
Tight and Simple Web Graph Compression

Szymon Grabowski and Wojciech Bieniecki

Computer Engineering Department, Technical University of ÃLódź,
Al. Politechniki 11, 90–924 ÃLódź, Poland
{sgrabow,wbieniec}@kis.p.lodz.pl

Abstract. Analysing Web graphs has applications in determining page ranks, fighting
Web spam, detecting communities and mirror sites, and more. This study is however
hampered by the necessity of storing a major part of huge graphs in the external
memory, which prevents efficient random access to edge (hyperlink) lists. A number
of algorithms involving compression techniques have thus been presented, to represent
Web graphs succinctly but also providing random access. Those techniques are usu-
ally based on differential encodings of the adjacency lists, finding repeating nodes or
node regions in the successive lists, more general grammar-based transformations or 2-
dimensional representations of the binary matrix of the graph. In this paper we present
a Web graph compression algorithm which can be seen as engineering of the Boldi and
Vigna (2004) method. We extend the notion of similarity between link lists, and use
a more compact encoding of residuals. The algorithm works on blocks of varying size
(in the number of input lines) and sacrifices access time for better compression ratio,
achieving more succinct graph representation than other algorithms reported in the
literature. Additionally, we show a simple idea for 2-dimensional graph representation
which also achieves state-of-the-art compression ratio.

Keywords: graph compression, random access

1 Introduction

Development of succinct data structures is one of the most active research areas in
algorithmics in the last years. A succinct data structure shares the interface with
its classic (non-succinct) counterpart, but is represented in much smaller space, via
data compression. Successful examples along these lines include text indexes [17],
dictionaries, trees [12,16] and graphs [16]. Queries to succinct data structures are
usually slower (in practice, although not always in complexity terms) than using
non-compressed structures, hence the main motivation in using them is to allow to
deal with huge datasets in the main memory. For example, indexed exact pattern
matching in DNA would be limited to sequences shorter than 1 billion nucleotides
on a commodity PC with 4 GB of main memory, if the indexing structure were the
classic suffix array (SA), and even less than half of it, if SA were replaced with a
suffix tree. On the other hand, switching to some compressed full-text index (see [17]
for a survey) shifts the limit to over 10 billion nucleotides, which is more than enough
to handle the whole human genome.

Another huge object of significant interest seems to be the Web graph. This is a
directed unlabeled graph of connections between Web pages (i.e., documents), where
the nodes are individual HTML documents and the edges from a given node are the
outgoing links to other nodes. We assume that the order of hyperlinks in a document
is irrelevant. Web graph analyses can be used to rank pages, fight Web spam, detect
communities and mirror sites, etc. [11,20].

It was estimated that the graph of the Web index by Yahoo!, Google, Bing and
Ask has between 21 and 59 billion nodes (http://www.worldwidewebsize.com/, May

Szymon Grabowski, Wojciech Bieniecki: Tight and Simple Web Graph Compression, pp. 127–137 .

Proceedings of PSC 2010, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04597-8 c© Czech Technical University in Prague, Czech Republic

http://www.worldwidewebsize.com/

128 Proceedings of the Prague Stringology Conference 2010

2010), but the top figure is more likely. Therefore assuming 50 billion nodes and 20
outgoing links per node, we have about 1 trillion links. Using plain adjacency lists,
representation of this graph would require about 8 TB, if the edges are represented
with 64-bit pointers (note that 32-bit pointers may simply be too small). In a slightly
less näıve variant, with 5-byte pointers (note that 40 bits are just enough to represent
1 trillion values, but cannot scale any longer), the space occupancy drops to 5 TB, i.e.,
is still ways beyond the capacities of the current RAM memories. We believe that,
confronted with the given figures, the reader is now convinced about the necessity of
compression techniques for Web graph representation.

2 Related work

We assume that a directed graph G = (V,E) is a set of n = |V | vertices and m = |E|
edges. The earliest works on graph compression were theoretical, and they usually
dealt with specific graph classes. For example, it is known that planar graphs can be
compressed into O(n) bits [13,21]. For dense enough graphs, it is impossible to reach
o(m log n) bits of space, i.e., go below the space complexity of the trivial adjacency list
representation. Since the seminal Jacobson’s thesis [14] on succinct data structures,
there appear papers taking into account not only the space occupied by a graph, but
also access times.

There are several works dedicated to Web graph compression. Bharat et al. [3]
suggested to order documents according to their URL’s, to exploit the simple ob-
servation that most outgoing links actually point to another document within the
same Web site. Their Connectivity Server provided linkage information for all pages
indexed by the AltaVista search engine at that time. The links are merely represented
by the node numbers (integers) using the URL lexicographical order. We noted that
we assume the order of hyperlinks in a document irrelevant (like most works on Web
graph compression do), hence the link lists can be sorted, in ascending order. As the
successive numbers tend to be close, differential encoding may be applied efficiently.

Randall et al. [19] also use this technique (stating that for their data 80% of all
links are local), but they also note that commonly many pages within the same site
share large parts of their adjacency lists. To exploit this phenomenon, a given list may
be encoded with a reference to another list from its neighborhood (located earlier),
plus a set of additions and deletions to/from the referenced list. Their encoding, in
the most compact variant, encodes an outgoing link in 5.55 bits on average, a result
reported over a Web crawl consisting of 61 million URL’s and 1 billion links.

One of the most efficient compression schemes for Web graph was presented by
Boldi and Vigna [4] in 2003. Their method is likely to achieve around 3 bits per edge,
or less, at link access time below 1 ms at their 2.4 GHz Pentium4 machine. Of course,
the compression ratios vary from dataset to dataset. We are going to describe the
Boldi and Vigna algorithm in detail in the next section as this is the main inspiration
for our solution.

Claude and Navarro [7,9] took a totally different approach of grammar-based
compression. In particular, they focus on Re-Pair [15] and LZ78 compression schemes,
getting close, and sometimes even below, the compression ratios of Boldi and Vigna,
while achieving much faster access times. To mitigate one of the main disadvantages
of Re-Pair, high memory requirements, they develop an approximate variant of this
algorithm.

Szymon Grabowski and Wojciech Bieniecki: Tight and Simple Web Graph Compression 129

When compression is at a premium, one may acknowledge the work of Asano et al.
[2] in which they present a scheme creating a compressed graph structure smaller by
about 20–35% than the BV scheme with extreme parameters (best compression but
also impractically slow). The Asano et al. scheme perceives the Web graph as a binary
matrix (1s stand for edges) and detects 2-dimensional redundancies in it, via finding
six types of blocks in the matrix: horizontal, vertical, diagonal, L-shaped, rectangular
and singleton blocks. The algorithm compresses the data of intra-hosts separately for
each host, and the boundaries between hosts must be taken from a separate source
(usually, the list of all URL’s in the graph), hence it cannot be justly compared to
other algorithms mentioned here. Worse, retrieval times per adjacency list are much
longer than for other schemes: on a order of a few milliseconds (and even over 28 ms for
one of three tested datasets) on their Core2 Duo E6600 (2.40 GHz) machine running
Java code. We note that 28 ms is at least twice more than the access time of modern
hard disks, hence working with a näıve (uncompressed) external representation would
be faster for that dataset (on the other hand, excessive disk use from very frequent
random accesses to the graph can result in a premature disk failure). It seems that
the retrieval times can be reduced (and made more stable across datasets) if the
boundaries between hosts in the graph are set artificially, in more or less regular
distances, but then also the compression ratio is likely to drop.

Also excellent compression results were achieved by Buehrer and Chellapilla [6],
who used grammar-based compression. Namely, they replace groups of nodes appear-
ing in several adjacency lists with a single “virtual node” and iterate this procedure;
no access times were reported in that work, but according to findings in [8] they
should be rather competitive and at least much shorter than of the algorithm from
[2], with compression ratio worse only by a few percent.

Anh and Moffat [1] devised a scheme which seems to use grammar-based com-
pression in a local manner. They work in groups of h consecutive lists and perform
some operations to reduce their size (e.g., a sort of 2-dimensional RLE if a run of
successive integers appears on all the h lists). What remains in the group is then en-
coded statistically. Their results are very promising: graph representations by about
15–30% (or even more in some variant) smaller than the BV algorithm with practical
parameter choice (in particular, Anh and Moffat achieve 3.81 bpe and 3.55 bpe for the
graph EU) and reported comparable decoding speed. Details of the algorithm cannot
however be deduced from their 1-page conference poster.

Recent works focus on graph compression with support for bidirectional naviga-
tion. To this end, Brisaboa et al. [5] proposed the k2-tree, a spatial data structure,
related to the well-known quadtree, which performs a binary partition of the graph
matrix and labels empty areas with 0s and non-empty areas with 1s. The non-empty
areas are recursively split and labeled, until reaching the leaves (single nodes). An im-
portant component in their scheme is an auxiliary structure to compute rank queries
[14] efficiently, to navigate between tree levels. It is easy to notice that this elegant
data structure supports handling both forward and reverse neighbors, which implies
from its symmetry. Experiments show that this approach uses significantly less space
(3.3–5.3 bits per edge) than the Boldi and Vigna scheme applied for both direct
and transposed graph, at the average neighbor retrieval times of 2–15 microseconds
(Pentium4 3.0 GHz).

Even more recently, Claude and Navarro [8] showed how Re-Pair can be used to
compress the graph binary relation efficiently, enabling also to extract the reverse

130 Proceedings of the Prague Stringology Conference 2010

neighbors of any node. These ideas let them achieve a number of Pareto-optimal
space-time tradeoffs, usually competitive to those from the k2-tree.

3 The Boldi and Vigna scheme

Based on WebGraph datasets (http://webgraph.dsi.unimi.it/), Boldi and Vigna
noticed that similarity is strongly concentrated; typically, either two adjacency (edge)
lists have nothing or little in common, or they share large subsequences of edges. To
exploit this redudancy, one bit per entry on the referenced list could be used, to
denote which of its integers are copied to the current list, and which are not. Those
bit-vectors are dubbed copy lists. Still, Boldi and Vigna go further, noticing that
copy lists tend to contain runs of 0s and 1s, thus they compress them using a sort
of run-length encoding. They assume the first run consists of 1s (if the copy list
actually starts with 0s, the length of the first run is simply zero), and then it allows
to represent a copy list as only a sequence of run lengths, encoded e.g. with Elias
coding.

The integers on the current list which didn’t occur on the referenced list must be
stored too, and how to encode them is another novelty of the described algorithm.
They detect intervals of consecutive (i.e., differing by 1) integers and encode them
as pairs of the left boundary and the interval length; the left boundary of the next
interval on a given list will be encoded as the difference to the right boundary of the
previous interval minus two (this is because between the end of one interval and the
beginning of another there must be at least one integer). The numbers which do not
fall into any interval are called residuals and are also stored, encoded in a differential
manner.

Finally, the algorithm allows to select as the reference list one of several previous
lines; the size of the window is one of the parameters of the algorithm posing a
tradeoff between compression ratio and compression/decompression time and space.
Another parameter affecting the results is the maximum reference count, which is the
maximum allowed length of a chain of lists such that one cannot be decoded without
extracting its predecessor in the chain.

4 Our algorithm

Our algorithm (Alg. 1) works in blocks consisting of multiple adjacency lists. The
blocks in their compact form are approximately equal, which means that the number
of adjacency lists per block varies; for example, in graph areas with dominating short
lists the number of lists per block is greater than elsewhere.

We work in two phases: preprocessing and final compression, using a general-
purpose compression algorithm. The algorithm processes the adjacency lines one-by-
one and splits their data into two streams.

One stream holds copy lists, in an extended sense compared to the Boldi and Vigna
solution. Our copy lists are no longer binary but consist of four different flag symbols:
0 denotes an exact match (i.e., value j from the reference list occurs somewhere on
the current list), 2 means that the current list contains integer j + 1, 3 means that
the current list contains integer j + 2, if the corresponding integer from the reference
list is j. Finally, the bits 1 correspond to the items from the reference list which have
not been earlier labeled with 0, 2 or 3.

http://webgraph.dsi.unimi.it/

Szymon Grabowski and Wojciech Bieniecki: Tight and Simple Web Graph Compression 131

Alg. 1 GraphCompress(G,BSIZE).
1 firstLine ← true

2 prev ← []
3 outB ← []
4 outF ← []
5 for line ∈ G do

6 residuals ← line

7 if firstLine = false then

8 f [1 . . . |prev|] ← [1, 1, . . . , 1]
9 for i ← 1 to |prev| do

10 if prev[i] ∈ line then f [i] ← 0
11 else if prev[i] + 1 ∈ line then f [i] ← 2
12 else if prev[i] + 2 ∈ line then f [i] ← 3
13 append(outF , f)
14 for i ← 1 to |prev| do

15 if f [i] 6= 1 then

16 remove(residuals, prev[i])
17 residuals′ ← RLE(diffEncode(residuals)) + [0]
18 append(outB, byteEncode(residuals′))
19 prev ← line

20 firstLine ← false

21 if |outB| ≥ BSIZE then

22 compress(outB)
23 compress(outF)
24 outB ← []
25 outF ← []
26 firstLine ← true

Of course, several events may happen for a single element, e.g., the integer 34
from the reference list triggers three events if the current list contains 34, 35 and 36.
In such case, the flag with the smallest value is chosen (i.e., 0 in our example).

Moreover, we make things even simpler than in the Boldi–Vigna scheme and our
reference list is always the previous adjacency list.

The other stream stores residuals, i.e., the values which cannot be decoded with
flags 0, 2 or 3 on the copy lists. First differential encoding is applied and then an
RLE compressor for differences 1 only (with minimum run length set experimentally
to 5) is run. The resulting sequence is terminated with a unique value (0) and then
encoded using a byte code.

For this last step, we consider two variants. One is similar to two-byte dense code

[18] in spending one bit flag in the first codeword byte to tell the length of the current
codeword. Namely, we choose between 1 and b bytes for encoding each number, where
b is the minimum integer such that 8b − 1 bits are enough to encode any node value
in a given graph. In practice it means that b = 3 for EU and b = 4 for the remaining
available datasets.

The second coding variant can be classified as a prelude code [10] in which two
bits in the first codeword byte tell the length of the current codeword; originally the
lengths are 1, 2, 3 and 4 but we take 1, 2 and b such that 8b − 2 bits are enough
to encode the largest value in the given graph (i.e., b could be 5 or 6 for really huge
graphs).

Once the residual buffer reaches at least BSIZE bytes, it is time to end the current
block and start a new one. Both residual and flag buffers and then (independently)
compressed (we used the well-known Deflate algorithm for this purpose) and flushed.

The code at Alg. 1 is slightly simplified; we omitted technical details serving for
finding the list boundaries in all cases (e.g., empty lines).

132 Proceedings of the Prague Stringology Conference 2010

5 Experimental results

We conducted experimented on the crawls EU-2005 and Indochina-2004, downloaded
from the WebGraph project (http://webgraph.dsi.unimi.it/), using both direct
and transposed graphs. The main characteristics of those datasets are presented in
Table 1.

Dataset EU-2005 Indochina-2004
direct transposed direct transposed

Nodes 862664 7414866
Edges 19235140 19235140
Edges / nodes 22.30 26.18
% of empty lists 8.31 0.000 17.66 0.004
Longest list length 6985 68922 6985 256425

Table 1. Selected characteristics of the datasets used in the experiments.

The main experiments (Sect. 5.1) were run on a machine equipped with an Intel
Core 2 Quad Q9450 CPU, 8 GB of RAM, running Microsoft Windows XP (64-bit).
Our algorithms were implemented in Java (JDK 6). A single CPU core was used by all
implementations. As seemingly accepted in most reported works, we measure access
time per edge, extracting many (100,000 in our case) randomly selected adjacency
lists and summing those times, and dividing the total time by the number of edges
on the required lists. The space is measured in bits per edge (bpe), dividing the total
space of the structure (including entry points to blocks) by the total number of edges.

Throughout this section by 1 KB we mean 1000 bytes.

5.1 Compression ratios and access times

Our routine has three parameters: the number of flags used (either 2 or 4, where 2 flags
mimic the Boldi–Vigna scheme and 4 correspond to Alg. 1), the byte encoding scheme
(either using 2 or 3 codeword lengths), and the residual block size threshold BSIZE.
As for the last parameter, we initially set it to 8192, which means that the residual
block gets closed and is submitted to the Deflate compression once it reaches at least
8192 bytes. Experiments with the block size are presented in the next subsection. The
remaining parameters constitute four variants:

2a Two flags and two codeword lengths are used.
2b Two flags and three codeword lengths are used.
4a Four flags and two codeword lengths are used.
4b Four flags and three codeword lengths are used.

Dataset EU-2005 Indochina-2004
direct transposed direct transposed

2a 2.286 2.345 1.101 1.087
2b 2.199 2.290 1.062 1.065
4a 1.735 1.809 0.936 0.903
4b 1.696 1.782 0.909 0.890

Table 2. Compression ratios in bits per edge.

http://webgraph.dsi.unimi.it/

Szymon Grabowski and Wojciech Bieniecki: Tight and Simple Web Graph Compression 133

As expected, the compression ratios improve with using more flags and more dense
byte codes (Table 2). Tables 3 and 4 present the compression and access time results
for the two extreme variants: 2a and 4b. Here we see that using more aggressive
preprocessing is unfortunately slower (partly because of increased amount of flag
data per block) and the difference in speed between variants 2a and 4b is close to
50%. Translating the times per edge into times per neighbor list, we need from 410µs
to 550µs for 2a and from 620µs to 760µs for 4b. This is about 10 times less than the
access time of 10K or 15K RPM hard disks.

direct graph transposed graph
bpe time [µs] bpe time [µs]

BV (7,3) 5.169 0.24 – –
2a 2.286 18.59 2.345 18.88
4b 1.696 28.93 1.782 27.83

Table 3. EU-2005 dataset. Compression ratios (bpe) and access times per edge. To
the results of BV (7,3) the amount of 0.510 bpe should be added, corresponding to
extra data required to access the graph in random order.

direct graph transposed graph
bpe time [µs] bpe time [µs]

BV (7,3) 2.063 0.21 – –
2a 1.101 20.77 1.087 21.10
4b 0.909 29.03 0.890 27.43

Table 4. Indochina-2004 dataset. Compression ratios (bpe) and access times per edge.
To the results of BV (7,3) the amount of 0.348 bpe should be added, corresponding
to extra data required to access the graph in random order.

5.2 Varying the block size

Obviously, the block size should seriously affect the overall space used by the structure
and the access time. Larger blocks mean that the Deflate algorithm is more successful
in finding longer matches and the overhead from encoding first lines in a block without
any reference is smaller. On the other hand, more lines have to be usually decoded
before extracting the queried adjacency list.

In this experiment we run the 2a algorithm (the same implementation in Java)
with each block of residuals terminated (and later Deflate-compressed) after reaching
BSIZE of 1024, 2048, 4096, 8192 and 16384 bytes, respectively. The test computer
had an Intel Pentium4 HT 3.0 GHz CPU, 1 GB of RAM, and was running Microsoft
Windows XP Home SP3 (32-bit). The results (Table 5) show that doubling the block
size implies space reduction by about 10% while the access time grows less than twice
(in particular, using 8K blocks is only 2.0–2.5 times slower than using 2K blocks). Still,
as the block size gets larger (compare the last two rows in the table), the improvement
in compression starts to drop while the slowdown grows. For a reference, the access
times of a practical Boldi–Vigna variant, BV (7,3), are 0.47µs and 0.42µs on the test
machine.

134 Proceedings of the Prague Stringology Conference 2010

EU-2005 Indochina-2004
bpe time [µs] bpe time [µs]

1024 3.398 6.50 1.485 8.99
2048 2.869 8.91 1.292 12.05
4096 2.513 15.93 1.172 17.87
8192 2.286 27.60 1.101 29.83

16384 2.129 48.77 1.061 57.39

Table 5. Compression ratios and access times in function of the block size. 2a variant
used. Tests run on the non-transposed graphs.

6 Obtaining forward and reverse neighbors

Sometimes one is interested in grasping not only the (forward) neighbors of a given
node but also the nodes that point to the current node (also called its reverse neigh-

bors). A näıve solution to this problem is to store a twin data structure built for
the transposed graph, which more or less doubles the required space. Interestingly,
as pointed out in Sect. 2, more sophisticated ideas are already known, using 2D
structures that support bidirectional navigation over the graph.

In this section we propose two simple techniques for this problem scenario. One of
them reduces the size of the compressed transposed graph for the price of moderate
increase in search time. Basically, the idea is to remove parts of some adjacency lists
from the transposed graph and refer to the compressed structure for the direct graph
when there is a need to extract those removed reverse neighbors. In our preliminary
experiments the transposed graph compressed component was reduced by less than
10% while for many lists the access time had to be approximately doubled (instead of
extracting one compressed block, two randomly accessed blocks had to be extracted).
Even if more can be done along these lines, we do not anticipate this approach being
competitive.

The other algorithm partitions the binary matrix of the EU graph into squares,
in the manner of the k2-tree, but without any hierarchy, i.e., using only one level of
blocks. Although seemingly very primitive, this idea let us attain the smallest space
ever reported in the literature, for the EU dataset, among the algorithms supporting
bidirectional navigation, namely 1.76 bpe, but the average extraction time per adja-
cency list is now on the order of a few milliseconds, i.e., close to hard disk access
time. This is, in a way, an extreme result; a slower algorithm could already lose in
speed to a plain external representation.

In an experiment, we partitioned the binary matrix M of the EU graph (n =
862, 664 nodes) into boxes (squares) of size B = 1024 (the boundary areas may
be rectangular). Each box is identified with a single bit (totalling 89 KB) where 1s
stand for the non-empty boxes (those that contain at least one edge). The non-empty
boxes, obtained in a row-wise scan, are labeled with successive integers, which are
offsets in an array A[1 . . . |A|] of pointers to the actual (compressed) content of the
corresponding boxes. Now we present how forward and reverse neighbors of a given
page are found.

To find the forward neighbors of page j, we must retrieve and decode all the non-
empty boxes overlapping the jth row of the matrix. Note that for efficient retrieval
we need only to find quickly in the array A the pointer to first (leftmost) such box as
all its successors will be pointed from the following cells of A. A trivial yet satisfying

Szymon Grabowski and Wojciech Bieniecki: Tight and Simple Web Graph Compression 135

solution is to store in an extra array the indexes in A of the leftmost non-empty boxes
for the following rows of boxes. This needs n/B indexes (about 3.3 KB for the EU
graph if 4-byte indexes are used).

Finding the reverse neighbors is harder but we avoid the challenge and solve it
trivially, storing an array analogous to A, only built according to the column-wise
scan. For the EU graph and our choice of B, the number of non-empty blocks is
about 24,700, i.e., the extra cost in space is just above 100 KB (4-byte pointers and
the 3.3 KB of the auxiliary array).

As mentioned, the non-empty boxes are stored in compressed form. We (concep-
tually) flatten each box, writing it row after row, and encode the gaps between the
successive 1s. The gaps are represented with a byte code (1, 2 or 3 bytes per gap).
Finally, the sequence of encoded gaps is compressed with the Deflate algorithm. To
improve compression, for each non-empty box we check if transposing it results in a
smaller Deflate-compressed size and also if it is better not to compress it at all (data
expansion is typical if the box contains only a few items). This adds two extra bits
per non-empty box.

Note that accessing the (forward or reverse) neighbors of a given page requires
decoding many boxes, even those that have no item in common with the desired
neighbor list. For the EU graph a single list passes through about 29 non-empty
boxes, on average. The average non-empty box occupies a little over 1.3 KB before
Deflate compression (their size variance is however very large), which means that
retrieving the neighbor list requires extracting compressed data to about 39 KB, on
average. This estimation is optimistic since decompressing a single chunk of data is
usually faster than of several chunks totalling the same size, because of the locality of
memory accesses. Moreover, as said, those average-case estimations are far from the
worst case. Yet another factor is that the decoded boxes must be filtered to return
only those values which belong to the desired list. Overall, we however believe that
one can retrieve the neighbor list in about 2–3 ms (i.e., about 100 microseconds per
neighbor) on modern hardware in an average case.

The total size of the EU graph compressed in the presented way is about 4,225 KB,
which translates to 1.76 bpe. This contrasts with 3.93 bpe presented as the most
succinct result in [8], for which graph representation the average reported direct
and reverse edge retrieval time is about 35 and 55 microseconds, respectively. As the
number of edges per adjacency list is about 22 for this graph, the times to extract the
whole list are close to 1 ms which is not that far from our (very crudely estimated)
retrieval times. This leads us to the conclusion that even simple heuristics and off-
the-shelf tools (like the Deflate compression algorithm) may help one get close to the
state of the art and should encourage researchers to rethink the problem.

7 Conclusions

We presented two algorithms for Web graph compression, one encoding blocks con-
sisting of whole lines and the other working on boxes (squares) of the graph binary
matrix. Both algorithms achieve much better compression results than those pre-
sented in the literature, although for the price of relatively slow access time. We
point out, however, that one extreme tradeoff in succinct in-memory data structures
is when accessing the structure is only slightly faster than reading data from disk.
The niche for such a solution is when the given Web crawl cannot fit in RAM memory
using less tight compressed representation and the stronger compression is already

136 Proceedings of the Prague Stringology Conference 2010

enough. The disk transfer rate is of relatively small imporantance here and what
matters is the access time, which is about 10 ms or more for commodity 7200 RPM
hard disks. Our algorithms spend significantly less time for extracting an average
adjacency list, even if they are 1 or 2 orders of magnitude slower than the solutions
from [4,7,8]. Another challenge is to compete with SSD disks which are not much
faster than conventional disks in reading or writing sequential data but their access
times are two orders of magniture smaller.

Our future work will focus on improving the access times; some possibilities lie
in more aggressive reference list encoding via referring to several (cf. [4]) rather than
a single previous list, using smaller independently compacted blocks with backend
compression applied over many of them, and replacing Deflate with alternative com-
pressors from LZ77 family, e.g. LZMA (http://www.7-zip.org/).

8 Acknowledgments

The work was partially supported by the Polish Ministry of Science and Higher Ed-
ucation under the project N N516 477338 (2010–2011).

References

1. V. N. Anh and A. F. Moffat: Local modeling for webgraph compression, in DCC, J. A. Storer
and M. W. Marcellin, eds., IEEE Computer Society, 2010, p. 519.

2. Y. Asano, Y. Miyawaki, and T. Nishizeki: Efficient compression of web graphs, in CO-
COON, X. Hu and J. Wang, eds., vol. 5092 of Lecture Notes in Computer Science, Springer,
2008, pp. 1–11.

3. K. Bharat, A. Z. Broder, M. R. Henzinger, P. Kumar, and S. Venkatasubramanian:
The Connectivity Server: Fast access to linkage information on the Web. Computer Networks,
30(1–7) 1998, pp. 469–477.

4. P. Boldi and S. Vigna: The webgraph framework I: Compression techniques, in WWW, S. I.
Feldman, M. Uretsky, M. Najork, and C. E. Wills, eds., ACM, 2004, pp. 595–602.

5. N. Brisaboa, S. Ladra, and G. Navarro: K2-trees for compact web graph representation, in
Proc. 16th International Symposium on String Processing and Information Retrieval (SPIRE),
LNCS 5721, Springer, 2009, pp. 18–30.

6. G. Buehrer and K. Chellapilla: A scalable pattern mining approach to web graph compres-

sion with communities, in WSDM, M. Najork, A. Z. Broder, and S. Chakrabarti, eds., ACM,
2008, pp. 95–106.

7. F. Claude and G. Navarro: Fast and compact Web graph representations, Tech. Rep.
TR/DCC-2008-3, Department of Computer Science, University of Chile, April 2008.

8. F. Claude and G. Navarro: Extended compact web graph representations, in Algorithms
and Applications, T. Elomaa, H. Mannila, and P. Orponen, eds., vol. 6060 of Lecture Notes in
Computer Science, Springer, 2010, pp. 77–91.

9. F. Claude and G. Navarro: Fast and compact web graph representations. ACM Transactions
on the Web (TWEB), 2010, To appear.

10. J. S. Culpepper and A. Moffat: Enhanced byte codes with restricted prefix properties, in
SPIRE, M. P. Consens and G. Navarro, eds., vol. 3772 of Lecture Notes in Computer Science,
Springer, 2005, pp. 1–12.

11. D. Donato, L. Laura, S. Leonardi, U. Meyer, S. Millozzi, and J. F. Sibeyn: Algo-

rithms and experiments for the webgraph. J. Graph Algorithms Appl., 10(2) 2006, pp. 219–236.
12. R. F. Geary, N. Rahman, R. Raman, and V. Raman: A simple optimal representa-

tion for balanced parentheses, in Combinatorial Pattern Matching, 15th Annual Symposium,
CPM 2004, Istanbul,Turkey, July 5-7, 2004, Proceedings, S. C. Sahinalp, S. Muthukrishnan,
and U. Dogrusöz, eds., vol. 3109 of Lecture Notes in Computer Science, Springer–Verlag, 2004,
pp. 159–172.

http://www.7-zip.org/

Szymon Grabowski and Wojciech Bieniecki: Tight and Simple Web Graph Compression 137

13. X. He, M.-Y. Kao, and H.-I. Lu: A fast general methodology for information-theoretically

optimal encodings of graphs. SIAM J. Comput., 30(3) 2000, pp. 838–846.
14. G. Jacobson: Succinct Static Data Structures, PhD thesis, Carnegie Mellon University, 1989.
15. N. J. Larsson and A. Moffat: Off-line dictionary-based compression. Proceedings of the

IEEE, 88(11) Nov. 2000, pp. 1722–1732.
16. J. I. Munro and V. Raman: Succinct representation of balanced parentheses, static trees

and planar graphs, in IEEE Symposium on Foundations of Computer Science (FOCS), 1997,
pp. 118–126.

17. G. Navarro and V. Mäkinen: Compressed full-text indexes. ACM Computing Surveys, 39(1)
2007, p. article 2.

18. P. Procházka and J. Holub: New word-based adaptive dense compressors, in IWOCA,
J. Fiala, J. Kratochv́ıl, and M. Miller, eds., vol. 5874 of Lecture Notes in Computer Science,
Springer, 2009, pp. 420–431.

19. K. Randall, R. Stata, R. Wickremesinghe, and J. Wiener: The link database: Fast

access to graphs of the Web, 2001.
20. H. Saito, M. Toyoda, M. Kitsuregawa, and K. Aihara: A large-scale study of link spam

detection by graph algorithms, in AIRWeb ’07: Proceedings of the 3rd international workshop on
Adversarial information retrieval on the web, New York, NY, USA, 2007, ACM, pp. 45–48.

21. G. Turán: On the succinct representation of graphs. Discrete Applied Math, 15(2) May 1984,
pp. 604–618.

