
5. D. E. Knuth: The Art of Computer Programming: Volume 4, Fascicle 3. Generating All

Combinations and Partitions, Addison-Wesley, 2005.
6. D. Kuske: Infinite series-parallel posets: Logic and languages. Lecture Notes in Computer

Science, 1853 2000, pp. 648–662.
7. A. B. Kwiatkowska and M. M. Sys lo: On page number of n-free posets. Electronic Notes

in Discrete Mathematics, 24 2006, pp. 243 – 249, Fifth Cracow Conference on Graph Theory
USTRON ’06.

8. A. Mazurkiewicz: Concurrent program schemes and their interpretations, daimi report pb-78,
Aarhus University, 1977.

9. L. Mikulski: Projection representation of Mazurkiewicz traces. Fundamenta Informaticae, 85
2008, pp. 399–408.

10. W. R. Pulleyblank: On minimizing setups in precedence constrained scheduling, Tech. Rep.
81185-OR, Univ. Bonn, Inst. f. Ökonometrie und OR, Bonn, 1981.

11. M. M. Sys lo: Minimizing the jump number for partially ordered sets: A graph-theoretic ap-

proach. Order, 1 1984, pp. 7–19.
12. K. Takamizawa, T. Nishizeki, and N. Saito: Linear-time computability of combinatorial

problems on series-parallel graphs. Journal of the ACM, 29(3) 1982, pp. 623–641.
13. J. Valdes: Parsing Flowcharts and Series-Parallel Graphs, Ph.D. dissertation, Stanford Uni-

versity, Stanford, 1978.
14. J. Valdes, R. E. Tarjan, and E. L. Lawler: The recognition of series parallel digraphs, in

Eleventh Annual ACM Symposium on Theory of Computing (STOC ’79), New York, Apr. 1979,
ACM, pp. 1–12.

