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Abstract. Though there are in theory linear-time algorithms for computing runs in
strings, recently two of the authors implemented an O(n log n) algorithm to compute
runs that was based on the Crochemore’s partitioning repetitions algorithm. The al-
gorithm preserved the running complexity of the underlying Crochemore’s algorithm;
however, the static memory requirement – already large at 14n integers for a string of
length n – was increased significantly to O(n log n) integers. The purpose and advantage
of this algorithm was its speed. In this paper we present a more advanced version of
the extension of the Crochemore’s algorithm for computing runs. This version in addi-
tion to maximal repetitions, computes runs and primitively rooted distinct squares. Its
implementation completely does away with the extra memory required for the previous
version and through some additional memory saving techniques, the overall memory
need was reduced to 13n integers.

Keywords: repetition, run, distinct squares, string, periodicity, suffix array, LCP ar-
ray, Lempel-Ziv factorization

1 Introduction

Crochemore’s repetitions algorithm, often also referred to as Crochemore’s partition-
ing algorithm, was introduced in 1981 [2] and was the first O(n log n) – and hence
optimal – algorithm to compute maximal repetitions in a string of length n. The big
advantage of the algorithm was its independence on the size of the alphabet of the
string. Its disadvantage was in the implementation, as the data structures required
for keeping track of the refinement process and the gaps require a substantial storage
– originally estimated in about 20n of integers – and a complex machinery to update
and maintain them. In 2003, Franek, Smyth, and Xiao [6] implemented the algorithm
using several memory saving techniques lowering the requirement to 14n integers. An
additional advantage of their implementation was that the memory was static, or to
be more precise, allocated all at once at the outset of the algorithm as the working
of the algorithm did not require any dynamic allocation or deallocation of memory.
This approach led to an implementation with quite fast running times.

Since the advent of linear-time algorithms to compute suffix arrays [8,10,11], an
avenue opened for true linear-time algorithms to compute runs.
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Such algorithms follow the general strategy of

(a) compute suffix array using any of the linear-time algorithms, for instance
[8,10,17,11,18],

(b) compute LCP (longest common prefix) array using any of the linear-time algo-
rithms, for instance [9,16],

(c) compute Lempel-Ziv factorization using any of the linear-time algorithms, for
instance [1,3],

(d) compute some runs that include all leftmost runs from the Lempel-Ziv factoriza-
tion using Main’s algorithm [14,15],

(e) from the runs computed in (d), compute all runs using Kolpakov-Kucherov’s ap-
proach [12,13].

The laborious and circuitous strategy for linear-time algorithms suggests that
performance of such algorithms may not be satisfactory. Franek and Jiang [4,5] ex-
tended the original Crochemore’s repetitions algorithm to compute runs with a plan to
benchmark the algorithm and compare it with any implementation of the linear-time
algorithm for computing runs. Their implementation was based on Franek, Smyth,
Xiao’s implementation [6] for its optimized memory handling. The approach was quite
straightforward: the maximal repetitions as reported were collected and consolidated
into runs. This necessitated additional data structures of size O(n log n) integers. The
program still exhibited fast running times, but the memory requirement was too sub-
stantial and required dynamic handling of memory during processing, which is quite
a detriment to fast performance.

The reason to revisit the algorithm and modify it was to lower the memory re-
quirement, eliminate the need of dynamic memory allocation and deallocation during
processing, and prepare the stage for the parallelization. This report describes the
new implementation that requires only a single allocation of 13n integers at the out-
set of the algorithm, preserves all the advantages of the previous implementations,
computes not only the maximal repetitions – as the original Crochemore’s algorithm

does, but also the runs – as the Franek and Jiang’s implementation does, and in ad-
dition it computes the number of primitively rooted distinct squares. Moreover, the
algorithm in this form is well-posed for parallelization in the shared-memory model.
We refer to this algorithm as FJW.

2 Preliminaries

For e ≥ 2 and a non-empty string w, (ww)e is a repetition of power e in a string x

if there are strings u and v, possibly empty, so that x = u(ww)ev. w is referred to
as the generator of the repetition, while the size of the generator is referred to as
the period of the repetition. If e = 2, we talk of a square. A string is primitive if it
is not a repetition. A repetition is primitively rooted if its generator is primitive. A
repetition (ww)e in x = u(ww)ev is maximal if w is neither a suffix of u nor a prefix
of v. For a string x = x[0..n1], a repetition can be encoded as a triple (s, p, e), where
s is the starting position of the repetition, p is the period, and e is the power.

A more succinct notion is that of a run. In a string x = x[0..n1] a quadruple
(s, p, e, t) encodes a run if

(a) for any 0 ≤ i ≤ t, (s+i, p, e) is a maximal repetition,
(b) either s = 0 or (s1, p, 2) is not a square, i.e. the run cannot be extended to the

left,
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(c) either s+t = n1 or (s+t+1, p, 2) is not a square, i.e. the run cannot be extended
to the right,

(d) the generator x[s..s+p1] is primitive.

The maximum number of maximal repetitions in a string of length n is O(n log n),
see [2]. On the other hand, the maximum number of runs is ≤ 1.029n, see [19]. In [4,5],
Franek and Jiang used Crochemore’s repetitions algorithm to generate all maximal
primitively rooted repetitions, collect them in a data structure of size O(n log n) and
then in O(n log n) time process the collected repetitions and consolidate them into
runs. Though the repetitions computed by Crochemore’s algorithm are not in any
particular order – except the fact that repetitions of the same period are computed
at the same stage, a detailed examination of the gap function revealed that there
is no need to collect the repetitions, that the runs can be directly inferred from the
information provided by the gap function.

To be able to discuss the gap function and show how the runs can be directly
inferred, we need to briefly discuss the mechanism of the Crochemore’s repetitions
algorithm.

3 Brief description of Crochemore’s repetitions algorithm

In mathematical terms, the algorithm is simple and elegant and relies on the refine-
ments of classes of equivalence of the positions of the input string x = x[0..n1]. An
equivalence ≈k is defined on the set of indices {0, . . . , n1} by i1≈k i2 if and only
if x[i1..i1+k1] = x[i2..i2+k1]. In simple terms, two positions are ≈k equivalent, if
the substrings of length k starting at those two positions are the same. In all times,
the algorithm maintains an ascending order of the indices in each class, though no
particular order of the classes themselves.

At the first level, the algorithm computes by brute force the classes of equivalence
≈1. These classes in fact represent all the positions with the same alphabet symbol.
On each following level k, all classes of equivalence ≈k are computed. Note that each
class from level k1 is either preserved as a class on level k, or is partitioned into
several disjoint classes which we will refer to as family. That is why the Crochemore’s
algorithm is also referred to as the partitioning algorithm. It is clear that once a class
has size 1, it cannot be partitioned any further. The processing ends when all classes
are of size 1.

The classes, indeed, contain all information of all possible repeats of substrings
of x. It is straightforward to see that a primitively rooted square of period p must
be represented by two consecutive indices i1 and i2 in the same class of ≈p so that
|i1i2| = p.

The main complication of the algorithm lies in the process of refinements. If
the refinements were carried out directly through references to the input string, the
running complexity would be unacceptable O(n2). However, the refinement of the
class on level k can be carried out by using other classes on level k which allows to
discard the original string once the classes on the first level had been computed. This
approach, though much better than the refinement through direct reference to the
input string, would still lead to the running complexity of O(n2). If in each family we
take a largest class by size and designate it big and all other as small, we can carry the
full refinement of all the classes using just the small classes. Since any position can
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occur in at most O(log n) small classes, this approach gives the running complexity
of O(n log n).

Not to destroy the O(n log n) complexity, we cannot afford to scan the classes
when looking for squares and ultimately for maximal repetitions. Throughout the
whole process of refinement, a function Gap(p) is maintained that gives a list of all
indices that are exactly p distance from its predecessor in the class, more precisely:
when processing level k, if i2 ∈ Gap(p), then i1 = i2p is in the same class of equivalence
≈k as i2 and these two indices are consecutive in the class. We will describe the Gap()
function in more detail in the next section dealing with the implementation of the
FJW algorithm.

4 Implementation of the FJW

We first describe the implementation and its data structures without any regard for
the size of required memory. This leads to an implementation requiring 19n of integers.
Then we use several techniques to reduce the required memory to 13n integers. We
will present the data structures as static, but for practical reasons – we do not want
to recompile the program each time a different string is to be processed, all the
structures are allocated once at the outset of the program’s processing. The structures
are essentially arrays used to emulate doubly-linked lists, stacks, and queues.

The first seven arrays deal with classes:

1. An integer array CStart [0..n1] stores the very first element of a class, i.e.
CStart[i] = j means that the first element of class i is j. This emulates a pointer

to the beginning of a class.

2. An integer array CEnd[0..n1] stores the very last element of a class, i.e. CEnd[i] =
j means that the last element of class i is j. This emulates the pointer to the end

of a class.

3. An integer array CNext[0..n1] stores the next element in the class or null. Thus
CNext[i] = j indicates that i and j are in the same class and that j is the next
element after i, while CNext[i] =null indicates the i is the last element in the
class. This emulates the forward links.

4. An integer array CPrev[0..n1] stores the previous element in the class or null.
Thus CPrev[i] = j indicates that i and j are in the same class and that j is the
element just before i, while CPrev[i] =null indicates the i is the first element in
the class.This emulates the backward links.

5. An integer array CMember[0..n1] stores the membership of each element, i.e.
CMember[i] = j means that i belongs to the class j.

6. An integer array CSize[0..n1] stores the sizes of classes, i.e. CSize[i] = j means
that class i has size j.

7. An integer array CEmpty[0..n1] is used as a stack of empty classes to be used.

The following four arrays deal with families:

1. An integer array FStart[0..n1] is used as a stack. FStart[i] = j thus means that
class j is the first class in the family i.

2. An integer array FNext[0..n1] emulates the forward links in a list of classes in a
family.

3. An integer array FPrev[0..n1] emulates the backward links.
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4. An integer array FMember [0 .. n1] stores the family membership, i.e.
FMember[i] = j means that class i belongs to family j.

The following four arrays deal with the refinement process:

1. An integer array Refine[0..n1]. Refine[i] = j means that an element from class i
should be moved to class j.

2. An integer array RStack[0..n1] is used as a stack. It is used to remember which
items in Refine[] were occupied, so it can be cleared without any need to traverse
the whole array Refine[] which would destroy the O(n log n) complexity.

3. An integer array Sel[] is used as a queue. It is the queue of all elements of all small
classes.

4. An integer array Sc[] is used as a queue of small classes. Sc[i] = j indicates j is the
last element of a small class. Thus the information in Sel[] and Sc[] implements
a list of elements of small classes with indicators where one small class ends and
the next small class starts.

The last four arrays implement the gap function:

1. An integer array Gap[0..n1]. Gap[i] = j indicates that the first element in the gap
list for i is j, i.e. j’s predecessor in the class is ji.

2. An integer array GMember[0..n1]. GMember[i] = j means that i belongs to the
gap list j.

3. An integer array GNext[0..n1] emulates the forward links in the gap lists.
4. An integer array GPrev[0..n1] emulates the backward links in the gap lists.

The C++ code for this version is the file crochB.cpp and electronically available
at [20].

In the next version, crochB1.cpp, also posted at [20], the array GMember[] is
replaced by a function GMember() and the memory requirement is reduced to 18n
integers. GMember() can be directly computed:

GMember(i) =











null if i is not member of any class,

null if i is the first member of a class,

iCPrev[i] otherwise.

Version crochB3.cpp reduces the memory requirement further to 17n integers.
Consider any family doubly-linked list, its beginning can be determined by two means:
FStart[i] = j or FPrev[j] =null. Thus, we can do away with FMember[] array and
replace it by a function that is utilizing the redundant space in FStart[] and FNext[]:

FMember(i) =











FStart[i] if the stack pointer is null,

FNext[FPrev[FStart[i]]] if i ≤ the stack pointer,

FStart[i] otherwise.

We also introduce a function FEnd() computed from FStart[] and FPrev[]:
FEnd(i) = FPrev[FStart[i]].

In the next version, crochB4.cpp, CEmpty[] and Sc[] are made to share the same
memory segment, reducing the memory requirement to 16n integers.

Version crochB5.cpp distributes CEnd[] and CSize[] over CStart, CNext, and
CPrev, thus reducing the memory requirement further to 14n integers. Therefore,
CEnd(i) = CPrev[CStart[i]] and CSize(i) = CNext[CPrev[CStart[i]]].
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If we limit the maximal possible length of an input string from UNSIGNED LONG

MAX to LONG MAX, which for a 32-bit long it is 2,147,483,647 and thus large enough, we
can virtualize CMember[] over Gap[], GNext[], and GPrev[], reducing the memory
requirement to 13n integers. Thus, the function to set the value of CMember(e) to
c:

if (Gap[e] == null || Gap[e] < 0)

if (c == null)

Gap[e] = null;

else

Gap[e] = 0-1-c;

else

if (c == null)

GNext[GPrev[Gap[e]]] = null;

else

GNext[GPrev[Gap[e]]] = 0-1-c;

and the function to get the value of CMember(e):

if (Gap[e]==null)

return null;

else

if (Gap[e] < 0)

return 0-1-Gap[e];

else

if (GNext[GPrev[Gap[e]]] == null)

return null;

else

return 0-1-GNext[GPrev[Gap[e]]];

The version crochB7.cpp is just a polished version of crochB6.cpp with the
additional features discussed in the next section.

5 The gap function and computations of distinct squares,

maximal repetitions, and runs

Throughout the process of refinement, the gap function is maintained. In order to
protect the running complexity of O(n log n), every time an element is removed from
a class, the gap function is updated; and any time an element is added to a class, the
gap function is updated again. When computing the next level from the current one,
Gap[p] points to the first element whose immediate predecessor in its class is exactly
at distance p, while GNext[] and GPrev[] allow us to traverse the whole list in either
direction and to update the list in constant time. Notice that if Gap[p] = i and we are
dealing with level p of refinement, then there is a primitively rooted square starting
at position GPrev[i] of period p.

Computing Distinct Squares – traceSquares() method

The gap function can be used to compute primitively rooted distinct squares. As we
traverse the gap list, once we identify the first primitively rooted square in each class,
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we ignore the identification of the rest from the same class as they are all identical
squares. We use Refine[] and RStack[] that are only needed during the refinement
process as auxiliary data structures here to indicate the last class we already have a
representative from in order not to get another representative from the same class.
Note that the program can either output the number of distinct squares, the triples
(s, p, e) encoding the squares identified, or the squares as identified substrings of the
input string – we refer to is as pretty print. To use pretty print, the string alphabet
should be the lower case letters a, b, . . .

Computing Maximal Repetitions – traceMaxReps() method

For the maximal primitively rooted repetitions, again either their number can be
output, the individual repetitions in their encoding into triples or pretty print can be
used. The algorithm traverses the gap list, and for each entry it checks how far left
and how far right it can extend the square. Thus, during the tracing at level p, all
the individual squares identified are consolidated into maximal repetitions. A brief
description on how the algorithm determines if the square can be extended to the left:
the entry i from the gap list Gap[p] indicates that there is a primitively rooted square
starting at position ip. Then the algorithm checks if the square can be extended to
the left – i.e. is there a square of period p starting at position i2p and determined by
ip. It is possible that the position ip is in the gap list further away. In order not to
process the square starting at i2p and determined by ip, we again use Refine[] and
Rstack[] to indicate that this entry has already been processed.

Computing Runs – traceRuns() method

The computation of runs is performed by TraceRuns(). The idea is very similar
to that of tracing maximal repetitions: the identified primitively rooted squares are
consolidated to runs. If you look at the leading square of a run (s, p, e, t) that must
be primitively rooted by definition, at every position s+i, 0 ≤ i ≤ (e2) ·p+t there is a
primitively rooted square. This fact is based on a simple observation that a rotation
of a primitive string is also primitive. In the algorithm, we have to consolidate the
run from all of the primitively rooted squares encoded in the gap function. Thus,
having identified a square, not only we must check if it can be extended left or right
as a repetition, we have to check if it can be shifted left or right. Again, we are using
Refine[] and RStack[] as auxiliary data structures to indicate which of the elements
of the gap list had been previously processed as the part of tracing, so we do not
process them again.

6 Conclusion

We present a new implementation of an extension of the Crochemore’s repetitions
algorithm that computes primitively rooted distinct squares, primitively rooted max-
imal repetitions, or runs. The running complexity of the original repetitions algorithm
is preserved, and thus is O(n log n) where n is the length of the input string. In com-
parison to the previous implementation of the Crochemore’s partitioning algorithm,
the memory required is reduced to 13n integers. In comparison to the previous imple-
mentation of an extension to compute runs, there is no additional memory requited
and no dynamic allocation or deallocation of the memory during the processing as
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all the required memory is allocated once at the outset of the program. The result-
ing algorithm implemented in C++ is very fast and all the versions described in
this paper can be downloaded from [20]. Since this report does not include bench-
marking and comparisons with other runs algorithms, the future work must include
the bench-marking and comparisons with the fastest algorithms [1,7] regardless their
complexity, and, of course, with the known linear implementations.
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