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Abstract. A tiling of a matrix is an exact cover of its elements by a set of row frag-
ments, called tiles. A particular variant of the tiling problem has arisen in the context
of computational biology for studying genetic variations between individuals, in which
one wishes to find the minimum-cardinality tiling of a matrix whose rows correspond to
genomic sequences of a set of individuals. In this case, the tiles define a set of haplotype

motifs strings of consecutive variants that frequently co-occur on a single chromosome.
By minimizing the number of tiles needed to explain a data set, we seek to identify
frequent haplotypes that will be more amenable to statistical analysis than the raw
variation data. Although the haplotype motif model was first proposed several years
ago, the complexity of the associated optimization problem has never been settled.
Here, we show that the minimum tiling problem is NP-hard. We also describe ILP
models and Dynamic Programming procedures for its exact solution.
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1 Introduction

The most common form of genetic variation between genomes of different people is
the single nucleotide polymorphism (SNP, pronounced “snip”) at which a single DNA
base takes on two common variants alleles in a population. While in rare cases more
than two of the four DNA bases (A, T, C and G) are commonly found at a single
genomic site, these are generally excluded from analysis. A chromosome of any single
individual can then be modeled as a binary string of SNP alleles, in which the ith bit
is zero if that individual has the more common (major) allele at the ith SNP locus and
is one if that individual has the less common (minor) allele. Nearly 18 million such
SNPs are now known in the human genome [22,15,9,16] and there is great interest in
them for studies of human ancestry (cf., [23]) and as markers for statistical tests of
association between genotype and phenotype (cf., [10]).

SNP alleles are not independent of one another but rather tend to be strongly
correlated when nearby on the genome. These correlations occur as a side-effect of
the way in which we inherent DNA from our parents. Humans are diploid organisms,
meaning that most of our DNA is organized in pairs of chromosomes of which we
inherent one copy from the mother and one from the father. The copy inherited from
a single parent is not identical to either of that parent’s copies, though, but rather is
assembled through a process called recombination (or crossing-over) that leads to a
concentenation of pieces of both of the parent’s chromosome copies. For instance, if
a parent’s haplotypes are
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C C G A G A A C C A T G C G

a c c g g a t g g a a t c g

a haplotype obtainable by cross-over could be

C C G A G a t g g a a G C G

As a result, when a new variation first appears in the genome through random mu-
tation, that variation will remain strongly correlated with nearby SNPs for many
generations, but will rapidly lose any detectable correlation with more physically dis-
tant SNPS. The result of this process is that when one examines patterns of variation
across the human genome, one observes many strongly conserved sub-strings, called
haplotypes, which are believed to represent sets of alleles that were found together in
a subset of early human ancestors and which have largely escaped being broken up
by recombination.

The haplotype structure of the genome is not merely an intellectual curiosity, but
is the focus of intensive practical efforts to harness it for use in genetic association
studies. Association studies, in which one seeks SNPs statistically associated with
some phenotype (e.g., a disease), are hampered by the fact that the large number
of SNPs means that corrections for multiple hypothesis obscure all but the strongest
associations. It is hoped that testing for association with haplotypes instead of geno-
types [6,21,1] will mitigate this problem by allowing one to identify any real associa-
tions in the data while performing many fewer tests. Several major studies are under-
way to examine haplotypes across human populations [25,26,11,12] for this purpose.
These haplotypes also provide important information for applications in inferring
ancestry and population substructure in human populations.

Attempts to analyze and use these data have led to several different approaches to
mathematically model haplotype structure in ways that will be amenable to model in-
ference and application in association study design and other contexts. At one extreme
are “haplotype block” models [8], which assume that the genome can be decomposed
into short regions (blocks) and that all haplotypes are broken at the boundaries of
these blocks. The block model makes the simplifying assumption that cross-over has
repeatedly occurred at the same boundaries. Block models are amenable to efficient
computational inference [28] but at the expense of obscuring some information on
correlations across block boundaries. While there are many roughly similar ways of
optimizing for block boundaries (c.f., [20,28,27,13]), they appear to give relatively
poor agreement between measures, population groups, or even sub-samples of a sin-
gle population [20]. At the opposite extreme are models allowing for haplotypes to
be broken arbitrarily within any given individual chromosome, effectively treating
the genome as a Markov model in which each chromosome represents a unique path
between a set of ancestral chromsomes [19,7]. These general models can more ac-
curately capture true haplotype structure, but at the expense of being much more
difficult to learn reliably and to apply to subsequent optimizations. A compromise
between these two extremes is the motif model [17] (or the independently developed
dictionary model [2]), which models each chromosome as a concentenation of a set of
conserved DNA segments, called motifs or tiles but without the assumption that block
model assumption that boundaries between conserved segments are shared across the
population. Several studies have shown that these models are more effective than raw
SNPs or block-based haplotypes for association testing [5,3] and for several associated
optimization problems [18].
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The following are examples of block decomposition (left) and motif decomposition
(right) of six haplotypes:

g t a c t t a t c

a c c c a a a c t

a c a c t a a c c

g t a c t t a c c

a c a c t a a c c

g t c c a a a c t

g t a c t t a t c

a c c c a a a c t

a c a c t a a c c

g t a c t t a c c

a c a c t a a c c

g t c c a a a c t

A motif model, like a block model, can nonetheless be defined in many different
ways depending on the criteria for which one optimizes the fit of motifs to observed
haplotype data. The motif model was originally implemented by Schwartz using a
heuristic method approximately optimizing for a likelihood model [17], and has since
been studied using other probabilistic models [2] and minimum description length
(MDL) models [14,24]. An obvious metric, with some practical motivation for the
multiple hypothesis testing problem in association testing, is parsimony [17]: mini-
mizing the total number of tiles needed to explain a data set. For instance, in the
above example on the right, the given explanation consists of 8 tiles. Note that this
is not the minimum tiling. In fact, a trivial tiling in which each row is a tile by itself
has value 6 (if, on the other hand, we introduce restrictions on the minimum and/or
maximum length allowed for a tile, the trivial tiling may not be feasible). The par-
simony metric has, however, only been used heuristically [5]. There has been neither
any efficient algorithm for this problem or any proof of its hardness.

In this paper we prove that this problem is APX-hard. We then proceed to describe
an ILP formulation which can be used for its exact solution. The formulation has an
exponential number of variables, but its LP relaxation can be solved in polynomial
time by column-generation techniques. We also describe an alternative, but equiva-
lent, polynomial-size ILP formulation based on a reduction to a multicommodity flow
problem. We finally give an exact, dynamic programming, polynomial algorithm for
the parsimony version of the block model problem (i.e., find a decomposition of the
matrix in blocks so that the total number of tiles that the decomposition defines is
minimum).

2 The problem

We are given a binary m×n matrix M . A tile t is specified by a first starting column
f(t), an ending column e(t), and a string s(t) of length e(t)−f(t)+1. A tile t applies
to (or is compatible with) any row Mi of M such that

s(t) = M [i, f(t)] · · ·M [i, e(t)] . (1)

For any row Mi, let us denote by T (i) the set of tiles that apply to it. Furthermore,
let T := ∪iT (i) the set of tiles which apply to some row of M . Notice that each triple
r, cf , ce, with 1 ≤ r ≤ m and 1 ≤ cf ≤ ce ≤ n identifies a unique tile in T , namely
the tile t for which f(t) = cf , e(t) = ce and s(t) = M [r, cf ] · · ·M [r, ce]. We denote
this tile as < r, cf , ce >. Notice that it is possible for different triples < r, cf , ce >
to identify the same tile in T , as long as they refer to different rows. (For example,
< 1, 1, 3 > and < 4, 1, 3 > identify the same tile in the binary matrix M displayed in
Fig. 1). Furthermore, T (r) = {< r, cf , ce > | 1 ≤ cf ≤ ce ≤ n }.
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We say that a set T̂ of tiles covers a row Mi of M if there exists a subset Ti =
{t1, . . . , tk} ⊆ T̂ , with f(t1) = 1, f(ti) = e(ti−1) + 1 for i = 2, . . . , k, and e(tk) = n,
such that

Mi = s(t1) · s(t2) · · · s(tk) . (2)

A tiling of M is a set T̂ of tiles which covers every row of M .
In this paper we study the problem Tile where, given a binary matrix M as

input, we seek for a tiling T̂ of M with the minimum possible number of tiles. In
Figure 1 we show an example of three different tilings for a same binary matrix.

0 1 1 0 0 1 1

1 0 1 0 0 1 0

0 0 1 0 1 1 1
0 1 1 0 0 1 0
1 0 1 0 0 1 1

0 1 1 0 0 1 1

1 0 1 0 0 1 0

0 0 1 0 1 1 1
0 1 1 0 0 1 0
1 0 1 0 0 1 1

0 1 1 0 0 1 1

1 0 1 0 0 1 0

0 0 1 0 1 1 1
0 1 1 0 0 1 0
1 0 1 0 0 1 1

Figure 1. Three different tilings of a same binary matrix: one of size 7 (on the left),
one of size 6 (in the middle), and an optimal tiling of size 5 (on the right).

Notice that, for any m×n input binary matrix M , the optimal value for problem
Tile satisfies OPT ≤ min{m, 2n}, as both the whole rows of M and the single entries
of M are considered as valid tiles.

3 Problem complexity

In this section we prove that the problem Tile is APX-hard.
The proof is split in two parts. First, in Subsection 3.1, we prove that Tile is

APX-hard when matrices over general alphabets are considered. Next, in Subsec-
tion 3.2, we show that allowing non-binary matrices does not significantly affect the
approximability of problem Tile.

We close this section by listing a few elementary facts which are useful both in
establishing the reductions here proposed and also as a first aid in algorithmically
managing the problem.

Fact 1. If two rows are identical then we can remove one of them.

Fact 2. When the matrix is binary, then flipping the values in one column does not
change the problem.

Fact 3. If two consecutive columns are identical (possibly after inversion of one of
the two, in case of binary matrices) then we can remove one of them.

Fact 4. The problem can be solved in poly-time when the number of rows or the
number of columns is bounded by a constant.

3.1 APX-hardness of Tile in the general non-binary case

In this subsection, we prove that Tile is APX-hard for general non-binary matrices.
This lemma is at the core of the result given in the next subsection (the APX-
hardness of Tile for binary matrices) and is obtained by reducing Node-Cover



G.Lancia et al.: Tiling Binary Matrices in Haplotyping: Complexity, Models and Algorithms 93

on cubic graphs to Tile. Explicit values of ε > 0 such that Node-Cover on cubic
graphs admits no (1 + ǫ)-approximation algorithm unless P=NP are given in [4].

Assume therefore to be given a cubic graph G = (V,E) as instance of Node-

Cover. Let m := |E| and n := |V |1 Clearly, m = 3
2
n since G is cubic. We assume

the nodes in V to be labeled with the first naturals 0, 1, 2, . . . , n− 1. In other words,
V = Nn. We can hence speak of the small endnode s(e) and of the big endnode b(e)
for each edge e ∈ E. When we say that e = uv is an edge in E we are implicitly
assuming that u < v, that is, u = s(e) and v = b(e). We let E = {e0, e1, . . . , em−1}.

We construct a matrix M with n̂ := 3m columns and m̂ := 4m + n + 2n̂ rows.
The rows and columns of M are numbered starting from 0. All the entries of M are
symbols from the alphabet Σ := {A,B,X, σ1, σ2}. For each i, j ∈ Nn̂ with i 6= j, let
M [4m+n+i, i] = M [4m+n+n̂+i, j] = A and M [4m+n+i, j] = M [4m+n+n̂+i, i] =
B. That is, the last (second last) n̂ rows of M are obtained from an n̂ × n̂ identity
matrix by replacing each 0 with an A (respectively, with a B) and each 1 with a B
(respectively, with an A). For each i ∈ Nn, row i is associated to the node i of G and,
for each c ∈ Nm and t = 0, 1, 2, the value of M [i, 3c + t] is defined as follows.

M [i, 3c + t] =







σ1 if t = 0 and i = s(ec),
σ1 if t = 2 and i = b(ec),
A otherwise.

Finally, for each j ∈ Nm, rows n+4j, n+4j+1, n+4j+2, n+4j+3 are associated
to the edge ej of G and, for each c ∈ Nm, t = 0, 1, 2 and k = 0, 1, 2, 3, the value of
M [n + 4j + k, 3c + t)] is defined as follows.

M [n + 4j + k, 3c + t)] =















X if j = c and t = 1,
σ1 if j = c and (k, t) ∈ {(0, 0), (0, 2), (1, 0), (2, 2)},
σ2 if j = c and (k, t) ∈ {(1, 2), (2, 0), (3, 0), (3, 2)},
A otherwise.

Lemma 5. Let X be a node cover of G. Then there exists a valid tiling T for M such
that |T | = 2n̂ + 4m + |X|.

Proof. Remember that each tile t is specified by a triple (f(t), e(t), s(t)) where f(t) is
the index of the first column, e(t) is the index of the last column, and s ∈ Σe(t)−f(t)+1.
We construct T in three phases. First, we place in T all the n̂ tiles in the set AT :=
{(i, i, A) : i ∈ Nn̂} and all the n̂ tiles in the set BT := {(i, i, B) : i ∈ Nn̂}. Notice that
the last 2n̂ rows of M are already covered by the tiles in AT ∪ BT . Next, for each
ej = uv ∈ E, with u < v, we have two possible cases. If u ∈ X, then we add to T the 4
tiles (3j, 3j+1, σ1X), (3j, 3j+1, σ2X), (3j+2, 3j+2, σ1), (3j+2, 3j+2, σ2). Otherwise,
if u /∈ X, then we add to T the 4 tiles (3j, 3j, σ1), (3j, 3j, σ2), (3j + 1, 3j + 2, Xσ1),
(3j + 1, 3j + 2, Xσ2). Notice here that, in either case, these 4 tiles plus the tiles in
AT suffice in covering the four rows n + 4j, n + 4j + 1, n + 4j + 2, n + 4j + 3. Finally,
for each i ∈ X, the whole row i of matrix M is placed as a tile in T . Notice that
|T | = 2n̂ + 4m + |X|. It remains to check that, for each i ∈ Nn, the i-th row of M
is also covered by T . To see this, we distinguish between two cases: If i ∈ X, then
row i appears in T as a tile. Otherwise, if i /∈ X and since X is a node cover of G,

1 Notice that, within this section, m and n do not denote the number of rows and columns of the
tiling matrix, but the number of edges and vertices of G.
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then, for every edge ej = iu ∈ E (respectively, for every edge ej = ui ∈ E) we have
that u ∈ X and hence the tile (3j, 3j, σ1) has been placed in T (respectively, the tile
(3j + 2, 3j + 2, σ1) has been placed in T ). Notice that row i is covered by these tiles
(with ej ∋ i) plus the tiles in AT . ⊓⊔

Lemma 6. Let T be a feasible tiling for M . Then G admits a node cover X with
|X| = |T | − 2n̂ − 4m.

Proof. As in the proof of Lemma 5, each tile t is specified by a triple (f(t), e(t), s(t)),
and AT := {(i, i, A) : i ∈ Nn̂}, and BT := {(i, i, B) : i ∈ Nn̂}. Let MH (respectively,
ML) be the matrix comprising the first 4m + n (respectively, the last 2n̂) rows of

matrix M . In other words, M =

(

MH

ML

)

. For i ∈ {H,L}, let Ti be the set of tiles

in T which are compatible with some row in Mi. Notice that there can be some tile
t ∈ T which belongs both to TH and to TL. However, for any such tile t, we have
both that s(t) ∈ {A,X, σ1, σ2}

∗, since t ∈ TH , and that s(t) ∈ {A,B}∗, since t ∈ TL.
Indeed, all entries of MH are in {A,X, σ1, σ2} and all entries of ML are in {A,B}. It
follows that s(t) ∈ {A}∗ for each t ∈ TH ∩ TL. Notice also that AT ∪ BT would be a
tiling for ML with |AT ∪ BT | = 2n̂. At the same time, |TL| ≥ 2n̂ by Lemma 7 here
below. These facts imply that we can always assume that AT ∪ BT ⊆ T . Indeed, a
tile t ∈ T with s(t) ∈ {A}∗ which might possibly help in covering some rows of MH

can always be substituted with tiles in AT .
Consider now the four rows n+4j, n+4j+1, n+4j+2, n+4j+3 associated with a

generic edge ej, j ∈ Nm. Let T (ej) be the set of the tiles in T \AT which are compatible
with some of the above four rows. Notice that |T (ej)| ≥ 4. Notice furthermore that
T (ep) ∩ T (eq) = ∅ whenever ep, eq ∈ E with ep 6= eq. Let JT := {ej : |T (ej)| ≥ 5}. We
call a tiling T of M standard if JT = ∅. We now show how to produce a standard
tiling T̃ with |T̃ | ≤ |T |. To do so, it suffices to show how to obtain a tiling T ′ of M
with |T ′| ≤ |T | and such that JT ′ is strictly contained in JT , whenever JT 6= ∅. Indeed,
where |T (ej)| ≥ 5, then let T ′ be obtained from T by removing all tiles in T (ej) and by
adding the 5 tiles t1 = (3j, 3j+1, σ1X), t2 = (3j, 3j+1, σ2X), t3 = (3j+2, 3j+2, σ1),
t4 = (3j + 2, 3j + 2, σ2) and t5 = (0, 3n̂ − 1,Mi) where i = s(ej) and Mi is the i-th
row of M , i.e. the row of M associated with node i. Notice that T ′ is indeed a tiling
of M , and indeed |T ′| ≤ |T |. Moreover, T ′(ej) = {t1, t2, t3, t4}, whence JT ′ ⊂ JT .

We hence assume T is standard, that is, |T (ej)| = 4 for each ej ∈ E. Since
AT ⊂ T , we can actually assume that either T (ej) comprises precisely the 4 tiles
(3j, 3j + 1, σ1X), (3j, 3j + 1, σ2X), (3j + 2, 3j + 2, σ1), and (3j + 2, 3j + 2, σ2), or
T (ej) comprises precisely the 4 tiles (3j, 3j, σ1), (3j, 3j, σ2), (3j +1, 3j +2, Xσ1), and
(3j+1, 3j+2, Xσ2). For i ∈ Nn, let T (i) be the set of those tiles in T \AT \∪ej∈ET (ej)
which are compatible with the i-th row of M . Notice that T (i1) ∩ T (i2) = ∅ for each
i1 6= i2 with i1, i2 ∈ Nn. Let now X be the set of those i ∈ Nn such that T (i) 6= ∅.
Notice that X is a node cover of G. Finally, |X| ≤ |T | − 2n̂ − 4m is a consequence
of the fact that the T (ej)’s are disjoint sets of tiles and the T (i)’s are disjoint sets of
tiles. ⊓⊔

We say that a set of tiles T weakly covers a matrix M if for every entry M [i, j]
of M there exists a tile t in T that is compatible with row i of M and such that
f(t) ≤ j ≤ e(t).

Lemma 7. Let MA/B (respectively, MB/A) be the n̂ × n̂ matrix whose entries are
all B (respectively, all A) except for the entries on the diagonal which are all A
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(respectively, all B). Let ML =

(

MB/A

MA/B

)

and let TL be a set of tiles which weakly

covers ML. Then |TL| ≥ 2n̂.

Proof. We prove a stronger claim: Let Σ = {A,B,C}. Let NA/B (respectively, NB/A)
be the n̂ × n̂ matrix obtained from matrix MA/B (respectively, MB/A) by replacing
with C all the entries below the main diagonal. Let TC := {(i, i + 1, C) : i ∈ Nn̂}. Let

N =

(

NB/A

NA/B

)

and let T be a set of tiles such that T ∪ TC weakly covers N . Then

|T | ≥ 2n̂.
We prove this by induction on n̂. Among the minimum-cardinality sets of tiles T

such that T ∪ TC weakly covers N , let T ∗ be one minimizing
∑

t∈T |s(t)|. Notice that
(n̂−1, n̂−1, B) and (n̂−1, n̂−1, A) both belong to T ∗. Indeed, where t is the tile in T
compatible with the row n̂−1 of N and with e(t) = n̂−1, then t = (n̂−1−i, n̂−1, CiB)
for some i ∈ Nn̂}. Notice however that any tile t of this form can always be substituted
by tile (n̂ − 1, n̂ − 1, B), plus some tiles in TC . The same argument also shows that
(n̂−1, n̂−1, A) ∈ T ∗. Notice now that (T ∗ \{(n̂−1, n̂−1, B), (n̂−1, n̂−1, A)})∪TC

weakly covers N ′, the matrix obtained from N by dropping the last column and by
dropping the rows n̂ − 1 and 2n̂ − 1. Notice that matrix N ′ is of the same form as
matrix N , but with n̂′ = n̂−1. Therefore, by induction, |T ∗| ≥ 2+2(n̂−1) = 2n̂. ⊓⊔

Theorem 8. When we allow for general, possibly non-binary matrices, then the Tile

problem is APX-hard.

Proof. We proceed as follows: We assume to be given a (1 + ǫ)-approximation algo-
rithm A for Tile and design a (1 + 31 ǫ)-approximation algorithm for Node-Cover

which rests on algorithm A as a subroutine. The APX-harness of Tile then follows
from the APX-harness of Node-Cover.

After receiving in input a cubic graph G, we construct the matrix M as described
above. Assume the minimum node cover of G has size opt. Clearly, opt ≥ m

3
since G

is cubic. Moreover, by Lemma 5, there exists a tiling Topt covering M with |Topt| =
2n̂+4m+opt = 10m+opt. By running the (1+ ǫ)-approximation algorithm for Tile

we are hence guaranteed to find a solution Tapx with |Tapx| ≤ (10 m+opt)(1+ ǫ). And
Lemma 6 (whose proof can be easily converted into a poly-time algorithm) shows
how, starting from this tiling Tapx, one can obtain a node cover X of G of size at
most

|X| ≤ (10 m + opt)(1 + ǫ) − 10 m ≤ 10 ǫm + opt + ǫ opt ≤ 30 ǫ opt + opt + ǫ opt

≤ (1 + 31 ǫ)opt.

⊓⊔

3.2 The power of the binary case

In this subsection, we show that allowing non-binary matrices does not affect the
approximability of the problem Tile. Formally stated, we prove the following result.

Lemma 9. There exists an objective function preserving reduction from the Tile

problem on general non-binary matrices to the Tile problem on binary matrices.
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Notice that, combining Lemma 9 here above with Theorem 8 from the previous
section, we obtain the following result.

Theorem 10. Even when restricted to binary input matrices, problem Tile is APX-
hard.

Assume the entries of the input matrix M are taken from the alphabet Σ =
{σ1, σ2, . . . , σk}, where k := |Σ|. We can clearly assume that k ≤ m · n, where m and
n are the number of rows and columns of matrix M . The objective function preserving
reduction we are going to propose can be conveniently described as the composition
of two objective function preserving transformations to be applied in series. First, an
m × nm matrix Mσ over Σ is obtained from M by echoing each single column of M
precisely m times. Notice that, by Fact 3, this does not affect the objective function
value. Next and last, Mb is the m×nmk binary matrix obtained from Mσ by replacing
each entry σi of Mσ with a row vector of i zero’s followed by a row vector of k − i
one’s. So, where M had m rows and n columns, both numbered starting from 0, then
Mb has m rows and nmk columns, and

Mb[i, j] =

{

0 if M [i, j .div. km] = σp and p > j .mod. k,
1 otherwise.

It should be clear that a tiling of M directly translates into a tiling of Mb involving
the same number of tiles. Indeed, a feasible tiling for M gets converted into a feasible
tiling for Mb if all tiles get stretched by a factor of mk. In the tiling of Mb obtained
in this way, all tiles t have f(t) which is a multiple of mk and e(t) ≡k k − 1. We call
such a tiling of Mb standard.

Conversely, it is also clear that to any standard tiling of Mb corresponds a tiling
of M involving the same number of tiles. Therefore, in order to prove Lemma 9, we
only need to prove the following lemma.

Lemma 11. Given any tiling T of Mb, we can produce in poly-time a standard tiling
T ′ of Mb with |T ′| ≤ |T |.

Proof. Clearly, since Mb has m rows, there is no difficulty in producing a standard
tiling of Mb of size m. We can therefore assume that |T | < m. We also assume that T
is a minimal tiling of Mb, that is, T \{t} is also a feasible tiling of Mb for no t ∈ T . Fix
attention on any c1 = 0, 1, 2, . . . , n − 1. Since, |{f(t) .div. k : t ∈ T}| ≤ |T | < m, then
there exists a c2 = c2(c1) ∈ {0, 1, 2, . . . ,m− 1} such that f(t) .div. k 6= c1m+ c2 holds
for every t ∈ T . This means that no tile starts within the k column positions of Mb

corresponding to position c1m + c2 of Mσ. More formally, for no t ∈ T we have that
(c1m + c2)k ≤ f(t) < (c1m + c2 + 1)k. From this, and by the minimality of T , it also
follows that for no t ∈ T we have that (c1m + c2)k − 1 ≤ e(t) < (c1m + c2 + 1)k − 1.
Based on these facts, we can massage the tiles in T as follows.

1. left extension Let t be any tile in T with f(t) ≤ (c1m + c2)k ≤ e(t). If f(t) >
c1mk, then t is replaced with a tile t′ with f(t′) = c1mk, e(t′) = e(t), t′[p] = t[p]
for each p = f(t), f(t)+1, . . . , e(t), and t′[p] = t[(c1m+c2)k+(p .mod. k)] for each
p < f(t) with p ≥ f(t′).

2. right extension Let t be any tile in T with f(t) ≤ (c1m + c2)k ≤ e(t). If e(t) <
(c1 + 1)mk − 1, then t is replaced with a tile t′ with f(t′) = f(t), e(t′) = (c1 +
1)mk − 1, t′[p] = t[p] for each p = f(t), f(t) + 1, . . . , e(t), and t′[p] = t[(c1m +
c2)k + (p .mod. k)] for each p > e(t) with p ≤ e(t′).
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3. right trim Let t be any tile in T with c1mk ≤ e(t) < (c1m + c2)k. Then t is
replaced with a tile t′ with f(t′) = f(t), e(t′) = c1mk − 1, and t′[p] = t[p] for each
p = f(t′), f(t) + 1, . . . , e(t′).

4. left trim Let t be any tile in T with (c1m + c2 + 1)k ≤ f(t) < (c1 + 1)mk. Then
t is replaced with a tile t′ with e(t′) = e(t), f(t′) = (c1 + 1)mk, and t′[p] = t[p] for
each p = f(t′), f(t) + 1, . . . , e(t′).

Clearly, no one of the above four operations can possibly increase |T |. Furthermore,
it can be checked that if a row r is covered by some sequence of tiles in T , then, after
each one of the above 4 operations has been performed, row r can still be covered by
a suitable sequence of tiles. Indeed, the new sequence of tiles can be obtained from
the original one by performing the following operations:

(1) discard all tiles t with f(t) ≥ c1mk and e(t) < (c1m + c2)k;
(2) discard all tiles t with f(t) with e(t) < (c1 + 1)mk and f(t) ≥ (c1m + c2)k;
(3) retain all other tiles; on each one of these remaining tiles, apply each one of

the above four operations.
Notice that, after each one of the four operations above has been performed, no tile

t can have c1mk < f(t) < (c1 + 1)mk or c1mk ≤ e(t) < (c1 + 1)mk− 1. Furthermore,
if f(t) (respectively, e(t)) has been affected by the above operations, then, after the
operations have taken place, f(t) (respectively, e(t)+1) is a multiple of mk. It follows
that after the above 4 steps have been executed for each c1 = 0, 1, 2, . . . , n, and for
the corresponding c2 = c2(c1), then T has become standard. ⊓⊔

4 ILP formulations and DP

Exponential formulation

As defined in Section 2, let m be the number of rows and n be the number of columns
of the input matrix M for which we seek an optimal tiling.

In our first ILP formulation, we introduce a binary variable xt for each possible
tile t ∈ T , and further, for every i = 1, 2, . . . ,m, we introduce a binary variable yT for
each minimal set of tiles which covers row i. For the porpouse of notation, we denote
by M(i) the family of the minimal sets of tiles which cover row i. Notice that a set of
tiles belongs to M(i) if and only if is contained in T (i) and has the form {t1, . . . , tk}
with f(t1) = 1, f(ti) = e(ti−1) + 1 for i = 2, . . . , k, and e(tk) = n.

We have

min
∑

t∈T

xt (3)

∑

T∈M(i)

yT = 1 ∀i = 1, . . . ,m (4)

∑

T∈M(i) | t∈T

yT ≤ xt ∀i = 1, . . . ,m ∀t ∈ T (i) (5)

xt, yT ∈ {0, 1} ∀t ∈ T , T ⊆ ∪iM(i) (6)

Note that, for each i, it is |T (i)| = n(n+1)/2 (we have to decide the first starting
and the ending column), while |M(i)| = 2n−1 (we have to decide which of the first
n − 1 columns are ending columns).
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Thus, the above model has an exponential number of y variables. However, the LP
relaxation can still be solved in polynomial time provided we can show how to solve
the pricing problem for the y variables in polynomial time. The resulting approach is
called column generation. The idea is to have all x variables in the model, and only a
subset of the y variables. Then, given an optimal solution to the current LP, we see
if there is any missing y variable that should be priced-in (i.e., added to the current
variables).

Let γ1, . . . , γm be the dual variables associated with constraints (4) and let λi
t, for

i = 1, . . . ,m and t ∈ T (i), be the dual variables associated with constraints (5).
To each primal variable yT corresponds an inequality in the dual LP. The vari-

able has negative reduced cost if and only if the corresponding dual constraints is
violated by the current optimal dual solution. Assume T is a set in M(i). Then, the
corresponding dual inequality for T is

γi −
∑

t∈T

λi
t ≤ 0 (7)

If we consider λi
t to be the cost of tile t (relatively to a particular row i), and

define λi(T ) :=
∑

t∈T λi
t, we have that the dual inequalities, for all T ∈ M(i), are of

type

λi(T ) ≥ γi (8)

A set of tiles violates the dual inequality if λi(T ) < γi. If this happens, yT should
be added to the current set of primal variables. To identify a set which violates the
dual inequality, it is enough to find the smallest-cost set. If T ∗ ∈ M(i) is such that
λi(T ∗) = minT∈M(i) λi(T ), then, if λi(T ∗) < γi then yT ∗ should be added to the LP
variables, otherwise, no yT variables, with T ∈ M(i) should be added to the LP. We
should repeat this reasoning for all i = 1, . . . ,m.

Let us consider then the following problem:

– given i and costs λi
t, for t ∈ T (i), find T ∗ in M(i) with minimum λ-cost.

For each 1 ≤ u ≤ v ≤ n, denote in short Λ(u, v) the value λi
t, where t =< i, u, v >.

We consider the following dynamic program. Denote by V (r) the optimal (min-
imum) λ-cost of fragmenting row i in consecutive tiles, up to position r. We are
interested in V (n). We have the recurrence:

V (r) =
r−lm+1

min
p=max{1,r−lM+1}

(V (p − 1) + Λ(p, r)) (9)

where lm is the minimum possible length of a tile, and lM is the maximum possible
length of a tile. We have λi(T ∗) = V (n). Base case is V (j) = 0, for j ≤ 0, and
V (j) = +∞ for 0 < j < lm.

Polynomial-size formulation

Here we consider an alternative ILP formulation, which in fact yields the same bound
as the previous one. The idea is to formulate the problem as a multicommodity flow
problem. In principle, imagine to have a directed graph G = (V,A), in which the
vertices V are given by the column indexes, augmented with a dummy node n + 1,
i.e., V = 1, . . . , n + 1. The arcs are associated to the tiles. There is a directed arc for
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each tile t. Assume t =< i, u, v >. Then, there is an arc at = (u, v + 1). Note that
there can be parallel arcs, and, for each 1 ≤ u ≤ v ≤ n + 1 there is at least one arc
from u to v.

Now, for each commodity i = 1, . . . ,m, we want to send a unit of flow out of node
1, through the network as far as it can go (i.e., until it reaches node n+1). Each time
an arc at is used by the flow fi, for commodity i, it means that the tile t is used in
the solution to cover row i.

We can associate flow variables to the arcs, and have flow conservation constraints.
Furthermore, the activation variables for the tiles (i.e., the xt variables) provide ca-
pacities for each arc (i.e., xt is the capacity of the arc at).

Instead of actually building the network, we now describe a formulation that
achieves the exact same purpose, and “builds” the network only implicitly.

As before, there are variables xt for each tile t ∈ T . Furthermore, for each row i
and indices 1 ≤ a ≤ b ≤ n, we have a variable zi

ab. This variable represents the i-th
flow along the arc a<i,a,b> (i.e., one of the parallel arcs between a and b + 1) in G.

We get the following formulation:

min
∑

t∈T

xt (10)

∑

r=1,...,n

zi
1r = 1 ∀i = 1, . . . ,m (11)

∑

1≤j<r

zi
jr =

∑

r<j≤n

zi
rj ∀i = 1, . . . ,m ∀1 < r < n (12)

zi
ab ≤ x<i,a,b> ∀i = 1, . . . ,m ∀1 ≤ a ≤ b ≤ n (13)

x<i,a,b>, zi
ab ∈ {0, 1} ∀1 ≤ i ≤ m, 1 ≤ a ≤ b ≤ n (14)

Constraints (12) are flow conservation, saying that in each non-final column, the
unit of flow coming in must also go out. Constraints (13) put capacities on the arcs,
saying that an arc corresponding to a tile not activated (xt = 0) cannot be used by
the flows. Note that the z variables could be just declared real, as, when in a feasible
solution the x are integer, there is always a way to make the z integer as well.

This model has m×n×(n+1)/2 z-variables (≃ mn2/2) and |T | x-variables. As for
the constraints, there are m flow-out constraints, m×(n−2) conservation constraints
and m × n(n + 1)/2 capacity constraints, for a total of ≃ mn2/2 constraints.

Theorem 12. For each solution (x, y) of the exponential formulation there is a so-
lution (x, z) of the polynomial formulation, which achieves the exact same value, and
vice versa.

Proof. (Sketch) Just use the flow-decomposition theorem. Given a solution (x, y) each
admissible set of tiles T for row i corresponds to (the arcs of) a path starting at vertex
1 and ending at vertex n + 1. Sending along this path yT units of flow, we get in the
end a unit of flow out of 1. Vice versa, given a solution (x, z), each zi identifies a flow
of value 1 out of 1. This flow can be decomposed into paths, and each path identifies
an admissible set T . The decomposition is based on finding a minimum-flow arc (say
of value δ) and tracing it back to the source and to the sink, thus identifying a path.
Then we subtract δ from the flow on the arcs of the path and iterate.
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Dynamic Programming for Tiling into Strips

Let M be a binary m×n matrix. For each i, j ∈ {1, 2, . . . , n} with i ≤ j, we denote by
M(i, j) the submatrix obtained from M by dropping all columns except those with
index p with i ≤ p ≤ j, and let M(i,−) = M(i, n) be obtained by removing only the
first i − 1 columns.

A tiling T of M is called a striping of M if for every two tiles t1, t2 ∈ T with
f(t1) ≤ e(t2) ≤ e(t1) we have that e(t2) = e(t1) and f(t2) = f(t1).

In this section we show that the problem of finding a striping of minimum size
can be solved in polynomial time by Dynamic Programming.

The starting shadow of a striping T is the set F (T ) := {f(t) : t ∈ T}. No-
tice that F (T ) uniquely defines the striping T . Indeed, for every tile t ∈ T we
have that f(t) and e(t) + 1 are two consecutive integers in F (T ), and, conversely,
for every two consecutive integers f1 and f2 in F (T ), striping T contains precisely
variety(M(f1, f2 − 1)) different tiles t with f(t) = f1 and e(t) = f2 − 1, where
V ariety(M(i, j)) are the equivalence classes over the rows of M(i, j) under the iden-
tity relation, and variety(M(i, j)) = |V ariety(M(i, j))|. In this section we show that
the problem of finding a striping of minimum size can be solved by Dynamic Pro-
gramming.

Denote by opti the minimum size of a striping for matrix M(i,−). Then, since
M = M(1,−), the size of an optimum striping for M is given by opt1. Moreover,
optn = variety(M(n, n)), which amounts to the number of different symbols occurring
in the last column of M (i.e. either 1 or 2). Finally, for i = n − 1 down to i = 1 we
can iteratively compute opti by means of the recurrence

opti := min
j>i

optj + variety(M(i, j − 1)) .

We now introduce the data structures needed to efficienty compute all the values
variety(M(i, j)) for j ≥ i. Clearly, variety(M(i, i)) is the number of different symbols
occurring in the column vector M(i, i). We next show how variety(M(i, j+1)) can be
computed from variety(M(i, j)) in O(m) steps. Thanks to this, the total running time
of the Dynamic Programming algorithm outlined above is clearly O(mn2). The idea
is to store the partition of the rows of M(i, j) associated to the identity equivalence
relation as a vector class of m entries. In each entry class[r] the smallest index of
a row identical to row r is reported. We now describe how the m-vector class gets
updated when going from M(i, j) to M(i, j + 1). This is done by using a second
m-vector newName, initialized to all −1, and running the following algorithm.

for r := 1 to n,

if M [r, j + 1] 6= M [class[r], j + 1] then

if newName[class[r]] = −1 then

newName[class[r]] := r;

class[r] := r;

else class[r] := newName[class[r]].
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