
Efficient Eager XPath Filtering over XML Streams

Kazuhito Hagio, Takashi Ohgami, Hideo Bannai, and Masayuki Takeda

Department of Informatics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
{kazuhito.hagio, takashi.oogami}@i.kyushu-u.ac.jp

{bannai, takeda}@inf.kyushu-u.ac.jp

Abstract. We address the embedding existence problem (often referred to as the fil-
tering problem) over streaming XML data for Conjunctive XPath (CXP). Ramanan
(2009) considered Downward CXP, a fragment of CXP that involves downward navi-
gational axes only, and presented a streaming algorithm which solves the problem in
O(|P ||D|) time using only O(|P |height(D)) bits of space, where |P | and |D| are the
sizes of a query P and an XML data D, respectively, and height(D) denotes the tree
height of D. Unfortunately, the algorithm is lazy in the sense that it does not nec-
essarily report the answer even after enough information has been gathered from the
input XML stream. In this paper, we present an eager streaming algorithm that solves
the problem with same time and space complexity. We also show the algorithm can be
easily extended to Backward CXP a larger fragment of CXP.

1 Introduction

Efficient processing of XML streams is receiving much attention due to its growing
range of applications such as stock and sports tickers, traffic information systems,
electronic personalized newspapers, and entertainment delivery. Existing approaches
assume that user interests are written as tree-shaped queries in XPath, a language
for specifying the selection of element nodes within XML data trees. There are two
variations of the problem: the embedding existence (EmbExist) and the query eval-
uation (QueryEval). The former is, given an XPath tree P and an XML data tree
D, to determine whether there exists an embedding of P into D. The latter is, given
P , D, and a node qout of P , to determine the set of element nodes that qout matches
over all embeddings of P in D. A great deal of studies have been undertaken on the
problems (see an excellent survey [1]). In this paper, we focus on EmbExist.

XPath supports a number of powerful modalities and it is rather expensive to
process. In practice, many applications do not need the expressive power of the full
language and use only a fragment of XPath. One such fragment is a conjunctive, nav-
igational fragment named Conjunctive XPath (CXP). For non-streaming D, Gottlob
et al. [2] and Ramanan [6] presented in-memory algorithms which solve QueryEval

(and therefore EmbExist) for CXP in O(|P ||D|) time using O(|D|) space. On the
other hand, several studies have been undertaken on developing streaming algorithms
for both the problems, with a restriction on navigational axes.

Downward CXP (DCXP) is a fragment of CXP where navigational axes are
limited to the child and descendant axes. Ramanan [7] showed that for DCXP,
there is a streaming algorithm which solves EmbExist in O(|P ||D|) time using
only O(|P |height(D)) bits of space, where height(D) denotes the tree height of D.
Gou and Chirkova [3] also presented an algorithm which takes O(|P ||D|) time and
O(r(P,D)|P | log height(D)) bits of space, where r(P,D) denotes the recursion depth

Kazuhito Hagio, Takashi Ohgami, Hideo Bannai, Masayuki Takeda: Efficient Eager XPath Filtering over XML Streams, pp. 30–44.

Proceedings of PSC 2011, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04870-2 c© Czech Technical University in Prague, Czech Republic

Kazuhito Hagio et al.: Efficient Eager XPath Filtering over XML Streams 31

of D w.r.t. Q1. Unfortunately, both the algorithms are lazy in the sense that they do
not necessarily report the answer even after enough information has been gathered
from input XML stream.

Main contribution. In this paper we present an eager streaming algorithm which
solves EmbExist for DCXP in O(|P ||D|) time using O(|P |height(D)) bits of space.
We then extend it to Backward CXP (BCXP), a larger fragment of CXP where some
additional navigational axes are allowed.

The remainder of this paper is as follows. In Section 2 we define CXP and its
fragments DCXP and BCXP, and then formulate our problem. In Section 3 we show
a lazy algorithm which is essentially the same as the one presented by Ramanan in
[7]. In Section 4 we describe how to modify the algorithm eager. In Section 5 we
extend these two algorithms to BCXP. In Section 6 we mention related work and in
Section 7 we conclude this paper.

2 Preliminaries

2.1 Notation

Let A be a finite alphabet. An element of A∗ is called a string. A string y is said to
be a substring of another string w if w can be written as w = xyz for some strings
x, z. For a string w, the i-th symbol of w is denoted by w[i], and the substring of w
that begins at position i and ends at position j is denoted by w[i..j].

Let R, S be any binary relations on a set X. The composition of R and S is
R ◦ S =

{

〈x, z〉
∣

∣ 〈x, y〉 ∈ R and 〈y, z〉 ∈ S
}

. Let R0 = IX = {〈x, x〉 | x ∈ X}, and
let Rn = R ◦ Rn−1 for n ≥ 1. Then, the transitive closure of R is R+ =

⋃∞
n=1 R

n,
and the reflexive, transitive closure of R is R∗ =

⋃∞
n=0 R

n. The inverse of R is
R−1 = {〈x, y〉 | 〈y, x〉 ∈ R}. Let R(y) = {x ∈ X | 〈x, y〉 ∈ R}.

2.2 XML data tree and XML data

Let Σ be a set of tag names. An XML data tree is an ordered tree with nodes v

labeled by label(v) in Σ, and is denoted by D. Let ND denote the set of nodes in D.
The cardinality of ND is called the size of D and denoted by |D|. Let <pre denote
the pre-order on ND.

Let Σ = {ā | a ∈ Σ}. For any u ∈ ND, let

S(u) =

{

a ā, u is a leaf;

a S(v1) · · · S(vk) ā, u is an internal node with children v1, . . . , vk.

where a = label(u). We note that S(u) is a string over Σ ∪ Σ. The serialized rep-
resentation S(D) of an XML data tree D is defined to be S(r) where r is the root
of D. The serialized representations of XML data trees are called the XML data. In
this paper, we assume that the input XML data tree is given in the form of XML
data, and identify an XML data tree D and its serialized representation S(D) if no
confusion occurs. Thus we simply denote by D[i] the symbol S(D)[i], and by D[i..j]
the substring S(D)[i..j], respectively. We often use N as the length of S(D).

An example of XML data tree and the corresponding XML data are shown in
Fig. 1.

1 Since r(P,D) = O(height(D)) the space requirement can be O(|P |height(D) log height(D)) which
is worse than O(|P |height(D)). On the other hand, r(P,D) is often smaller than height(D) in
some practical cases.

32 Proceedings of the Prague Stringology Conference 2011

a

a a

ab

c

b

1

2

3
4

5 6

7

8

9
c b

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

D[t] a a b b̄ a c c̄ b b̄ ā ā a b c c̄ b̄ ā ā

Figure 1. An example of XML data tree D is displayed on the left and its serialized representation
D[1..N] is shown on the right. We have |D| = |ND| = 9 and N = 18. The node numbered 4 of D
corresponds to interval [5, 10] of D[1..N].

In XML data D = D[1..N], every v ∈ ND corresponds to an interval [s(v), e(v)]
with 1 ≤ s(v) < e(v) ≤ N such that v starts at position s(v) and ends at position
e(v). We note that symbols a ∈ Σ and ā ∈ Σ, respectively, correspond to start and
end tags of XML data.

Proposition 1. For any u, v ∈ ND, u <pre v ⇐⇒ s(u) < s(v).

2.3 Conjunctive XPath, embedding, occurrence

We consider two binary relations on ND

child = {〈u, v〉 | u is a child of v},

nextSib = {〈u, v〉 | u is the next sibling of v}

and their inverses parent = child−1 and prevSib = nextSib−1. These four binary
relations and their transitive and reflexive transitive closures are called axes. Ad-
ditionally, the identity self = {〈v, v〉 | v ∈ ND}, the abbreviation following =
child∗ ◦ nextSib+ ◦ parent∗ and its inverse preceding = following−1 are also axes2.

A conjunctive XPath (CXP) tree is an unordered tree such that

– the nodes p are labeled by label(p) ∈ Σ ∪ {⋆}, where ⋆ is a special symbol not in
Σ; and

– the edges are labeled by axes.

Let P be a CXP tree. The size of P , denoted by |P |, is the number of nodes. Let
P.rt denote the root of P . For any non-root node q of P , let χ(q) denote the label of
the edge between q and its parent. For a node q of P , let sub(q) denote the subtree
of P rooted at q. An embedding of P into D is a function ϕ that maps nodes of P to
nodes of D such that

– label(q) ∈ {⋆, label(ϕ(q))} for any node q of P ; and
– 〈ϕ(p), ϕ(q)〉 ∈ χ(q) for any non-root node q of P with parent p.

We note that function ϕ is not necessarily an injection, unlike the standard setting
of tree pattern matching (see, e.g. [4]). Figure 2 illustrates embeddings of CXP tree
into XML data tree.
2 The descendant, descendant-or-self, ancestor, ancestor-or-self, preceding-sibling, and following-sibling
axes of XPath1.0 (http://www.w3.org/TR/xml) correspond to child+, child∗, parent+, parent∗,
prevSib+, and nextSib∗, respectively. We note that the original definition of XPath1.0 excludes
nextSib, nextSib∗, prevSib, and prevSib∗.

Kazuhito Hagio et al.: Efficient Eager XPath Filtering over XML Streams 33

a

cb

child child+

1

2 3

a

a a

ab

c

b

1

2

3
4

5 6

7

8

9
c b

a

cb

child child+

a

cb

child child+

a

cb

child child+

Figure 2. An example CXP tree is shown on the left, and its embeddings into the XML data tree
of Fig. 1 are illustrated on the right.

A CXP tree P is said to occur at v ∈ ND if there exists an embedding ϕ of P into
D with ϕ(P.rt) = v. An occurrence of P in D is a node v ∈ ND at which P occurs.
Let Occ(P,D) denote the set of occurrences of P in D.

A CXP tree P is said to be unsatisfiable if no node of D is an occurrence of P for
any D, and satisfiable, otherwise. We assume that the input CXP tree is satisfiable
throughout this paper.

2.4 Problem statement

Problem 2 (EmbExist). Given a CXP tree P and an XML data D, determine
whether there exists an embedding of P into D.

Problem 3 (QueryEval). Given a CXP tree P , a node qout of P , and an XML data
D, compute Eval(P, qout, D) = {ϕ(qout) | ϕ is an embedding of P into D}.

EmbExist is often referred to as the filtering problem. The next is a slightly
strengthened version of EmbExist.

Problem 4 (AllOcc). Given a CXP tree P and an XML dataD, computeOcc(P,D).

We note that AllOcc is essentially the same as EmbExist and is a special case of
QueryEval where qout is the root of P . In this paper we focus on AllOcc.

A streaming algorithm for AllOcc is an algorithm which scans an XML data
D = D[1..N] and emits, for every x ∈ ND, the pair 〈x, bx〉 during one pass through
D[1..N], where bx denotes a Boolean value indicating whether P occurs at x. A
streaming algorithm for AllOcc is eager if it emits the pair 〈x, bx〉 with minimum
delay for every x ∈ ND.

2.5 Fragments of CXP

The downward axes are child, child+, child∗, and self. The forward (resp. backward)
axes are the downward axes plus nextSib, nextSib+, nextSib∗ and following (resp.
prevSib, prevSib+, prevSib∗ and preceding). The fragments of CXP with downward,
forward and backward axes are denoted by DCXP, FCXP and BCXP, respectively.
Figure 3 illustrates the fragments of CXP.

Theorem 5 ([7]). There is a streaming algorithm that solves AllOcc for DCXP
in O(|P ||D|) time using O(|P |height(D)) bits of space.

34 Proceedings of the Prague Stringology Conference 2011

child

parent

prevSib nextSib

parent+

parent*

child+

child*

nextSib+

nextSib*

prevSib+

prevSib*
followingpreceding self

DCXP

FCXPBCXP

Figure 3. Fragments of CXP are illustrated.

3 Lazy Algorithm for DCXP

In this section, we describe a lazy algorithm for solving AllOcc for DCXP, which
simplifies a predicate evaluator presented by Ramanan in [7]. Throughout this section
D is any fixed XML data.

3.1 Introducing predicates M and T

Definition 6. For any node p of a CXP tree P and any u ∈ ND, let

M(p, u) = T ⇔ sub(p) occurs at u.

Since Occ(P,D) is the set of nodes v ∈ ND such that M(P.rt, v) = T, we consider
computing the values M(P.rt, v) for all v ∈ ND for any P . For this purpose, we use
another predicate T (·, ·) defined below.

For any non-root node q of P , let sub+(q) be the tree obtained from the tree
sub(q) by adding a new root node r with label ⋆ an edge from r to q labeled χ(q).
(See an example in Fig. 4.)

b

ac

child child+
a

b

b

b b

c

b

prevSib+ prevSib*

child child+

child+

child

child

a

b b

c

child child+

child+

child

*

q

Figure 4. An example subtree sub(q) of CXP tree is surrounded with broken line on the left, and
the corresponding sub+(q) is displayed on the right.

Definition 7. For any non-root node q of a CXP tree P and any u ∈ ND, let

T (q, u) = T ⇔ sub+(q) occurs at u.

Examples of M and T can be found in Fig. 5.

Kazuhito Hagio et al.: Efficient Eager XPath Filtering over XML Streams 35

M(q, v) T (q, v)

v

1 2 3 4 5 6 7 8 9
1 F T F T F F T F F

q 2 F F T F F T F T F

3 F F F F T F F F T

v

1 2 3 4 5 6 7 8 9
1

q 2 F T F T F F T F F

3 T T F T F F T T F

Figure 5. The values of functions M and T for the XML tree D and the CXP tree P of Fig. 2.

Proposition 8. For any non-root node q of a CXP tree P and any u ∈ ND,

T (q, u) =
∨

〈v,u〉∈χ(q) M(q, v).

We can prove the following lemma:

Lemma 9. For any node p of a CXP tree P and any u ∈ ND,

M(p, u) =
(

label(p) ∈ {⋆, label(u)}
)

∧
(
∧

q is a child of p T (q, u)
)

.

Proof. Directly from the definitions of M and T . ⊓⊔

3.2 Algorithm

Now we assume that P is a DCXP tree. We have the following lemma:

Lemma 10. For any node q of a DCXP tree P and any u ∈ ND,

T (q, u) =



















∨

v∈child(u) M(q, v), if χ(q) = child;
∨

v∈child(u)(T (q, v) ∨M(q, v)), if χ(q) = child+;

M(q, u) ∨
∨

v∈child(u) T (q, v), if χ(q) = child∗;

M(q, u), if χ(q) = self.

Proof. By Proposition 8. ⊓⊔

Algorithm 1 follows directly from Lemmas 9 and 10. It essentially processes the
nodes v of D in post-order. Arrays M [·, ·] and T [·, ·] are used to store the values of
M(·, ·) and T (·, ·), respectively. We note that the values of M(q, u) and T (q, u) should
be stored only for the ancestors u of current v, and therefore the space requirement
for M and T is O(|P |height(D)) bits.

Theorem 11. Algorithm 1 (lazily) solves AllOcc for DCXP in O(|P ||D|) time
using O(|P |height(D)) bits of space.

4 Eager Algorithm for DCXP

In this section we modify Algorithm 1 to be eager.

36 Proceedings of the Prague Stringology Conference 2011

Algorithm 1: A lazy streaming algorithm that solves AllOcc for DCXP.

class LazyDCXP1

void run(CXPTree P ; XMLData D[1..N])2

initialize M [·, ·] and T [·, ·] to F;3

for t := 1 to N do4

if D[t] ∈ Σ then do nothing;5

if D[t] ∈ Σ then6

let v be the node of D with t = e(v);7

endTag(P, v);8

void endTag(CXPTree P ; XMLDataNode v)9

foreach node q of P in post-order do updateM(q, v);10

void updateM(CXPTreeNode q; XMLDataNode v)11

M [q, v] :=
(

label(q) ∈ {⋆, label(v)}
)

∧
(
∧

c is a child of q T [c, v]
)

; // by Lemma 912

if q is root node then13

emit 〈v,M [q, v]〉;14

else15

updateTV (q, v);16

void updateTV (CXPTreeNode q; XMLDataNode v) // by Lemma 1017

if χ(q) = self then T [q, v] := M [q, v];18

if χ(q) = child∗ then T [q, v] := T [q, v] ∨M [q, v];19

if v has parent u then20

if χ(q) = child then T [q, u] := T [q, u] ∨M [q, v];21

if χ(q) = child+ then T [q, u] := T [q, u] ∨M [q, v] ∨ T [q, v];22

if χ(q) = child∗ then T [q, u] := T [q, u] ∨ T [q, v];23

4.1 Precise definition of eagerness

First, we formally define what is meant by eager. To represent predicates M and T

for varying D, we explicitly specify superscript D as MD and TD.

Definition 12. Let P be any CXP tree and let D = D[1..N] be an XML data. For
any node p of P , any u ∈ ND, and any t ∈ [s(u), N], let

MD
t (p, u) =

{

MD′

(p, u)
∣

∣ D′ is an XML data with D′[1..t] = D[1..t]
}

.

Intuitively, MD
t (p, u) is the set of possible values of MD(p, u) just after reading

the t-th symbol of D[1..N]. It is thus a subset of {T, F}, and can be either {T}, {F},
or {T, F}. Let us denote the values {T}, {F}, {T, F} simply by T, F,U, respectively.
In what follows, we omit superscript D and simply write as Mt(p, u) if no confusion
occurs. Fig. 6 illustrates the values of Mt for the XML data tree D and the CXP tree
P of Fig. 2 where t = 1, . . . , 18.

Definition 13. For any node p of a CXP tree P and for any u ∈ ND, let timeM(p, u)
be the smallest integer t ∈ [s(u), N] such that Mt(p, u) 6= U.

Proposition 14. Mt(p, u) = U for any t ∈ [s(u), timeM(p, u) − 1] and Mt(p, u) =
M(p, u) 6= U for any t ∈ [timeM(p, u), N].

We are now ready to define the concept of eagerness.

Kazuhito Hagio et al.: Efficient Eager XPath Filtering over XML Streams 37

Mt(q, v) Tt(q, v)

1 2 3 4 5 6 7 8 9
[1, 18] [2, 11] [3, 4] [5, 10] [6, 7] [8, 9] [12, 17][13, 16][14, 15]

1 2 3 4 5 6 7 8 9
[1, 18] [2, 11] [3, 4] [5, 10] [6, 7] [8, 9] [12, 17][13, 16][14, 15]

t = 1
1 U

2 F

3 F

1
2 U

3 U

t = 2
1 U U

2 F F

3 F F

1
2 U U

3 U U

t = 3
1 U U F

2 F F T

3 F F F

1
2 U T U

3 U U U

t = 4
1 U U F

2 F F T

3 F F F

1
2 U T F

3 U U F

t = 5
1 U U F U

2 F F T F

3 F F F F

1
2 U T F U

3 U U F U

t = 6
1 U T F U F

2 F F T F F

3 F F F F T

1
2 U T F U U

3 T T F T U

t = 7
1 U T F U F

2 F F T F F

3 F F F F T

1
2 U T F U F

3 T T F T F

t = 8
1 U T F T F F

2 F F T F F T

3 F F F F T F

1
2 U T F T F U

3 T T F T F U

t = 9, 10, 11
1 U T F T F F

2 F F T F F T

3 F F F F T F

1
2 U T F T F F

3 T T F T F F

t = 12
1 U T F T F F U

2 F F T F F T F

3 F F F F T F F

1
2 U T F T F F U

3 T T F T F F U

t = 13
1 U T F T F F U F

2 F F T F F T F T

3 F F F F T F F F

1
2 U T F T F F T U

3 T T F T F F U U

t = 14
1 U T F T F F T F F

2 F F T F F T F T F

3 F F F F T F F F T

1
2 U T F T F F T U U

3 T T F T F F T T U

t = 15
1 U T F T F F T F F

2 F F T F F T F T F

3 F F F F T F F F T

1
2 U T F T F F T U F

3 T T F T F F T T F

t = 16, 17
1 U T F T F F T F F

2 F F T F F T F T F

3 F F F F T F F F T

1
2 U T F T F F T F F

3 T T F T F F T T F

t = 18
1 F T F T F F T F F

2 F F T F F T F T F

3 F F F F T F F F T

1
2 F T F T F F T F F

3 T T F T F F T T F

Figure 6. The values of functions Mt and Tt for the XML data tree D and the CXP tree P of Fig. 2,
where t = 1, . . . , 18. Value changes from the previous t are emphasized in boldface.

38 Proceedings of the Prague Stringology Conference 2011

Definition 15. A streaming algorithm that solves AllOcc is eager if, for every
u ∈ ND it emits 〈u,M(P.rt, u)〉 just after processing D[t∗] where t∗ = timeM(P.rt, u).

For timeM , we can prove the following:

Proposition 16. If P is a BCXP tree, then timeM(p, u) ∈ [s(u), e(u)] for any node
p of P and for any u ∈ ND.

Proof. Let ϕ be any embedding of sub(p) into D with ϕ(p) = u, if exists. Since the
axes of P are limited to backward ones, for any node q of sub(p), ϕ(q) ∈ preceding(u)∪
child∗(u) and therefore e(ϕ(q)) ≤ e(u). ⊓⊔

4.2 Introducing Tt

We extend the Boolean operations ∧,∨,¬ to domain {T, F,U} by: T∧U = U∧T = U,
T∨U = U∨T = T, F∧U = U∧F = F, F∨U = U∨F = U, and U∧U = U∨U = ¬U = U.
For convenience, let Mt(p, u) = U for any t ∈ [0, . . . , s(u) − 1], although Mt(p, u) is
undefined for such t.

Definition 17. For any non-root node q of a CXP tree P , any u ∈ ND, and for any
t ∈ [s(u), N], let

Tt(q, u) =
∨

〈v,u〉∈χ(q) Mt(q, v).

Then we have:

Lemma 18. For any node p of a CXP tree P , for any u ∈ ND, and for any t ∈ [0, N],

Mt(p, u) =
(

label(p) ∈ {⋆, label(u)}
)

∧
(
∧

q is a child of p Tt(q, u)
)

.

Proof. By Lemma 9 and the definitions of Mt and Tt. ⊓⊔

Define timeT (p, u) in a way similar to timeM(p, u). Then:

Proposition 19. If P is a BCXP tree, then the following statements hold for any
node p of P and for any u ∈ ND.

– timeT (p, u) ∈ [s(u), e(u)].
– If χ(p) ∈ {prevSib, prevSib+, preceding} then timeT (p, u) = s(u).
– If χ(p) ∈ {child, child+, child∗, self, prevSib∗} and T (p, u) = F then timeT (p, u) =
e(u) (due to the assumption that P is satisfiable).

Proof. Let ϕ be any embedding of sub+(p) into D with ϕ(p′) = u where p′ is the
parent of p, if exists. Since the axes of P are limited to backward ones, for any
node q of sub+(p), ϕ(q) ∈ preceding(u) ∪ child∗(u) and therefore e(ϕ(q)) ≤ e(u).
Thus we have timeT (p, u) ∈ [s(u), e(u)]. Suppose χ(p) ∈ {prevSib, prevSib+, preceding}.
Then, e(ϕ(q)) ≤ e(ϕ(p)) < s(ϕ(p′)) = s(u) and we have timeT (p, u) = s(u). Suppose
χ(p) ∈ {child, child+, child∗, self, prevSib∗} and T (p, u) = F. There is a possibility that
a descendant v of u (possibly u = v) appears that makes T (p, u) T until reading the
end-tag of u. Thus we have timeT (p, u) = e(u). ⊓⊔

Kazuhito Hagio et al.: Efficient Eager XPath Filtering over XML Streams 39

4.3 Algorithm

Again, we restrict ourselves to the DCXP trees. We have:

Lemma 20. For any node q of a DCXP tree P , for any u ∈ ND, and for any
t ∈ [s(u), e(u)],

Tt(q, u) = Tt−1(q, u) ∨
∨

〈v, u〉 ∈ χ(q) and t ∈ [s(v), e(v)]

((Mt−1(q, v) = U) ∧ (Mt(q, v) = T)).

Proof. Let 〈v, u〉 ∈ χ(q). Since χ(q) ∈ {child, child+, child∗, self}, we have [s(v), e(v)]
⊆ [s(u), e(v)]. The lemma follows from Definition 17. ⊓⊔

Our eager algorithm follows from Lemmas 18 and 20. It can be summarized as
Algorithm 2. It initializes the entries of arrays M and T by U and then incrementally
rewrites them to T or F so that M [q, u] and T [q, u] are, respectively, identical to
Mt(q, u) and Tt(q, u) for every t ∈ [s(u), N]. When a node v is found such that
M [q, v] just changes from U to T for some q with χ(q) = child (resp. child+, child∗,
and self), it rewrites T [q, u] for the parent u of v (resp. a proper ancestor u of v, an
ancestor u of v, and u = v itself). Whenever T [q, u] changes, we evaluate M [p, u] for
parent p of q, and if M [p, u] changes into T then we repeat this process. When a node
v′ is found such that M [P.rt, u] 6= U, we output the pair 〈u,M [P.rt, u]〉.

Let us call the t-th operating cycle the t-th iteration of the for-loop in function
run() of Algorithm 2.

Lemma 21. For any DCXP tree P , after the t-th operating cycle of Algorithm 2, the
value of M [p, u] is identical to Mt(p, u) for any node p of P and for any ancestor u

of v, where v is the node of D such that t = s(v) or t = e(v).

Proof. When p is a leaf, Lemma 18 implies that Mt(p, u) = Ms(u)(p, u) = (label(p) ∈
{⋆, label(u)}) for any t ∈ [s(u), N]. At t = s(u), the algorithm sets M [p, u] to
(label(p) ∈ {⋆, label(u)}) in execution of updateM(p, u) and then never changes it.
Thus M [p, u] holds Mt(p, u) for t ∈ [s(u), N] for leaves p of P . For internal nodes
p, Mt(p, u) depends on the values Tt(q, u) for the children q of p. The algorithm
invokes updateM(p, u) whenever T [q, u] changes from U into T, and each execution
of updateM(p, u) updates the value M [p, u] according to Lemma 18. Thus M [p, u]
correctly holds Mt(p, u) if T [q, u] correctly holds Tt(q, u) for every child q of p.

In execution of updateM , the algorithm invokes liftUp and updates T [q, u] from
Tt−1(q, u) to Tt(q, u) according to Lemma 20, whenever M [q, v] changes from U into
T for a child v of u (resp. a proper descandant v of u, a descendant v of u, and u = v

itself), if χ(p) = child (resp. child+, child∗, and self). Hence T [q, u] correctly holds
Tt(q, u). ⊓⊔

Lemma 22. Algorithm 2 runs in O(|P ||D|) time using O(|P |height(D)) bits of space.

Proof. The space complexity is O(|P |height(D)) bits as for Algorithm 1. To estimate
the time complexity, we have only to consider the total cost of executing liftUp. We
note that liftUp is invoked only when the value M [q, v] is changed from U into T and
that the value T [q, v] is changed from U into T in each execution of the while-loop
in liftUp. Thus the total time is O(|P ||D|). ⊓⊔

Theorem 23. Algorithm 2 eagerly solves AllOcc for DCXP in O(|P ||D|) time
using O(|P |height(D)) bits of space.

Proof. By Lemmas 21 and 22. ⊓⊔

40 Proceedings of the Prague Stringology Conference 2011

Algorithm 2: An eager streaming algorithm that solves AllOcc for DCXP.

class EagerDCXP1

void run(CXPTree P ; XMLData D[1..N])2

initialize M [·, ·] and T [·, ·] to U;3

for t := 1 to N do4

if D[t] ∈ Σ then5

let v be the node of D with t = s(v);6

startTag(P, v);7

if D[t] ∈ Σ then8

let v be the node of D with t = e(v);9

endTag(P, v);10

void startTag(CXPTree P ; XMLDataNode v)11

foreach node q of P in post-order do updateM(q, v);12

void endTag(CXPTree P ; XMLDataNode v)13

foreach node q of P in post-order do14

if M [q, v] = U then updateM(q, v);15

if T [q, v] = U then T [q, v] := F;16

void updateM(CXPTreeNode q; XMLDataNode v)17

M [q, v] :=
(

label(q) ∈ {⋆, label(v)}
)

∧
(
∧

c is a child of q T [c, v]
)

;18

if q is root node then19

if M [q, v] 6= U then emit the pair 〈v,M [q, v]〉;20

else21

if M [q, v] = T then updateTV (q, v);22

void updateTV (CXPTreeNode q; XMLDataNode v)23

let u be the parent of v;24

if χ(q) = child then liftUp(q, u,T);25

if χ(q) = child+ then liftUp(q, u,F);26

if χ(q) = child∗ then liftUp(q, v,F);27

if χ(q) = self then liftUp(q, v,T);28

void liftUp(CXPTreeNode q; XMLDataNode u; bool once)29

let p be the parent of q;30

while u 6= nil and T [q, u] = U do31

T [q, u] := T; updateM(p, u);32

if once then return;33

u := the parent of u;34

5 Extension to BCXP

5.1 Lazy algorithm for BCXP

The statement of Lemma 10 is extended to BCXP trees by adding four cases:

Lemma 24. For any node q of a BCXP tree P and any v ∈ ND,

T (q, v) =



















M(q, w), if χ(q) = prevSib;

T (q, w) ∨M(q, w), if χ(q) = prevSib+;

T (q, w) ∨M(q, v), if χ(q) = prevSib∗;

T (q, z) ∨ ((z 6∈ parent(v)) ∧M(q, z)), if χ(q) = preceding,

Kazuhito Hagio et al.: Efficient Eager XPath Filtering over XML Streams 41

where w is the previous sibling of v and z is the previous node of v w.r.t. <pre. (Let
M(q, w) = T (q, w) = F when w does not exist and let M(q, z) = T (q, z) = F when z

does not exist.)

Proof. It is rather straightforward in the cases of χ(q) = prevSib, prevSib+, and
prevSib∗. We consider the case of χ(q) = preceding. Let z be the previous node of
u w.r.t. <pre. There are two cases.
Case 1: When v is not a leftmost sibling. Let w be the immediately left sibling of
v. Then z is the rightmost descendant of w. In this case we have preceding(v) =
preceding(z) ∪ {z}.
Case 2: When v is a leftmost sibling. Then z is the parent of v. In this case we have
preceding(v) = preceding(z). ⊓⊔

Based on Lemmas 9 and 24, Algorithm 1 is extended as Algorithm 3 to cope with
BCXP trees. What needs to be stored are (1) the values of M(q, u) and T (q, u) for
the ancestors u of v; (2) the values of M(q, w) and T (q, w) for the previous sibling
w of v; and (3) the values of M(q, z) and T (q, z) for the previous node z of v w.r.t.
<pre. The space requirement for M and T is still O(|P |height(D)) bits.

Theorem 25. Algorithm 3 (lazily) solves AllOcc for BCXP in O(|P ||D|) time
using O(|P |height(D)) bits of space.

Algorithm 3: A lazy streaming algorithm that solves AllOcc for BCXP.

LazyBCXP extends LazyDCXP1

// methods run(), endTag(), updateTV () inherit from LazyDCXP

// method updateM() overrides the one in LazyDCXP

// method updateTH() is a newly added method

void updateM(CXPTreeNode q; XMLDataNode v)2

M [q, v] :=
(

label(q) ∈ {⋆, label(v)}
)

∧
(
∧

c is a child of q T [c, v]
)

;3

if q is root node then4

emit 〈v,M [q, v]〉;5

else6

updateTV (q, v);7

updateTH(q, v); // inserted8

void updateTH(CXPTreeNode q; XMLDataNode v) // by Lemma 249

if v has previous sibling w then10

if χ(q) = prevSib then T [q, v] := M [q, w];11

if χ(q) = prevSib+ then T [q, v] := T [q, w] ∨M [q, w];12

if χ(q) = prevSib∗ then T [q, v] := T [q, w];13

if χ(q) = prevSib∗ then T [q, v] := T [q, v] ∨M [q, v];14

if v has previous node z w.r.t. <pre then15

if χ(q) = preceding then16

if v has previous sibling then T [q, v] := T [q, z] ∨M [q, z];17

else T [q, v] := T [q, z];18

42 Proceedings of the Prague Stringology Conference 2011

Algorithm 4: An eager streaming algorithm that solves AllOcc for BCXP.

EagerBCXP extends EagerDCXP1

// methods run(), endTag(), updateM(), liftUp() inherit from EagerDCXP

// methods startTag(), updateTV () override the ones in EagerDCXP

void startTag(CXPTree P ; XMLDataNode v)2

foreach node q of P in post-order do3

updateM(q, v);4

LazyBCXP::updateTH(q, v); // added5

void updateTV (CXPTreeNode q; XMLDataNode v)6

let u be the parent of v;7

if χ(q) = child then liftUp(q, u,T);8

if χ(q) = child+ then liftUp(q, u,F);9

if χ(q) = child∗ then liftUp(q, v,F);10

if χ(q) = self then liftUp(q, v,T);11

if χ(q) = prevSib∗ then liftUp(q, v,T); // added12

5.2 Eager algorithm for BCXP

Lemma 26. For any non-root node q of a BCXP tree P with χ(q) ∈ {prevSib,
prevSib+, prevSib∗, preceding}, for any v ∈ ND, and for any t ∈ [s(v), N],

Tt(q, v) =



















Ms(v)−1(q, w), if χ(q) = prevSib;

Ts(v)−1(q, w) ∨Ms(v)−1(q, w), if χ(q) = prevSib+;

Ts(v)−1(q, w) ∨Mt(q, v), if χ(q) = prevSib∗;

Ts(v)−1(q, z) ∨ ((z 6∈ parent(v)) ∧Ms(v)−1(q, z)), if χ(q) = preceding,

where w is the previous sibling of v and z is the previous node of v w.r.t. <pre.

Proof. Recall Lemma 24. By Propositions 16 and 19, we have T (q, v) = Te(v)(q, v) 6= U

and M(q, v) = Me(v)(q, v) 6= U. Since e(w) ≤ s(v) − 1, we also have M(q, w) =
Me(w)(q, w) = Ms(v)−1(q, w) 6= U and T (q, w) = Te(w)(q, w) = Ts(v)−1(q, w) 6= U. Thus
the lemma holds for the cases of χ(q) = prevSib, prevSib+, and prevSib∗. Since e(z) ≤
s(v) − 1, we have M(q, z) = Me(z)(q, z) = Ms(v)−1(q, z) and T (q, z) = Te(z)(q, z) =
Ts(v)−1(q, z). Thus the lemma holds for the case of χ(q) = preceding. ⊓⊔

Our eager algorithm for BCXP is obtained as an extension of Algorithm 2 and is
summarized as Algorithm 4. Lemma 26 tells us that for χ(q) = prevSib, prevSib+, or
preceding, the values Tt(q, v) are determined when the start-tag of v is read, namely,
at t = s(v). Line 5 is thus added to startTag(). On the other hand, the values Tt(q, v)
can change until reading the end-tag of v for χ(q) = prevSib∗, and therefore Line 12
is added to updateTV ().

The statement of Lemma 21 also holds for Algorithm 4:

Lemma 27. For any BCXP tree P , after the t-th operating cycle of Algorithm 4, the
value of M [p, u] is identical to Mt(p, u) for any node p of P and for any ancestor u

of v, where v is the node of D such that t = s(v) or t = e(v).

Proof. Comparing to the proof of Lemma 21, we have only to prove that T [q, v]
correctly holds Tt(q, v) for any node q of P such that χ(q) = prevSib, prevSib+,
prevSib∗, or preceding, assuming that M [q, v] correctly holds Mt(q, v).

Kazuhito Hagio et al.: Efficient Eager XPath Filtering over XML Streams 43

In the three cases except χ(q) = prevSib∗, the values Tt(q, v) are determined to T

or F at t = s(u), and the algorithm sets T [q, v] to Tt(q, v) by calling updateHT (q, v)
of LazyBCXP. In the case of χ(q) = prevSib∗, the values Tt(q, v) can be U even for
t > s(u). Thus, it invokes liftUp(q, v) to update T [q, v] whenever M [q, v] changes into
T in execution of updateM . ⊓⊔

Lemma 28. Algorithm 4 runs in O(|P ||D|) time using O(|P |height(D)) bits of space.

Proof. It requires only O(|P |height(D)) bits of space as Algorithm 3 does. To show
its O(|P ||D|) time complexity, we have only to consider the total cost of executing
liftUp. By the same discussion in the proof of Lemma 22, the total time is O(|P ||D|).

⊓⊔

Theorem 29. Algorithm 4 eagerly solves AllOcc for BCXP in O(|P ||D|) time
using O(|P |height(D)) bits of space.

Proof. By Lemmas 27 and 28.

6 Related Work

By ‘streaming algorithms’ we mean algorithms that perform the task in a single pass
through the XML document, while keeping only small critical portions of the data
in main memory for later use. Allowing O(|D|) space enables us to store the whole
streaming data in a buffer, to which any in-memory algorithm could be applied. Hence
it is natural to allow only o(|D|) space in the data complexity.

However, it is known that solving QueryEval over XML streams requires storing
candidates for the answer nodes which take Ω(|D|) space in the worst case. For this
reason, the space requirement is usually measured in terms ofmaxcands(P,D), defined
to be the maximum number of nodes of D that can be candidates for output, at any
one instant.

Olteanu [5] presented an algorithm that uses O(height(D)2|P | + height(D) · n ·
maxcands(P,D)) space and O(height(D)|P ||D|) time, where n is the number of loca-
tion steps in P (i.e., the number of ancestors of qout). Gou and Chirkova [3] presented
an algorithm that uses O(r(P,D)|P | + maxcands(P,D)) space and O(|P ||D|) time,
they claim. However, Ramanan [8] recently showed an Ω(n ·maxcands(P,D)) lower
bound for QueryEval for worst case P . This means that there is no algorithm for
QueryEval that uses O(f(height(D), |P |) + maxcands(P,D)) space, for any func-
tion f , and therefore the claimed space upper bound of [3] is not achievable. On the
other hand, Ramanan [7] presented an eager algorithm for QueryEval that runs in
O((|P |+ height(D) · n)|D|) time using O(height(D)|P |+ n ·maxcands(P,D)) space.
This space requirement matches the lower bound by Ramanan [8].

7 Conclusion

In this paper we addressed AllOcc. Efficiently solving AllOcc is of importance
since it is useful not only in XML stream filtering but also in evaluating predicates in
solving QueryEval. In such applications eagerness is a desirable feature. The pre-
vious AllOcc algorithm is due to Ramanan [7], which was presented as a predicate
evaluator in his QueryEval algorithm. It takes only O(|P |height(D)) bits of space
and O(|P ||D|) time but one drawback is its laziness as pointed out in [7]. We simpli-
fied the algorithm and then successfully modified it to be eager, without increasing
time and space complexities.

44 Proceedings of the Prague Stringology Conference 2011

References

1. M. Benedikt and C. Koch: XPath leashed. ACM Comput. Surv., 41(1) 2008.
2. G. Gottlob, C. Koch, and R. Pichler: Efficient algorithms for processing XPath queries.

ACM TODS, 30(2) June 2005, pp. 444–491.
3. G. Gou and R. Chirkova: Efficient algorithms for evaluating XPath over streams, in SIG-

MOD’07, 2007, pp. 269–280.
4. P. Kilpeläinen and H. Mannila: Ordered and unordered tree inclusion. SIAM J. Comput.,

24(2) 1995, pp. 340–356.
5. D. Olteanu: SPEX: Streamed and progressive evaluation of XPath. IEEE Transactions on

Knowledge and Data Engineering, 19(7) 2007, pp. 934–949.
6. P. Ramanan: Covering indexes for XML queries: Bisimulation − simulation = negation, in

VLDB’03, 2003, pp. 165–176.
7. P. Ramanan: Worst-case optimal algorithm for XPath evaluation over XML streams. J. Comput.

Syst. Sci., 75(8) 2009, pp. 465–485.
8. P. Ramanan: Memory lower bounds for XPath evaluation over XML streams. J. Comput. Syst.

Sci., 2010, in press.

