Inferring Strings from Runs

Wataru Matsubara*!, Akira Ishino?, and Ayumi Shinohara!

1 Graduate School of Information Science, Tohoku University, Japan
{matsubara@shino., ayumi@}ecei.tohoku.ac.jp
2 Google Japan Inc.
ishino@google.com

Abstract. A run in a string is a nonextendable periodic substring in the string. De-
tecting all runs in a string is important and studied both from theoretical and practical
points of view. In this paper, we consider the reverse problem of it. We reveal that the
time complexity depends on the alphabet size k of the string to be output. We show
that it is solvable in polynomial time for both binary alphabet and infinite alphabet,
while it is NP-complete for finite & > 4. We also consider a variant of the problem where
only a subset of runs are given as an input. We show that it is solvable in polynomial
time for infinite alphabet, while it is NP-complete for finite k£ > 3.

Keywords: repetition, runs, inferring problem

1 Introduction

A reverse problem on strings is for a given data structure, inferring a string that does
not conflict with the input information. A motivation of considering reverse problem
is to characterize if-and-only-if conditions on the data structures. It is also of interest
for design methods for the data structures.

Reverse problems on strings have been considered for various data structures.
Franek et al. [] initiated a linear time algorithm for testing whether an integer array
is the Border Table of a string on unbounded size alphabet (infinite alphabet). Duval
et al. [7] solves the same question for a bounded-size alphabet (finite alphabet). I et
al. [10] considered for parametrized border array. Bannai et al. [1] solved three other
data structures: Directed Acyclic Subsequence Graph, Directed Acyclic Word Graph,
and Suffix Array. All of their three testing algorithms run in linear time. Clement et
al. [3] showed a linear time algorithm for solving the reverse problem for Prefix Table.
The reverse problem for the Longest Previous Factor Table is an open question.

Repetitions is one of most fundamental property of strings, it is important both
theoretical and practical point of view. Detecting repetition in strings is an important
element of several questions: pattern matching, text compression.

Kucherov and Kolpakov showed that considering maximal repetitions, or runs,
the number of runs in any string of length n is O(n). Although they were not
able to give bounds for the constant factor, there have been several works to this
end [13,14,024.20515]. The known results in the topic and a deeper description
of the motivation can be found in a survey by Crochemore et al. [§]. The currently
known best upper bound! and lower bound are as follows:

Wataru Matsubara, Akira Ishino, Ayumi Shinohara: Inferring Strings from Runs, pp. 150-160 .
Proceedings of PSC 2010, Jan Holub and Jan Zdarek (Eds.), ISBN 978-80-01-04597-8 (© Czech Technical University in Prague, Czech Republic

http://www.csd.uwo.ca/faculty/ilie/runs.html

Wataru Matsubara, Akira Ishino, and Ayumi Shinohara: Inferring Strings from Runs 151

The upper bound obtained by calculations based on the proof technique of [4.5]. The
technique bounds the number of runs for each string by considering runs in two parts:
runs with long periods, and runs with short periods. The former is more sparse and
easier to bound. The latter is bounded by an exhaustive calculation concerning how
runs of different periods can overlap in an interval of some length. Considering all
possibility, they show that a string of length n contains at most 0.93n runs with
period up to 60.

We are inspired by their work, and we tackle to the reverse problem of detecting
all runs in a string. That is, for a given set S of runs, we will find a string whose runs
are consitent with S. We consider the following two situations.

1. Inferring strings whose runs are equal to S (the perfect input problem).
2. Inferring strings whose runs subsume S (the imperfect input problem).

We show that inferring strings over infinite alphabet is tractable in both settings.
We show that it is also tractable for binary alphabet in the perfect input setting. On
the other hand, the inferring string over ternary alphabet is intractable. For alphabet
size k, we show that the perfect input problem is NP-hard for £ > 4 and the inperfect
input problem is NP-hard for k£ > 3.

2 Preliminary

2.1 Notations on Strings

Let N'={0,1,2,...} be the set of natural numbers. Let X be a set of symbols. An
element of X* is called a string. 2™ denotes the set of strings of length n. The length
of a string w is denoted by |w|. The i-th character of a string w is denoted by wli]
for 1 <1 < |w|, and the substring of a string w that begins at position ¢ and ends
at position j is denoted by w(i : j] for 1 < i < j < |w|. A string w has period p if
wli] = wli + p|] for 1 < i < |w| — p. A string w is called primitive if w cannot be
written as u*, where k is a positive integer, k > 2.

Definition 1. A run (also called a mazimal repetition) of period p in a string w is
a substring wli : j| such that:

(1)
(2)

(3)

wli : j] has period p and satisfies j —i+ 1> 2p,
wli— 1] #wli+p—1] (if w[i — 1] is defined),
wlj+ 1] #wlj—p+1] (if w[j+ 1] is defined), and
wli 2 i+ p — 1] is primitive.

We denote the run v = wli : j] of period p in w by a triple (i, j, p) € N consisting
of the begin position ¢, the end position j and the minimul period p of u. For a
string w, we define that Runs(w) = {(i,7,p) | w(i : j] is a run of period p in w}. For
instance, Runs(ababcbeca) = {(1,4,2),(4,7,2),(7,8,1)}.

Theorem 2 ([I1]). Given a string w of length n, the set of all runs in string w can
be calculated in O(n) time.

152 Proceedings of the Prague Stringology Conference 2010

3 Easiness Results

At first, we give the definition of the problem.

Problem 3. Inferring strings of alphabet size k from runs (k-INVRUNSEQ).
Input: SCAN3andnéeN.
Output: A string w € X} such that Runs(w) = S if any, and None otherwise.

Problem 4. Inferring consistent strings from runs (k-INVRUNSSUBSET).
Input: S CAN?andn e N.
Output: A string w € X} such that Runs(w) 2 S if any, and None otherwise.

For convenience, co-INVRUNSEQ and oo-INVRUNSSUBSET denotes the problem
for infinite alphabet. In this section, we show k-INVRUNSEQ can be solved in poly-
nomial time if either £k < 2 or k = oo.

Theorem 5. 2-INVRUNSEQ s solvable in linear time.

Proof. First we give a simple observation on the relationship between consecutive two
symbols w[k|, w[k+1] of string w and runs of period 1 in Runs(w). If w[k] = w[k+1] for
some k, then the interval (k, k + 1) must be included in some run (i, j, 1) € Runs(w)
such that ¢ < k and k£ 4+ 1 < j. The converse is also holds. As a result, we can
determine whether w([k] = w[k + 1] or not for every 1 < k < n— 1, by simply checking
the intervals in all runs of period 1 in Runs(w).
For binary alphabet Xy = {a, b}, after choosing the first symbol w[1] either a or
b arbitrarily, we can uniquely determine the next symbol one by one consecutively,
depending on whether w[k] = w[k + 1] or not, for each k = 1,2,...,n — 1. It can
be done in O(n) time. The resulting string w is the only possible candidate for the
solution of a given set S of runs, up to isomorphism. We can verify that Runs(w) = S
holds or not, in O(n) time. If it holds, return w as a solution; otherwise, return None.
(

Let G = (V, E) be an unordered graph, where V' is a set of nodes and E C V x V
is a set of edges. A proper graph coloring on G is an assignment of colors to its nodes
such that no two adjacent nodes receive the same color.

Problem 6. [k-COLOR problem]

Input: Graph G

Decide: The nodes of GG can be colored with k£ colors such that no two nodes
jointed by an edge have the same color.

We can regard the problem as identifying an equivalence relation over n elements
V ={1,2,...,n}, so that it is consistent with the structural information of runs in
S. Some constraints of equivalence and inequivalence are easily extracted from each
run in S. For example, if (4,7,2) is a run of string w of length 9, we know that
w[4] = w[6] and w[5] = w[7] from condition (1) in Definition i, as well as w[3] # w[5]
and w[6] # w(8] from condition (2). Based on these observations, we will reduce the
problem to the graph-coloring problem of a graph (Vs, Fg), where Vg is an equivalence
class of V and Eg represents the inequivalence relations, as we will show the details
below.

We define a binary relation R over V' by

R={(k,k+p)|i<k<j—p for (i,j,p) €S},

Wataru Matsubara, Akira Ishino, and Ayumi Shinohara: Inferring Strings from Runs 153

Figure 1. Graph G which represents S = {(1,4,2),(4,7,2),(7,8,1)}.

which stands for the equivalence w[k] = w[k + p] due to the condition (1) in Defini-
tion 1. Let R= be the reflexive transitive symmetric closure of R. That is, R= is the
smallest equivalence relation over V' containing R. We define Vg = {[v]g= | v € V'},
where [v]g= denotes the equivalence class of v in V' with respect to R=.

We also define a binary relation D by

D={(i—-1i-1+p)|1<i, (i,j.p) € S}

D represents the inequalities w[i — 1] # w[i — 1 4 p| and w[j + 1] # w[j + 1 — p| that
come from condition (2) in Definition &i. We now define the set Fs C Vg X Vs of edges
by

Es = {([v1]r=; [v2]r=) | (v1,v2) € D}.

Using a graph (Vs, Es), we give a following theorem.

Theorem 7. co-INVRUNSEQ and co-INVRUNSSUBSET are solvable in O(n?) time.

Proof. Since the equivalence relation R= is disjoint with D, if G contains a self
loop, then there exists no string w that satisfies Runs(w) 2 S. Otherwise, let ¥ be
a coloring of Gg. Since the number of colors is unbounded, it is straightforward to
get such ¥; we may associate a different color to each node in Vg. By using 1, we
construct a string w = ¥ ([1])¥([2]) ... ¥([n]), where we abbreviated [i]g= by [i]. It is
not hard to verify that Runs(w) satisfy the problem condition. We now consider the
time complexity. The graph G can be constructed in O(n?) time, and we can check
whether G5 contains a self loop or not in linear time. Therefore, co-INVRUNSEQ and
0o-INVRUNSSUBSET are solvable in O(n?) time. O

Ezample 8. Let us consider an instance S = {(1,4,2),(4,7,2),(7,8,1)} and 9 for
oo-INVRUNSEQ. We will find a string w of length 9 over infinite alphabet satisfy-
ing Runs(w) = S. We construct the graph Gg = (Vs, Eg) from S as follows: Since
R = {(1,3),(2,4),(4,6),(5,7),(7,8)}, we have a set of nodes Vg = {Vi, V5, V3, V,}
with Vi = {1,3}, Vo = {2,4,6}, V3 = {5,7,8}, V4 = {9}. Moreover, since D =
{(3.5), (6.7, (6.58), (8,9)}, we have a st of edges Es = {(Vi, Vi), (Va, Va). (Vi, Vi)}.
(Figure 1, shows Gg.) Since G contains no self loop, it is always colorable if the
number of colors is unlimited. By considering a trivial coloring function ¢ such
that ¢(V1) = a, ¢(Va) = b, ¢(V3) = ¢, and ¢(Vy) = d, we get the string w =
Y1) ([2]) - .. ¥(]9]) = ababebeed, and we can verify that Runs(w) = S, indeed.

154 Proceedings of the Prague Stringology Conference 2010

$x68 xxa8 § xund ond $xeund xeeed $ wxxnx$ xuxwnd
) WY A WA AN AN A AN NN A AN
A A A
¥ A AL A AU A AL A N

Figure 2. The string v representing the node set V' = {1,2,3,4}. Bows indicate all
runs in v.

Remark that in Example 8, the graph Gg actually can be colored by 3 colors as
o(V1) = o(Vy) = a, ¢(V2) = b, and ¢(V3) = ¢, so that we have another solution string
w = ababcbcca over three symbols. In this way, k-INVRUNSEQ problem is reduced
to k-COLOR problem. However, unfortunately, k-COLOR is NP-complete for finite
k > 3 so that it is intractable. In the next section, we show an opposite reduction.

4 Hardness result for perfect input

In this section we show the NP-completeness of k-INVRUNSEQ for any fixed k > 4.

4.1 Instance transformation

Let G = (V, E) be an input of the 3-COLOR problem, where V = {1,2,...,m}. We
will construct an instance (S, n) for 4-INVRUNSEQ.

At first, we construct a string g over A = {xq, s, ..., 2, $} which represents G
as follows. For nodes V', let v be the string

V=110V2...Vk...Un,

where each substring v, corresponding to node k is defined by

ve = $xF Vg g,
For example, Figure 2 shows the string v for the case m = 4.

Next we give the transformation which represents the edges F. For each 1 < k < n,
we define £, and ry by

_ k+1
Uy =0v10g .. 01 B2y

T = x£+1$vk+1 . U

You see that ¢ is a prefix of v, and ry is a suffix of v, so that ¢;$r, = v. String e;;
which represents the edge (4, j) € E is defined as e;; = {;7;.
Using the above gadgets, we give the function enc which encodes the graph G to
the string:
g = B1B2 Ce B|E|+1,

where blocks B;’s are defined by By = vvl;,, Bjgj41 = T Vs and_ fort =2...|F],
B, = r;, ,vvl;, if tis odd rj,_,vvvl;, otherwise. For example, Figure 8 shows the string
g for the case V' = {1,2,3,4}, F = {(1,2),(1,3),(2,3),(3,4) }.

Critical points of the construction B; are the following (see Figure 4):

(B1) Each B, has period |v| since ¢, (ry, resp.) is a prefix (suffix, resp.) of v.

Wataru Matsubara, Akira Ishino, and Ayumi Shinohara: Inferring Strings from Runs 155

B | B | B] B, | B
vive]l v ivivieslv]iviesvI]ivive[v]y

N A A A N A A A A A A A A A A A J
— A A A A J
\ A J \ A J
\ A J \ A J

\ A J

\ A J

Figure3. The string g representing the graph G = (V = {1,2,3,4}, F =
{(1,2),(1,3),(2,3),(3,4)}). Bows indicate some of runs in g.

Y Y Y Y Y Y Y
----- B B
—| v v | Y | I; 7 | Y v
[v T4 n Ji]
N A J
| 7j | % | [; | Vi | \% | [; |
N\ A J

Figure 4. The substring of g represents the edge E; = (i, 7). The top bows indicate
that both B, and B;,; have period |v|, although these two periodicities are discon-
nected.

(B2) On the border between B; and B, there exists a run of period |r;v¢;| (the bottom
bow in Figure 4), as well as a run of period |r;¢;| (the middle bow in Figure 4).

Therefore, string ¢ is a concatenation of e;, ; 's and v’s. Using this string, we can
add some appropriate restrictions to the substitution ¢ depending on the input graph
G. Finally, we calculate the set of runs and the length of string g, and output the
instance (Runs(g), |g|) of the inverse runs problem.

4.2 Correctness of the reduction

For a given graph G, let (S,n) be the instance generated by the above reduction. By
reconstructing a graph Gg from S and n in the same way in Section 8, we will show
the relation between a coloring function for G and a string w of length n satisfying
Runs(w) = S.

Let V! ={1,2,...,n} be the set of positions of w. Because of the conditions (B1)
and (B2), for any position i € V', there exists position 7 € {1,...,|v|} such that
[i|r= = [jlr=. We consider Vg as the quotient set of V' by the equivalence relation
R=, that is represented using the base string g as Vg = {V,,, Vi, . - -, Vs} where
V. ={i|gli] = ¢} for c € A.

I\V\’

156 Proceedings of the Prague Stringology Conference 2010

Next we consider the edges Eg C Vs x Vs yielded by the binary relation D
representing inequivalences extracted from S. We show Eg = {(V,,,Vs,) | (,7) €
EYyu{(V,,,Vs),| 1 <t < |V|} by enumerating the all runs in the string g. That is,
we show the substring g[i — 1 : j + 1] for each run (i, j,p) € Runs(g):

e period 1
Since 217 is a substring of ¢, we have (Vi,V,,) € Eg for each k =1...m.
e period 1

Since $xit!

i

x; and xix§+1$ are substrings of g, we have
{(Vay, Vs), (Viy, Vs), (Vay, Vi)} C Eis

for each (i,7) € F.
e period (k + 2)
Since $$x;1$25T1$$ is a substring of g, we have (V,,,Vs) € Eg for each k =
1...m.
e period |r;v*¢;| for t = 0,1
Since $r;v'l;r;v'¢;$ is a substring of g, we have

{(‘/ac]-7 %)7 (Vacw ‘/5‘5)} C ES

for each (i,7) € F,
e period |rjvvl;|
Since x;(r;vvl;)*$ and $(r;vvl;)*x; are substrings of g, we have

{(Va, V8), (Vai, Vs), (Vi Vi) C Eis
for each (i,7) € E,
For this graph Gg, we have the following lemma.

Lemma 9. The following three propositions are equivalent for any integer k > 1:

(1) G is k-Colorable.
(2) Gg is (k + 1)-Colorable.
(3) A string w € X}, exists such that Runs(w) = S.

Proof. (1) < (2) From the definition of Gg, the induced subgraph G' = (Vs —
{Vs}, E%) of Gg is isomorphic to G. Moreover Vs is connected with all the other
nodes in V. Therefore (k + 1)-coloring for G is a k-coloring for G'. It means (2)
= (1). On the other hand, by assigning a new color to the node Vg, we obtain the
(k + 1)-coloring for G from k-coloring for G. It means (1) = (2). See Figure 8.

(2) = (3) Assume that ¢ : Vg — {1,...,k} is a k coloring function of G. We can
construct the substitution ¢ : {z1,...,2,,8} — {a1,..., a8} as ¢(c) = aywy)
for ¢ € A. Since it satisfies Runs(¢(g)) = S, there exists a string w = ¢(g) such
that Runs(w) = S.

(3) = (2) Assume that string w satisfies Runs(w) = S. There exists a substitution
o :{x, ..., 20,8} — {a1,...,a, $} and it holds w = p(g). Then, we can construct
a coloring function ¢ of G as follows; for each ¢ € {z1,...,x,}, ¥(V.) = i such
that ¢(c) = a;. Therefore G is k-colorable. O

Theorem 10. 4-INVRUNSEQ is NP-complete.

Proof. From the above section, for any fixed £ > 1, k-COLOR is polynomial time
reducible to (k + 1)-INVRUNSEQ. Since 3-COLOR is NP-Complete, 4-INVRUNSEQ is
also NP-complete. O

Wataru Matsubara, Akira Ishino, and Ayumi Shinohara: Inferring Strings from Runs 157

(D [
OaOBIOZ0
2

Figure 5. Input graph GG and reconstructed graph Gy

5 Hardness result for Imperfect input

In this section we consider a variant of k-INVRUNSEQ. We consider the problem to
infer a string from a set of runs that are given imperfectly.
We show the NP-completeness of 3-INVRUNSSUBSET.

5.1 Instance reduction

Let G = (V, E) be an input of the k-COLOR problem, where V' = {1,2,...,m}. we
construct the instance for the k-INVRUNSSUBSET problem.

At first, we construct a string g over A" = {xy,x9,... 2, $1,%2,...,%,,} which
represents GG as follows: for nodes V', let v be the string,

v=x111817279%5 . . . Ty T S

The different point from k-INVRUNSEQ is that we cannot use a single symbol $ as
a separator. Instead, we use m separator symbols $;,$,,...,8$,,, and we construct a
string on A" and substitution ¢ : A" — {ay,...,ax}.

For all k = 2...m, it satisfies o(z1_1) # ©(3%) # p(rrr1) and @(z,,) # ©(3,,) #
p(x1).

Since the alphabet size is three or more, for any substitution on {x1, s, ..., .y},
we can choose a substitution on {$;,...,$,,}. We can use the variables {$;,...,$,,}
as a separator.

Next we give the transformation which represents the edge of graph. For each
k=1...m, we define ¢;, and r; as follows:

U = 212181221985 . . -$k719€k71$k719€k,

Tk = TSk Trp1Ta418541 - - Ton TS

You can see that ¢ is a prefix of v and ry, is a suffix v. The string e;; represents the
edge (i,j) € E, where e;; = {;7;.
Using the above gadgets, we give the definition of string which represents graph
G by
g = BlBg Ce B|E|+1,

where blocks B;’s are defined by By = vvly,, Bjgj11 = 7, vv, and for t = 2... |E|,
B, = rj,_vvl;,.

158 Proceedings of the Prague Stringology Conference 2010

By picking up runs from Runs(g) we construct S as follows:

S=1{(3t—23t—1,1)|1<t<m)
U{(pos: + 1,pos,1,|v]) |0 <t < |E|}
U{(pos: — pt + 1, pos; + pr,pr) | 1 <t <|E|},

where pos; = |B1Bs ... By| and p; = |r;,v(;,|. Note that S C Runs(g).
We output (S, |g|) as the instance of k-INVRUNSSUBSET.

5.2 Correctness of the reduction

For a given a graph G, let (S, n) be the instance generated by the above reduction. By
reconstructing a graph Gg from S and n in the same way in Section 3 and Section 4,
we will show the relation between a coloring function for G and a string w of length
n satisfying Runs(w) 2 S.

Let V' = {1,2,...n} be a set of positions. At first we construct Vs from using
the equivalence relation R of S. Similar to the case of k-INVRUNSEQ, because the
conditions (B1) and (B2) in Section 4, for any position i € V', there exists position
Jj € {1,...,|v|} such that [i|g= = [j]r=. We consider Vs as the quotient set of V'
by the equivalence relation R=, that is represented using the base string g as Vg =
Vary oo Vi, s Voyy oo, Vs, } where V. = {i | g[i] = ¢} for c € A'.

Next we consider the edges Eg C Vs x Vs yielded by the binary relation D
representing inequivalences extracted from S. We show Es = {(V,,,V,, | (i,7) €
B} U{(Var, Vo)s (Vi Vo) | 1 < 2 < |B]}:

e Since (3t — 2,3t — 1,1) € S, and the fact that g[3t — 3] = $;_1, g[3t — 2] = x; and
g[3t — 1] = =z, g[3t] = $:, we have (V5,_,, Vi), (Vs,, Va,) € Eg for t =1...m.

e Since (pos; + 1,pos;i1, [v]) € S, and the fact that g[pos;] = z;,, g[pos: + |v|] = w;,
and glpos; + 1] = w;,, g[pos; + 1 — |v]] = x;,, we have (V, , Vs,) € Es for t =

e Since (pos;—pi+1, posi+pi, pr) € S and the fact that g[pos,—p:| = xj,, g[pos:] = z;,
and g[pos; + 1] = z;, and g[pos; + p; + 1| = x;,, we have (int,VIjt) € Eg for
t=1...|E|.

For this graph G g, we have the following lemma.

Lemma 11. The following three observation are equivalent for any fized k > 3:

(1) G is k-Colorable.
(2) Gg is k-Colorable.
(3) A string w € X} exists such that Runs(w) 2 S.

Proof. (1) < (2) From the definition of Gg, the induced subgraph G’ = (V§, EY) of
(s is isomorphic to G, where V{ = Vg — {Vs,,..., Vs, }. Therefore k-coloring for
(s is a k-coloring for G'. It means (2) = (1). On the other hand, Since each nodes
{Vs,,..., Vs, } is connected to two nodes in Gg, we can assign an another color
for any fixed k > 3
Therefore we obtain the k-coloring for Vg from k-coloring for GG, where k > 3. It
means (1) = (2). See Figure €.

(2) = (3) Assume that ¢ : Vo — {1...k} is k coloring function of G. We can con-
struct the substitution ¢ : A" — {ay,...,a,} as p(c) = ay,) for ¢ € A’. Since it
satisfies Runs(p(g)) 2 S, there exists the string w = ¢(g) such that Runs(w) D S.

Wataru Matsubara, Akira Ishino, and Ayumi Shinohara: Inferring Strings from Runs 159

(3) = (2) Assume that string w satisfies Runs(w) 2 S. there exists some substitution
o A" — {ay,...,a;} and it holds Runs(w) O Runs(¢(g)). And then, we can
construct the coloring function ¢ of G as follows: For each ¢ € {xy,...,z,},
¥ (V.) =i such that ¢(c) = a;. Therefore G is k-colorable.

(

Figure 6. Input graph G and reconstructed graph Gg

Theorem 12. 3-INVRUNSSUBSET is NP-complete.

Proof. From above section, for any k& > 3, k-COLOR is polynomial time reducible
to k-INVRUNSSUBSET. Since 3-COLOR is NP-Complete, 3-INVRUNSSUBSET is also
NP-complete. O

6 Conclusion

In this paper, we considered reverse problems of detecting all runs in a string. We
showed that the computational complexity depends on the alphabet size of the output
string. we also consider a variant of the problem, where the information on runs is
incomplete. The result is summarized as the following table.

lalphabet size k[k-INVRUNSEQ|k-INVRUNSSUBSET|

2 O(n) open

3 open NP-Complete
>4 NP-Complete | NP-Complete
00 O(n?) O(n?)

It would be interesting to find out whether 3-INVRUNSEQ and 2-INVRUNSSUBSET
are NP-complete or in P. For 3-INVRUNSEQ, it is needed to improve the reduction
from 3-COLOR without using the separator symbol “$”. On the other hand, for 2-
INVRUNSSUBSET, it seems that we should develop a reduction from another NP-
Complete problem.

160 Proceedings of the Prague Stringology Conference 2010

References

1. H. BANNAI, S. INENAGA, A. SHINOHARA, AND M. TAKEDA: Inferring strings from graphs
ans arrays, in Proc. 28th International Symposium on Mathematical Foundations of Computer
Science (MFCS 2003), vol. 2747 of LNCS, Springer, 2003, pp. 208-217.

2. P. BATURO, M. PIATKOWSKI, AND W. RYTTER: The number of runs in Sturmian words, in
Proc. 13th International Conference on Implementation and Application of Automata (CIAA
2008), vol. 5148 of LNCS, Springer, 2008, pp. 252-261.

3. J. CLEMENT, M. CROCHEMORE, AND G. RINDONE: Reverse engineering prefix tables, in 26th
International Symposium on Theoretical Aspects of Computer Science (STACS 2009), Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2009, pp. 289-300.

4. M. CROCHEMORE AND L. ILIE: Maximal repetitions in strings. J. Comput. Syst. Sci., 74 2008,
pp- 796-807.

5. M. CROCHEMORE, L. ILIE, AND L. TINTA: Towards a solution to the “rums” conjecture, in
Proc. 19th Annual Symposium on Combinatorial Pattern Matching (CPM 2008), vol. 5029 of
LNCS, Springer, 2008, pp. 290-302.

6. M. CROCHEMORE, W. RYTTER, AND L. ILIE: Repetitions in strings: Algorithms and combina-
torics. Theoretical Computer Science, 410(50) 2009, pp. 5227-5235.

7. J. DuvAaL, T. LECROQ, AND A. LEFEVRE: Border array on bounded alphabet, in Proc. Prague
Stringology Conference 2002, 2002, pp. 28-35.

8. F. FRANEK, S. GAao, W. Lu, P. J. Rvyan, W. F. SMYTH, Y. SUN, AND L. YANG: Verifying
a border array in linear time. J. Comb. Math. Comb. Comput, 42 2000, pp. 223-236.

9. M. GIRAUD: Not so many runs in strings, in Proc. 2nd International Conference on Lan-
guage and Automata Theory and Applications (LATA 2008), vol. 5196 of LNCS, Springer,
2008, pp. 245-252.

10. T. I, S. INENAGA, H. BANNAIL, AND M. TAKEDA: Counting parameterized border arrays for a
binary alphabet, in Proc. 3nd International Conference on Language and Automata Theory and
Applications (LATA 2009), vol. 5457 of LNCS, Springer, 2009, pp. 422-433.

11. R. KorLrakov AND G. KUCHEROV: Finding mazimal repetitions in a word in linear time,
in Proc. 40th Annual Symposium on Foundations of Computer Science (FOCS 1999), 1999,
pp. 596-604.

12. S. J. PucList, J. SIMPSON, AND W. F. SMYTH: How many runs can a string contain? Theo-
retical Computer Science, 401(1-3) 2008, pp. 165-171.

13. W. RYTTER: The number of runs in a string: Improved analysis of the linear upper bound,
in Proc. 23rd Annual Symposium on Theoretical Aspects of Computer Science (STACS 2006),
vol. 3884 of LNCS, Springer, 2006, pp. 184-195.

14. W. RYTTER: The number of runs in a string. Inf. Comput., 205(9) 2007, pp. 1459-1469.

15. J. SIMPSON: Modified padovan words and the mazimum number of runs in a word. The Aus-
tralasian Journal of Combinatorics, 42 2010, pp. 129-145.

