
Observations On Compressed Pattern-Matching

with Ranked Variables in Zimin Words

Rados law G lowinski2 and Wojciech Rytter1,2

1 Department of Mathematics, Computer Science and Mechanics,
University of Warsaw, Warsaw, Poland

rytter@mimuw.edu.pl
2 Faculty of Mathematics and Informatics,

Nicolaus Copernicus University, Toruń, Poland
glowir@mat.umk.pl

Abstract. Zimin words are very special finite words which are closely related to the
pattern-avoidability problem. This problem consists in testing if an instance of a given
pattern with variables occurs in almost all words over any finite alphabet. The problem
is not well understood, no polynomial time algorithm is known and its NP-hardness
is also not known. The pattern-avoidability problem is equivalent to searching for a
pattern (with variables) in a Zimin word. The main difficulty is potentially exponential
size of Zimin words. We use special properties of Zimin words, especially that they are
highly compressible, to design efficient algorithms for special version of the pattern-
matching, called here ranked matching. It gives a new interpretation of Zimin algorithm
in compressed setting. We discuss the structure of rankings of variables and compressed
representations of values of variables.

1 Introduction

The research on pattern avoidability started in late 70’s in the papers by Bean,
Ehrenfeucht and McNaulty [1], and independently by Zimin [5]. In the avoidability
problem two disjoint finite alphabets, A = {a, b, c, . . . } and V = {x1, x2, x3, . . . } are
given, the elements of A are letters (constants) and the elements of V are variables.
We denote the empty word by ε. A pattern π is a sequences of variables. The language
of a pattern with respect to an alphabet A consists of words h(π), where h is any
non-erasing morphism from V ∗ to A+. We say that word w encounters pattern π (or
pattern occurs in this word) when there exists a morphism h, such that h(π) is a
subword of w. In the other case w avoids π.

The pattern π is unavoidable on A if every long enough word over A encounters
π, otherwise it is avoidable on A. If π is unavoidable on every finite A then π is said
to be unavoidable.

Example 1. The pattern αα is avoidable over A = {a, b, c}. Let

u = abcacbabcbac . . .

be the infinite word generated by morphism

µ : a → abc, b → ac, c → b

starting from the letter a. The word u avoids the pattern αα (u is square-free), as
shown in [4]. Hence αα is not unavoidable, however αβα is unavoidable.

Rados law G lowinski, Wojciech Rytter: Observations On Compressed Pattern-Matching with Ranked Variables in Zimin Words, pp. 162–172.

Proceedings of PSC 2011, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04870-2 c© Czech Technical University in Prague, Czech Republic

R. G lowinski et al.: Observations On Compressed Pattern-Matching with Ranked. . . 163

The crucial role in avoidability problems play the words introduced by Zimin [5],
called Zimin words, and denoted here by Zk.

Definition 2. (of Zimin words) Let

Z1 = 1, Zk = Zk−1 k Zk−1

Example 3. Z1 = 1, Z2 = 121, Z3 = 1213121, Z4 = 121312141213121

Observe that these words are exponentially long, however they have a very simple
structure implying many useful properties. Define the Zimin morphism

µ : 1 → 121,

i → i + 1 (∀ i > 1).

Fact 1

– The morphism µ generates next Zimin word by mapping each letter according to
µ. In other words: Zk = µ(Zk−1).

– Each Zimin word, considered as a pattern, is unavoidable. Moreover it is a longest
unavoidable pattern over k-th letter alphabet. There exists only one (up to letter
permutation) unavoidable pattern of length 2k − 1 over a k-th letter alphabet and
it is Zk.

The main property of Zimin words is that the avoidability problem is reducible
to pattern-matching in Zimin words, see [5], [2].

Lemma 4. π is an unavoidable pattern if and only if π occurs in Zk, where k is the
number of distinct symbols occurring in π.

2 Compact representation of pattern instances

We say that a sequence u is j-interleaved iff for each two adjacent elements of u
exactly one is equal to j.

The Zimin word Zk can be alternatively defined as follows:

(A) Zk starts with 1 and ends with 1;
(B) |Zk| = 2k − 1;
(C) For each 1 ≤ j ≤ k after removing all elements smaller than j the obtained

sequence is j-interleaved.

Observation 1 If we have a string u ∈ {1, 2, . . . , k}+, then u is a factor (subword)
of Zk iff it satisfies the condition (C).

We omit the proof.

This gives a simple linear time algorithm to check if an explicitly given sequence is
a factor of Zk. However we are dealing with patterns, and instances of the pattern can
be exponential with respect to the length of the pattern and the number of distinct
variables. The instance is given by values of each variable which are factors of Zk.
Hence we introduce compact representation of factors of Zimin words.

164 Proceedings of the Prague Stringology Conference 2011

We partition u into w1mw2, where m is a highest number in w (in every subword
of Zimin word the highest number occurs exactly once). Then for each element i of
w1, respectively w2, we remove i if there are larger elements to the left and to the
right of this element. In other words if there is a factor s α i β t, with i < s, i < t, we
remove the element i. Denote by compress(u) the result of removing all redundant i
in u.

Observation 2 compress(u) uniquely encodes a factor of a Zimin word.

Example 5.
compress(2141213121512131) = 24531

compress(Z4) = compress(121312141213121) = 1234321

α β γ β
1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

1 3 2 1 4 3 1 2 5 3 2 1 4 3 1

Figure 1. Example of a compact representation. In the first line there is a pattern, in the second
uncompressed valuation of variables and in the third compressed valuation.

Fact 2 For any u ∈ {1, 2,. . . , k}+ the first and the last elements of u and compress(u)
are respectively equal.

Notice that compressed representation of any subword of Zk has at most 2k − 1
letters and the representation of all variables requires O(k2) memory (under the
assumption that only O(1) space is necessary for representing each number).

For a valuation (morphism) h of the variables by its ranking function Rh we mean
the function which assigns to each variable xi its rank: Rh(xi) denotes the maximal
letter in h(xi).

For a pattern π and a given valuation of variable by π(i) we mean the pattern with
variables of ranks smaller than i removed from π.
By Vi(π) we define the set of variables from π with rank i.
For two strings u, w we write u ≤ w iff u is a subword of w. By π →h Zk we mean
that h(π) ≤ Zk and by π → Zk we mean that for some morphism h, h(π) ≤ Zk.

We extend the definition of j-interleaved sequence to patterns.

Definition 6. Pattern π with compact representation of variables is j-interleaved iff
for any two adjacent variables xy in π either x ends with j or y starts with j, in its
compressed form.

Theorem 7. Assume we are given a pattern π of size n with k variables and a
compact representation of values of the variables. Then we can check if the given
compressed instance of π occurs in Zk in time O(nk).

Proof. Assume we have an instance of the pattern π = x1 · · · xn with variables given
in compressed form, such that for 1 ≤ j ≤ k π is j-interleaved when we remove all
elements smaller than j from the compressed forms of the variables.

R. G lowinski et al.: Observations On Compressed Pattern-Matching with Ranked. . . 165

We define function redi on strings over {1, 2, . . . , k} which removes from the string
all elements smaller than i. Performing redi on patterns removes all elements smaller
than i from the compact representations of the variables.

Using Observation 2 we obtain unique full representation of variables denoted
y1 = val(x1), . . . , yn = val(xn). Since yi is a factor of a Zimin word redj(yi) is j-
interleaved. Because redj(π) is j-interleaved using Fact 2 we see that the concate-
nation redj(y1)redj(y2) · · · redj(yn) is j-interleaved (as a string). From Observation 1
we know that it is a factor of Zk.

We showed that to determine if an instance of π occurs in Zk we only need to
check if for every 1 ≤ j ≤ k pattern redj(π) is j-interleaved. This can be done in
total time O(n k). ⊓⊔

3 Some properties of Zimin words and free sets

The ranking sequence associated with π is the sequence of ranks of consecutive vari-
ables in π.

Assume for a while that our pattern π is a permutation of n variables and we ask
for the set of possible ranking sequences.

The ranking sequence has many useful properties:

1. Between every two occurrences of the same number a in ranking sequence there
should be a number larger than a.

2. The ranking function is not necessarily injective (one to one).
3. If x1x2 and x1x3 are subwords of a pattern π, x1, x2, x3 ∈ V and rank(x3) <

rank(x2) < rank(x1) and there exists a morphism ϕ that morphs p into Zk then
ϕ(x3) is a proper prefix of ϕ(x2).

Let r(π, h) be the set of ranks of variables in π for the valuation h. For example,
for a pattern π = αβαγβα and a valuation h(α) = 1, h(β) = 2, h(γ) = 31 ranking
sequence is (1, 2, 1, 3, 2, 1) and r(π, h) = {1, 2, 3}.

The following three facts are consequences of the proof of Zimin theorem (see [5]
for details).

Lemma 8.

1. If pattern π is unavoidable then there exists a morphism h such that h(π) occurs
in Zk and min r(π, h) = 1.

2. If π →h Zk and min r(π, h) = j + 1 > 1 then there exists morphism g such that
π →g Zk and r(π, g) = {r − j : r ∈ r(π, h)}.

3. If π → Zk then there exists morphism h such that the set of ranks is an interval:
r(π, h) = {1, . . . ,m}, for some 1 ≤ m ≤ k.

We present Zimin algorithm based on free sets and σ-deletions.

Definition 9. F ⊆ V is a free set for π ∈ V + if and only if there exist sets A,B ⊆ V
such that F ⊆ B \ A where, for all xy ≤ π, x ∈ A if and only if y ∈ B.

Definition 10. The mapping σF is a σ-deletion of π if and only if F ⊆ V is a free
set for π and σF : V → V ∪ {ε} is defined by

σF (x) =

{

x if x /∈ F

ε if x ∈ F

166 Proceedings of the Prague Stringology Conference 2011

The proof of the following fact can be found in [3], Zimin’s algorithm is based on
this fact.

Lemma 11. π is an unavoidable pattern if and only if π can be reduced to ε by a
sequence of σ-deletions.

Unfortunately it is insufficient to remove only singleton free sets. There are pat-
terns, which require the removing more than one element free sets, for example the
pattern

αβαγα′βαγαβα′γα′βα′

Therefore we can have exponentially many choices for free sets.

Lemma 12. If π → Zk then R1(π) is a free set.

Proof. To satisfy the definition of a free set we need to give sets A and B, such that
R1(π) ⊂ B \ A and all predecessors of variables from B are in A, all successors of
variables from A are in B. We put all variables starting with 1 as the set B and all
variables that do not end with 1 as set A. ⊓⊔

Lemma 13. If π → Zk then π(2) → Zk−1.

Proof. If π → Zk then there exists morphism h, such that h(π) is a subword of Zk.
V1(π) is a set of variables x, such that h(x) = 1. We shall notice that if we remove
all 1 from Zk we obtain Zk−1. We define a new morphism g for all variables from
V \ V1 as g(x) = f(h(x)), where f is a function that removes all occurrences of
1 from a word. Now we will show that g(π(2)) is a subword of Zk−1. We see that
g(π(2)) = f(h(π(2)) = f(h(π)) because π differs from π(2) only in variables that equal
1. So occurrence g(π(2)) equals h(π) with all 1 deleted and g(π(2)) is a subword of
Zk−1. ⊓⊔

Theorem 14. A pattern π occurs in Zk if and only if V1(π) is a free set and π(2) →
Zk−1.

Proof. “⇒” This is a consequence of Lemma 8 and Lemma 13.
“⇐” It follows from proof of Zimin theorem and can be found in [5]. ⊓⊔

4 Ranked pattern-matching

It is not known (and rather unlikely true) if the pattern-matching in Zimin words is
solvable in polynomial time. We introduce the following polynomially solvable version
of this problem.

Compressed Ranked Pattern-Matching in Zimin Words:

Input: given a pattern π with k variables and the ranking function R
Output: a compressed instance of an occurrence of π in Zk with the given ranking

function, or information that there is no such valuation, the values of variables
are given in their compressed form

The algorithm for the ranked pattern matching can be used as an auxiliary tool
for pattern-matching without any ranking function given. We can just consider all
sensible ranking functions. It gives an exponential algorithm since we do not know
what the rank sequence is. Although exponential, the set of sensible ranking sequences
can be usefully reduced due to special properties of realizable rankings.

R. G lowinski et al.: Observations On Compressed Pattern-Matching with Ranked. . . 167

4.1 Application of 2-SAT

In one iteration we have not only to check if the set of variables of the smallest rank i
is a free set but we have to compute which of them start/end with a letter i. However
in a given iteration the letter i can be treated as ‘1’.

In our algorithms we will use the function FirstLast(π,W) which solves an instance
of 2-SAT problem. It computes which variables should start-finish with the smallest
rank letter, under the assumption that variables from W equal the smallest rank
letter, to satisfy local properties of the Zimin word.

In the function we can treat the smallest rank letter as 1. In Zimin word there
are no two adjacent ‘1’. This leads to the fact: for any adjacent variables xy from π
either x ends with ‘1’ or y starts with ‘1’. If for a given pattern we know that some
variables start with ‘1’ (or end with ‘1’) we deduce information about successors of
this variable (or predecessors). For example if we have a pattern βαβγ and we know
that α starts with ‘1’ we deduce that β does not end with ‘1’ and then deduce that γ
starts with ‘1’. For a given set of variables that start and end with ‘1’ we can deduce
information about all other variables in linear time (with respect to the length of the
pattern).

For every variable x from the pattern we introduce two logic variables: xfirst is
true iff x starts with ‘1’, xlast is true iff x ends with ‘1’. Now for any adjacent variables
xy we create disjunctions xlast ∨ yfirst and ¬xlast ∨ ¬yfirst. If we write the formula

F =(xlast
1 ∨ xfirst

2) ∧ (¬xlast
1 ∨ ¬xfirst

2) ∧ (xlast
2 ∨ xfirst

3) ∧ (¬xlast
2 ∨ ¬xfirst

3) ∧ · · ·

· · · ∧ (xlast
n−1 ∨ xfirst

n) ∧ (¬xlast
n−1 ∨ ¬xfirst

n)

we have an instance of 2-SAT problem. For the variables y1, . . . , ys ∈ W , that we know
that valuate as ‘1’, we expand our formula to F ∧ yfirst1 ∧ ylast1 ∧ · · · ∧ yfirstl ∧ ylasts .

Example 15. If for a pattern βαβγα we know that valuation of α will be ‘1’ we
produce formula

(βfirst ∨ αlast) ∧ (¬βfirst ∨ ¬αlast) ∧ (αfirst ∨ βlast)∧

∧(¬αfirst ∨ ¬βlast) ∧ (βfirst ∨ γlast) ∧ (¬βfirst ∨ ¬γlast)∧

∧(γfirst ∨ αlast) ∧ (¬γfirst ∨ ¬αlast) ∧ (αfirst) ∧ (αlast)

In the general case there can be many solutions of the formula but in our example the
only solution is: αfirst = αlast = γfirst = true, βfirst = βlast = γlast = false, which
means that α starts and ends with ‘1’, β starts and ends with non-‘1’, γ starts with
‘1’ and ends with non-‘1’.

A positive solution to this problem is necessary for the existence of a valuation val of
the variables from pattern π, such that val(π) ≤ Zk and each variable x starts (ends)
with ‘1’ iff xfirst is true (resp. xlast is true) in the solution.

It is well known that 2-SAT can be computed efficiently, consequently:

Lemma 16. We can execute FirstLast(π,W) in linear time.

168 Proceedings of the Prague Stringology Conference 2011

4.2 The algorithm: compressed and uncompressed versions

Now we present two versions of the algorithm deciding if pattern π occurs in Zimin
word with given rank sequence and computing the values of variables, if there is
an occurrence. First of these algorithms uses uncompressed valuations of variables
and uses exponential space and second one operates on compressed valuations. If the
answer is positive algorithms give valuations of variables, i.e. morphism val such that
val(π) ≤ Zk.

Denote by alph(π) the set of symbols (variables) in π. Let π be the pattern
with given rank sequence which maximal rank equals K, |π| = n, |alph(π)| = k.
We define the operation firstdel(i, s), lastdel(i, s) of removing the first, last letter
from s, respectively, if this letter is i (otherwise nothing happens), similarly define
firstinsert(i, s), lastinsert(i, s): inserting letter i at the beginning or at the end of s if
there is no i.

In general, maximal rank can occur multiple times, but in this case, because of
properties mentioned earlier in this paper, the pattern with this rank sequence is
avoidable and cannot occur in Zimin word. Both algorithms assume that there is
only one occurrence of the maximal rank (we denote by xK the variable with the
maximal rank).

Algorithm Uncompressed-Embedding(π, ZK)

K := maximal rank

Vi is the set of variables of rank i, for 1 ≤ i ≤ K

val(xK) := 1;

for i = K − 1 downto 1 do

for each x ∈ Vi do val(x) := 1;

if FirstLast(π(i),Vi) then

comment: we know now which variables in π(i) start/finish

with i due to evaluation of a corresponding 2SAT

for each x ∈ Vi+1 ∪ Vi+2 ∪ · · · ∪ VK do

val(x) := µ(val(x));

if not(xfirst) then val(x) := firstdel(1, val(x));

if not(xlast) then val(x) := lastdel(1, val(x));

if xfirst then val(x) := firstinsert(1, val(x));

if xlast then val(x) := lastinsert(1, val(x));

else return false;

The next algorithm is a space-efficient simulation of the previous one. We are not
using the morphism µ, instead of that the values of variables are maintained in a
compressed form, we are adding to the left/right decreasing sequence of integers.

R. G lowinski et al.: Observations On Compressed Pattern-Matching with Ranked. . . 169

Algorithm Compressed-Embedding(π, ZK)

K := maximal rank

Vi is the set of variables of rank i, for 1 ≤ i ≤ K

val(xK) := K;

for i = K − 1 downto 1 do

for each x ∈ Vi do val(x) := k;

if FirstLast(π(i),Vi) then

for each x ∈ Vi+1 ∪ Vi+2 ∪ · · · ∪ VK do

if xfirst then val(x) := firstinsert(i, val(x));

if xlast then val(x) := lastinsert(i, val(x));

else return false;

Example
Below we present an example of the Uncompressed-Embedding algorithm for

π = δ α γ β λ γ α δ α γ β α

with the rank sequence 4 1 3 2 5 3 1 4 1 3 2 1
λ↓

︷︸︸︷

1
First we set the variable with the highest rank. val(λ) = 1

δ↓λδ↓
︷︸︸︷

121
i = 4. We set val(δ) = 1 and morph val(λ) = 121.

From solution of 2-SAT we know that δ starts and ends with ‘1’,
λ starts and ends with non-‘1’, we set val(λ) = 2.

δγ↓ λγ↓ δγ↓
︷︸︸︷

121
︷︸︸︷

3
︷︸︸︷

121
i = 3. We have val(γ) = 1, val(δ) = 121, val(λ) = 3.
From solution of 2-SAT: γ starts and ends with ‘1’,

δ and λ start and end with non-‘1’,
therefore we set val(λ) = 3, val(δ) = 2

δ γ β↓ λ γ δ γβ↓

121
︷︸︸︷

3
︷︸︸︷

121
︷︸︸︷

4
︷︸︸︷

121
︷︸︸︷

3
︷︸︸︷

121
i = 2 : val(β) = 1, val(γ) = 121, val(δ) = 3, val(λ) = 4.

From solution of 2-SAT: β starts and ends with ‘1’, γ, δ start with ‘1’,
end with non-‘1’, λ starts and ends with non=‘1’

Therefore val(γ) = 12, val(δ) = 13, val(λ) = 4.
δ α↓ γ β λ γ α↓ δ α↓ γ βα↓

1213
︷︸︸︷

1214
︷︸︸︷

1213
︷︸︸︷

121
︷︸︸︷

5
︷︸︸︷

1213
︷︸︸︷

1214
︷︸︸︷

1213
︷︸︸︷

121
i = 1 : val(α) = 1, val(β) = 121, val(γ) = 1213,

val(δ) = 1214, val(λ) = 5.
From solution of 2-SAT: α, λ start and ends with ‘1’,

β starts with 1, ends with non-‘1’, γ, δ start and end with non-‘1’.

170 Proceedings of the Prague Stringology Conference 2011

Finally we have valuation of variables, such that val(π) ≤ Z5.
δ α γ β λ γ α δ α γ β α

12131
︷︸︸︷

214
︷︸︸︷

1
︷︸︸︷

213
︷︸︸︷

12
︷︸︸︷

151
︷︸︸︷

213
︷︸︸︷

1
︷︸︸︷

214
︷︸︸︷

1
︷︸︸︷

213
︷︸︸︷

12
︷︸︸︷

1

Example
Now we present an example of the Compressed−Embedding algorithm for a different
pattern. Now the function val will be a compact representation instead of the full
representation used in the last algorithm. We take:

π = α γ β δ η α γ β ζ η α

and the ranking sequence

1 3 2 4 5 1 3 2 6 5 1

First we set the variable with the highest rank. val(ζ) = 6

For i = 5 we have π(5) = ηζη
We set val(η) = 5 and solve 2-SAT for

F = (ηlast ∨ ζfirst) ∧ (¬ηlast ∨ ¬ζfirst) ∧ (ζ last ∨ ηfirst)∧
∧(¬ζ last ∨ ¬ηfirst) ∧ (ηfirst) ∧ (ηlast).

From FirstLast(π(5), η) we know that ζfirst and ζlast are false,
therefore we don’t change val(ζ)

i = 4. π(4) = δηζη
We set val(δ) = 4 and execute FirstLast(π(4), δ). There are two solutions,
we choose one of them and obtain ηfirst = ηlast = 0 and ζfirst = ζ last = 1,

therefore we change val(ζ) = 464.
i = 3 : π(3) = γδηγζη.

We set val(γ) = 3 and execute FirstLast(π(3), γ). We know that
δfirst = δlast = 0, ηfirst = 1, ηlast = 0 and ζfirst = ζ last = 0,

therefore we only add 3 at the beginning of val(η), i.e. val(η) = 35
i = 2 : π(2) = γβδηγβζη.

We set val(β) = 2 and execute FirstLast(π(2), β). We know that
ηfirst = ηlast = 1 and rest of logic variables equal 0.

We only add 2 at the beginning and end of val(η) (val(η) = 2352)
i = 1 : π(1) = π = αγβδηαγβζηα.

We set val(α) = 1 and execute FirstLast(π(1), α). We know that
γlast = δfirst = ηfirst = ζfirst = 1 and rest of logic variables equal 0.

We add 1 at the beginning of δ, η, ζ and at the end of γ.
We change: val(γ) = 31, val(δ) = 14, val(η) = 1352, val(ζ) = 1464.

Finally we have the compressed valuation of the variables (below we show full repre-
sentations):

α β γ δ η ζ
1 2 3 1 1 4 1 3 5 2 1 4 6 4

1 2 3 1 1 4 13121512 141213121612131214

R. G lowinski et al.: Observations On Compressed Pattern-Matching with Ranked. . . 171

Our algorithms rely on the following lemma.

Lemma 17. Let i ∈ {1, . . . , k} and the pattern π(i+1) occurs in Zk−i. Pattern π(i)

(equal π(i+1) with additional variables from Vi) occurs in Zk−i+1 iff the corresponding
2-SAT problem has a solution. Moreover every immersion of π(i), such that valuations
of variables from Vi equal ‘1’, corresponds to the solution of 2-SAT problem, such that
valuation of every variable satisfies logic constraints on first and last character.

Proof.
“ ⇐ ”
First we observe that solution of 2-SAT problem guarantees that Vi is a free set. We
put A = {v ∈ π(i) : vlast = 0} and B = {v ∈ π(i) : vfirst = 1}, which satisfy Definition
9. From Theorem 14 π(i) occurs in Zk−i+1. Now we use Zimin morphism µ on variables
from π(i+1) and set every variable from Vi to ‘1’, then we modify (adding or removing
‘1’ at the beginning or end) every valuation accordingly to logic constraints from the
2-SAT solution. Similarly as in the Zimin theorem proof ([5]) we see that properties
of A and B guarantee that modified valuations concatenate into proper immersion in
Zk−i+1.
“ ⇒ ”
We have immersion of π(i) in Zk−i+1 with valuation val(v), such that for v ∈ Vi

val(v) = 1. We give a solution to 2-SAT problem as follows: for every variable v from
π(i) we set vfirst = 1 iff val(v) starts with ‘1’, vlast = 1 iff val(v) ends with ‘1’. Because
Zimin word is 1-interleaved this solution is correct. ⊓⊔

Theorem 18. The compressed ranked pattern matching in Zimin words can be solved
in time O(nk) and (simultaneously) space O(n+k2), where n is the size of the pattern
and k is the highest rank of a variable. A compressed instance of the pattern can be
constructed within the same complexities, if there is any solution.

Proof. We use the Compressed − Embedding algorithm. First we embed π(k) into
Z1. Then we check for a subsequent i, k − 1 ≥ i ≥ 1, if it is possible to embed
π(i) having embedding of π(i+1) using suitable 2-SAT and Lemma 17. Non-existence
of immersion of π(i) implies that whole π does not occur into Zk. Otherwise we get
compressed valuation of variables, such that val(π) ≤ Zk.

We will consider time complexity of the Compressed-Embedding algorithm. Be-
cause |V1| ∪ |V2| ∪ · · · ∪ |Vk| = k first for each loop executes exactly k times during
whole execution.

We solve 2-SAT problem exactly k − 1 times for π(i) (length of formula is linear
with respect to |π(i)|) and for every i |π(i)| ≤ |π| = n. That gives complexity O(nk)
for this step.

We execute second for each loop k − 1 times. In each iteration we have:

|Vi+1 ∪ Vi+2 ∪ · · · ∪ VK | ≤ |V1 ∪ V2 ∪ · · · ∪ VK | = k

Hence complexity for this step is O(k2).
Finally, the algorithm has time complexity O(k + nk + k2) = O(nk), because k ≤ n.

We have some choice when applying 2-SAT, since many satisfying valuation are some-
times possible. By slightly modifying the application of 2-SAT we can obtain the
following result.

172 Proceedings of the Prague Stringology Conference 2011

Theorem 19. For a given ranked pattern the compressed shortest instance and lex-
icographically smallest instance of the ranked pattern occurring in Zk can be con-
structed in time O(nk) and (simultaneously) space O(n+k2) (if there is any instance).

References

1. D. R. Bean, A. Ehrenfeucht, and G. F. McNulty: Avoidable patterns in strings of symbols,
Pacific J. Math, 1979.

2. C. E. Heitsch: Generalized Pattern Matching and the Complexity of Unavoidability Testing,
Lecture Notes in Computer Science, 2001.

3. M. Lothaire: Algebraic Combinatorics on Words, Cambridge University Press, 2002.
4. A. Thue: Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana 7,

1906.
5. A. I. Zimin: Blocking sets of terms, Mat. Sb. (N.S.) 119(161), 1982.

