
Approximate String Matching

Allowing for Inversions and Translocations

Domenico Cantone, Simone Faro, and Emanuele Giaquinta

Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy

{cantone | faro | giaquinta}@dmi.unict.it

Abstract. The approximate string matching problem consists in finding all locations
at which a pattern P of length m matches a substring of a text T of length n, after a
given finite number of edit operations.
In this paper we investigate such problem when the string distance involves transloca-
tions of equal length adjacent factors and inversions of factors. In particular, we devise a
O(nm max(α, β))-time and O(m2)-space algorithm, where α and β are respectively the
maximum length of the factors involved in any translocation and inversion. Our algo-
rithm is based on the dynamic-programming approach and makes use of the Directed
Acyclic Word Graph of the pattern. Moreover we show that under the assumptions
of equiprobability and independence of characters our algorithm has a O(n logσ m)
average time complexity. Finally, we briefly sketch in an appendix an efficient imple-
mentation, based on bit-parallelism.

1 Introduction

Retrieving information and teasing out the meaning of biological sequences are central
problems in modern biology. Generally, basic biological information is stored in strings
of nucleic acids (DNA, RNA) or amino acids (proteins). Aligning sequences helps
in revealing their shared characteristics, while matching sequences can infer useful
information from them.

With the availability of large amounts of DNA data, matching of nucleotide se-
quences has become an important application and there is an increasing demand for
fast computer methods for analysis and data retrieval. In recent years, much work
has been devoted to the development of efficient methods for aligning strings and,
despite sequence alignment seems to be a well-understood problem (especially in the
edit-distance model), the same can not be said for the approximate string matching
problem on biological sequences.

Approximate string matching is a fundamental problem in text processing and
consists in finding approximate matches of a pattern in a string. The closeness of a
match is measured in terms of the sum of the costs of the edit operations necessary
to convert the string into an exact match.

Most biological string matching methods are based on the edit distance [7] (also
called the Levenshtein distance) or on the Damerau edit distance [6]. The edit oper-
ations in the former edit distance are insertion, deletion, and substitution of charac-
ters, while the latter one allows swaps of characters, i.e., traspositions of two adjacent
characters (for an in-depth survey on approximate string matching, see [8]). These
distances assume that changes between strings occur locally, i.e., only a small portion
of the string is involved in the mutation event. In contrast, evidence shows that large
scale changes are possible. For example, large pieces of DNA can be moved from

Domenico Cantone, Simone Faro, Emanuele Giaquinta: Approximate String Matching Allowing for Inversions and Translocations, pp. 37–51 .

Proceedings of PSC 2010, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04597-8 c© Czech Technical University in Prague, Czech Republic



38 Proceedings of the Prague Stringology Conference 2010

one location to another (translocations), or replaced by their reversed complements
(inversions).

In this paper we investigate the approximate string matching problem under a
string distance whose edit operations are translocations of equal length adjacent fac-
tors and inversions of factors. In particular, we present a O(nm max(α, β))-time and
O(m2)-space algorithm, where α and β are the maximum length of the factors in-
volved in a translocation and in an inversion, respectively. Our algorithm is based on a
dynamic-programming approach and makes use of the Directed Acyclic Word Graph
of the pattern. The DAWG data structure has already been used in algorithms for the
approximate string matching problem [11,10], to keep track of the substrings of the
pattern that match the text at every location. We show that under the assumption
of equiprobability and independence of characters in the alphabet, on the average
our algorithm has a O(n logσ m)-time complexity. Finally, we present also an efficient
implementation of our algorithm, based on bit-parallelism, which has O(n max(α, β))-
time and O(σ + m)-space complexity, when the pattern length is comparable with
the size of the computer word. To our knowledge there is no report in the literature
of a similar formalization of the above problem.

The rest of the paper is organized as follows. In Section 2 we introduce some
preliminary notions and definitions. Subsequently, in Section 3 we present a new
automaton-based algorithm for the approximate string matching problem with tran-
slocations and inversions. Section 4 is devoted to the analysis of our algorithm both
in the worst and in the average-case. In Section 5 we present experimental results
which allow us to evaluate the practical performance of our newly proposed algo-
rithm and its bit-parallel variant, briefly described in Appendix A. Finally, we draw
our conclusions in Section 6.

2 Basic notions and definitions

Let P be a string of length m ≥ 0, over an alphabet Σ. We represent it as a finite
array P [0 ..m − 1] of characters of Σ and write |P | = m. In particular, for m = 0
we obtain the empty string ε. We denote by P [i] the (i + 1)-st character of P , for
0 ≤ i < m. Likewise, the substring of P contained between the (i + 1)-st and the
(j + 1)-st characters of P is indicated with P [i .. j], for 0 ≤ i ≤ j < m. The set
of substrings (also called factors) of P is denoted by Fact(P ). Given another string
P ′, we say that P ′ is a suffix of P (in symbols, P ′ ⊒ P ) if P ′ = P [i ..m − 1], for
some 0 ≤ i < m, and indicate with Suff (P ) the set of the suffixes of P . Similarly,
we say that P ′ is a prefix of P if P ′ = P [0 .. i], for some 0 ≤ i < m. We also put
Pi =

Def
P [0 .. i], for 0 ≤ i < m, and make the convention that P−1 denotes the empty

string ε. In addition, we write PP ′ to denote the concatenation of P and P ′, and P r

for the reverse of the string P , i.e., P r =
Def

P [m − 1]P [m − 2] . . . P [0].

A distance d : Σ∗ × Σ∗ → R is a function which associates to any pair of strings
X and Y the minimal cost of any finite sequence of edit operations which transforms
X into Y , if such a sequence exists, ∞ otherwise. Edit operations have the form
Z →t W , with Z,W ∈ Σ∗ and t a nonnegative real number which represents the
cost. If, for every operation Z →t W , there is also the symmetric operation W →t Z
(with the same cost), then the distance d is symmetric, i.e., d(X,Y ) = d(Y,X), for
all X,Y ∈ Σ∗.



D.Cantone et al.: Approximate String Matching Allowing for Inversions and Translocations 39

For X ∈ Fact(P ), we denote with end-pos(X) the set of all positions in P where
an occurrence of X ends; formally,

end-pos(X) =
Def

{i | |X| − 1 ≤ i < m and X ⊒ Pi} .

For any given pattern P , we define an equivalence relation R
P

by putting

X R
P

Y ⇐⇒
Def

end-pos(X) = end-pos(Y ) ,

for all X,Y ∈ Σ∗, and denote with R
P
(X) the equivalence class over Σ∗ of the string

X.
The Directed Acyclic Word Graph [3,4,5] of a pattern P (DAWG, for short) is the

deterministic automaton A(P ) = (Q,Σ, δ, root , F ) whose language is Fact(P ), where

– Q = {R
P
(X) : X ∈ Fact(P )} is the set of states,

– Σ is the alphabet of the characters in P ,
– δ : Q×Σ → Q is the transition function defined, for all c ∈ Σ and Y c ∈ Fact(P ),

by δ(R
P
(Y ), c) =

Def
R

P
(Y c),

– root = R
P
(ε) is the initial state,

– F = Q is the set of final states.

For each equivalence class q of R
P
, let val(q) be the longest string X in the

equivalence class q and put length(q) =
Def

length(val(q)). In addition, we define a
failure function, sℓ : Fact(P ) \ {ε} → Fact(P ), called suffix link, by putting, for any
X ∈ Fact(P ) \ {ε},

sℓ(X) =
Def

longest Y ∈ Suff (X) such that Y 6R
P
X .

The function sℓ has the following property:

X R
P

Y =⇒ sℓ(X) = sℓ(Y ) .

We extend the functions sℓ and end-pos to Q by putting, for each q ∈ Q,

sℓ(q) =
Def

R
P
(sℓ(val(q)))

end-pos(q) =
Def

end-pos(val(q)) .

Definition 1. Given two strings X and Y , the mutation distance md(X,Y ) is based
on the following edit operations:

(1) Translocation: a factor of the form ZW is transformed into WZ, provided that
|Z| = |W | > 0.

(2) Inversion: a factor Z is tranformed into Zr.

Both operations are assigned unit cost. ⊓⊔

Observe that, by definition, the maximum length of the factors involved in a
translocation is ⌊|X|/2⌋, whereas the length of the factors involved in an inversion
can be up to |X|. Note, moreover, that there are strings X,Y such that X can not
be converted into Y by any sequence of translocations and inversions, in which case
md(X,Y ) = ∞. When md(X,Y ) < ∞, we say that X and Y have an md-match.
Additionally, if X has an md-match with a suffix of Y , we write X ⊒md Y .



40 Proceedings of the Prague Stringology Conference 2010

3 An automaton-based approach for the pattern matching

problem with translocations and inversions

We present an efficient algorithm, called M-Sampling, which finds the md-matches
of a given pattern P (of length m) in a text T (of length n). Our algorithm, based on
the dynamic programming approach, has a O(nm max(α, β))-time and O(m2)-space
complexity, where α ≤ ⌊m/2⌋ is a bound on the length of the factors involved in
any translocation and β ≤ m is a bound on the length of the factors involved in any
inversion.

Given P , T , m, n, α, and β as above, the M-Sampling algorithm iteratively
computes for j = m − 1,m, . . . , n − 1 all the prefixes of P which have an md-match
with a suffix of Tj, by exploiting information gathered at previous iterations. For this
purpose, a set Sj is maintained, defined by

Sj =
Def

{0 ≤ i ≤ m − 1 | Pi ⊒md Tj} .

Thus, the pattern P has an md-match ending at position j of the text T if and only
if (m − 1) ∈ Sj.

Since the allowed edit operations involve substrings of the pattern P , it is useful
to introduce the set Fk

j of all the positions in P where an occurrence of the suffix of
Tj of length k ends. More precisely, for 1 ≤ k ≤ α and k − 1 ≤ j < n, we put

Fk
j =

Def
{k − 1 ≤ i ≤ m − 1 | T [j − k + 1 .. j] ⊒ Pi} .

Observe that Fk
j ⊆ Fh

j , for 1 ≤ h ≤ k ≤ m.

Similarly, to handle inversions, it is convenient to define the set Ik
j of the positions

in P where an occurrence of the reverse of the suffix of Tj of length k ends. More
precisely, for 1 ≤ k ≤ β and k − 1 ≤ j < n, we put

Ik
j =

Def
{k − 1 ≤ i ≤ m − 1 | (T [j − k + 1 .. j])r ⊒ Pi} .

The sets Sj can then be computed based on the following elementary recursion.

Lemma 2. Let T and P be a text of length n and a pattern of length m, respectively.
Then i ∈ Sj, for 0 ≤ i < m and i ≤ j < n, if and only if one of the following three
facts holds

(a) P [i] = T [j] and (i − 1) ∈ Sj−1 ∪ {−1} (standard match);
(b) (i − k) ∈ Fk

j , i ∈ Fk
j−k, and (i − 2k) ∈ Sj−2k ∪ {−1}, for some 1 ≤ k ≤ ⌊ i+1

2
⌋

(translocation);
(c) i ∈ Ik

j and (i − k) ∈ Sj−k ∪ {−1}, for some 1 ≤ k ≤ i + 1 (inversion). ⊓⊔
Conditions (b) and (c) refer to a translocation of adjacent factors of length k and

an inversion of a factor of length k, respectively.
Likewise, the sets Fk

j and Ik
j can be computed according to the following lemma:

Lemma 3. Let T and P be a text of length n and a pattern of length m, respectively.
Then i ∈ Fk

j , for 1 ≤ k ≤ α, k − 1 ≤ i < m, and k − 1 ≤ j < n, if and only if the
following condition holds

(k = 1 or (i − 1) ∈ Fk−1
j−1 ) and P [i] = T [j] .

Similarly, i ∈ Ik
j , for 1 ≤ k ≤ β, k − 1 ≤ i < m, and k − 1 ≤ j < n, if and only if

the following condition holds

(k = 1 or i ∈ Ik−1
j−1 ) and P [i − k + 1] = T [j] . ⊓⊔



D.Cantone et al.: Approximate String Matching Allowing for Inversions and Translocations 41

Based on Lemmas 2 and 3, a general dynamic programming algorithm can be
readily constructed, characterized by an overall O(nm max(α, β))-time and O(m2)-
space complexity. However, the overhead due to the computation of the sets Fk

j and

Ik
j turns out to be quite large. By suitably preprocessing the pattern with the DAWG

data structure, as will be described in the next section, the M-Sampling algorithm
succeeds in reducing drastically such overhead (see Fig. 2). The code of the algorithm
M-Sampling is shown in Fig. 1 (on the left).

3.1 Efficient computation of the sets F
k
j

and I
k
j

An efficient method for computing the sets Fk
j described above, for 1 ≤ k ≤ α and

k − 1 ≤ j < n, makes use of the DAWG of the pattern P and the function end-pos.
Later we will also show how to compute efficiently the sets Ik

j .
Let A(P ) = (Q,Σ, δ, root , F ) be the DAWG of P . For each position j in T , let P ′

be the longest factor of P , of length at most α, which is a suffix of Tj, let qj be the state
of A(P ) such that R

P
(P ′) = qj, and let lj be the length of P ′. We call the pair (qj, lj)

a T -configuration of A(P ). The idea is then to compute the T -configuration (qj, lj) of
A(P ), for each position j of the text, while scanning the text. The set Fk

j computed
at previous iterations are not maintained explicitly; rather, only T -configurations are
maintained. These are then used to compute efficiently the set Fk

j only when needed.
The longest factor of P ending at position j of T is computed in the same way as

in the Forward-Dawg-Matching algorithm for the exact pattern matching problem (cf.
[5]). Since we are interested in factors of length at most α, we maintain the invariant
that the current state of the automaton never corresponds to factors longer than α
(we discovered that much the same idea was used in [10]).

Let (qj−1, lj−1) be the T -configuration of A(P ) at step (j − 1). Two cases must be
distinguished.

Case lj−1 < α: The new T -configuration (qj, lj) is set to (δ(q, T [j]), length(q) + 1),
where q is the first node in the suffix path (qj−1, sℓ(qj−1), sℓ

(2)(qj−1), . . .) of qj−1,
including qj−1, having a transition on T [j], if such a node exists; otherwise (qj, lj)
is set to (root , 0).1

Case lj−1 = α: We first compute the T -configuration corresponding to the factor
T [j − α + 1 .. j − 1] of P of length (α − 1) ending at position j − 1 in T , namely
the T -configuration (q′j−1, l

′
j−1), where

(q′j−1, l
′
j−1) =

Def

{

(sℓ(qj−1), lj−1 − 1) if length(sℓ(qj−1)) = lj−1 − 1
(qj−1, lj−1 − 1) otherwise.

Then we compute the new T -configuration (qj, lj) starting from (q′j−1, l
′
j−1) as

in the previous case, observing that l′j−1 = α − 1. The algorithm to update the
T -configuration of the DAWG A(P ) is given in Fig. 1 (on the right), where sℓ∗

denotes the improved suffix link [5].

Before explaining how to compute the sets Fk
j , it is convenient to introduce a

partial function, φ : Q×N → Q, which given a node q ∈ Q and a length k ≤ length(q)
computes the node φ(q, k) whose corresponding set of factors contains the suffix of

1 We recall that sℓ(0)(q) =Def q and, recursively, sℓ(h+1)(q) =Def sℓ(sℓ(h)(q)), for h ≥ 0, provided
that sℓ(h)(q) 6= root .



42 Proceedings of the Prague Stringology Conference 2010

val(q) of length k. This is the same as saying, more formally, that φ(q, k) is the node
sℓ(i)(q) such that

length(sℓ(i+1)(q)) < k ≤ length(sℓ(i)(q)) ,

for each q ∈ Q and each integer k ≤ length(q). Roughly speaking, φ(q, k) is the first
node p in the suffix path of q such that length(sℓ(p)) < k.

In the preprocessing phase, the DAWG A(P ) = (Q,Σ, δ, root , F ) together with
the associated end-pos function is computed. Since for a pattern P of length m we
have that |Q| ≤ 2m + 1 and |end-pos(q)| ≤ m, for each q ∈ Q, we need only O(m2)
extra space (see [3,4]).

To compute the set Fk
j , for 1 ≤ k ≤ lj, one can take advantage of the following

relation

Fk
j = end-pos(φ(qj, k)) . (1)

Notice that, in particular, we have F lj
j = end-pos(qj).

The time complexity of the computation of φ(q, k) can be bounded by the length
of the suffix path of node q. Specifically, since the sequence

(length(sℓ(0)(q)), length(sℓ(1)(q)), . . . , 0)

of the lengths of the nodes in the suffix path from q is strictly deacreasing, we can do
at most length(q) iterations over the suffix link, obtaining a O(m)-time complexity.

According to Lemma 2, a translocation of length 2k at position j of the text T is
possible only if factors of P of length at least k have been recognized at both positions
j and j − k, namely if lj ≥ k and lj−k ≥ k.

Let 〈k1, k2, . . . , kr〉 be the increasing sequence of all values k such that 1 ≤ k ≤
min(lj, lj−k). For each 1 ≤ i ≤ r, condition (b) of Lemma 2 requires member queries

on the sets Fki

j and Fki

j−ki
.

We notice that, if we proceed for decreasing values of k, the sets Fk
j , for 1 ≤ k ≤

lj, can be computed in constant time. Specifically, the set Fk
j can be computed in

constant time from Fk+1
j , for k = 1, . . . , lj − 1, with at most one iteration over the

suffix link of the state φ(qj, k + 1).

The computation of Fkr

j−kr
has a O(α)-time complexity, since length(qj−kr

) ≤ α.

To compute Fki

j−ki
, for i = r − 1, r − 2, . . . , 1, we distinguish the following two cases:

Case ki+1 = ki + 1: Let q′ = φ(qj−ki+1
, ki+1). Given the node q′ computed in the

previous iteration, the node φ(qj−ki
, ki) can be computed in two steps: first, we

look up the node corresponding to the suffix of length ki+1 − 2 of the factor
represented by q′, with at most two iterations of the suffix link of q′; then, we
perform a transition on T [j − ki] on the node so found. Formally:

φ(qj−ki
, ki) = δ(φ(q′, ki+1 − 2), T [j − ki]) .

Case ki+1 > ki + 1: Observe that lj−s ≤ s−1 must hold, for each s = ki+1−1, . . . , ki+
1. In particular, we have lj−(ki+1) ≤ ki which implies that lj−ki

≤ ki + 1 since
lj ≤ lj−1 + 1 always holds. Hence, the computation of φ(qj−ki

, ki) requires at most
one iteration of the suffix link of qj−ki

.



D.Cantone et al.: Approximate String Matching Allowing for Inversions and Translocations 43

M-Sampling (P, T, α, β,A,A′)
/* A is the DAWG of P and A′ is the DAWG of P r */

1. m ← |P |, n ← |T |
2. (q0, l0) ← Dawg-Delta(rootA, 0, α, T [0],A)
3. (qr

0, lr0) ← Dawg-Delta(rootA′ , 0, β, T [0],A′)
4. S0 ← ∅
5. if P [0] = T [0] then S0 ← {0}
6. for j ← 1 to n − 1 do

7. (qj , lj) ← Dawg-Delta(qj−1, lj−1, α, T [j],A)
8. (qr

j , lr) ← Dawg-Delta(qr

j , lr, β, T [j],A′)

9. Sj ← ∅
/* Standard matches */

10. if P [0] = T [j] then Sj ← {0}
11. for i ∈ Sj−1 do

12. if i < m − 1 and P [i + 1] = T [j] then

13. Sj ← Sj ∪ {i + 1}
/* Inversions */

14. p ← qr

j

15. for k ← lrj downto 2 do

16. for i ∈ Sj−k ∪ {−1} do

17. if (m − 2 − i) ∈ end-posr(p) then

18. Sj ← Sj ∪ {i + k}
19. if k = length(sℓA′ (p)) + 1 then

20. p ← sℓA′ (p)
/* Translocations */

21. last ← 0
22. p ← qj

23. for k ← lj downto 1 do

24. if k ≤ j and k ≤ lj−k then

25. if last = k + 1 then

26. while p′ 6= rootA
and k − 1 ≤ length(sℓA(p′)) do

27. p′ ← sℓA(p′)
28. p′ ← δA(p′, T [j − k])
29. else

30. p′ ← qj−k

31. while k ≤ length(sℓA(p′)) do

32. p′ ← sℓA(p′)
33. last ← k

34. for i ∈ Sj−2k ∪ {−1} do

35. if (i + k) ∈ end-pos(p)
and (i + 2k) ∈ end-pos(p′) then

36. Sj ← Sj ∪ {i + 2k}
37. if k = length(sℓA(p)) + 1
38. then p ← sℓA(p)
39. if (m − 1) ∈ Sj then

40. Output(j)

DAWG-DELTA(q, l, k, c,B)
1. if l = k then

2. l ← l − 1
3. if length(sℓB(q)) = l

4. then q ← sℓB(q)
5. if δB(q, c) = nil then

6. do

7. q ← sℓ∗B(q)
8. while q 6= nil and δB(q, c) = nil

9. if q = nil then

10. l ← 0, q ← rootB
11. else l ← length(q) + 1
12. q ← δB(q, c)
13. else l ← l + 1
14. q ← δB(q, c)
15. return (q, l)

Figure 1. On the left: the M-Sampling algorithm for solving the pattern matching
problem with translocations and inversions. On the right: the DAWG state update
algorithm.

Thus, in both cases, Fki

j−ki
can be computed in constant time, for 1 ≤ i < r.

Therefore, the total complexity for computing all the sets Fki

j−ki
, for i = 1, . . . , r, is

O(α).

Next, to compute the sets Ik
j we use the DAWG A(P r) of P r. Specifically, we

compute the longest reversed factor ending at j and maintain the invariant that the
current state of the automaton never corresponds to factors longer than β, using
algorithm given in Fig. 1 (on the right), as for the computation of the sets Fk

j . Let



44 Proceedings of the Prague Stringology Conference 2010

(qr

j, l
r

j) denote the T -configuration of A(P r) after having read the character of T at
position j, where lrj is the length of the longest reversed factor of P recognized. Then

the sets Ik
j can be computed, for 2 ≤ k ≤ lrj, by

Ik
j = {i | (m − i + k − 2) ∈ end-pos(φ(qr

j, k))} . (2)

Indeed, i ∈ Ik
j iff P [i − k + 1 .. i] = (T [j − k + 1 .. j])r iff

P r[(m − 1) − i .. (m − 1) − (i − k + 1)] = (P [i − k + 1 .. i])r = T [j − k + 1 .. j] .

Thus (2) follows, since the latter is equivalent to (m− i + k − 2) ∈ end-pos(φ(qr

j, k)).
For each k = 1, . . . , lrj, condition (c) of Lemma 2 requires member queries on the

sets Ik
j . As in the case of the sets Fk

j , the set end-pos(φ(qr

j, k)) can be computed in

constant time, in decreasing order of k, by iterating the suffix link on qr

j. Although Ik
j

is not equal to end-pos(φ(qr

j, k)), a member query on Ik
j can still be done in constant

time, using (2).

4 Complexity analysis

We first analyze the worst-case time complexity of the M-Sampling algorithm and
then its average-case complexity. Our analysis assumes that sets are implemented
as bit vectors so that any member query on a set takes constant time. We will also
evaluate the space complexity of the M-Sampling algorithm.

4.1 Worst-case analysis

First of all, observe that the main for-loop at line 6 is always executed n times.
Moreover, observe that |Sj| ≤ m, lj ≤ α, and lrj ≤ β, for all 0 ≤ j < n. For each
iteration of the for-loop at line 23, the amortized cost of the two while-loops at lines
26 and 31 is O(1). Thus, at each iteration of the main for-loop, the for-loop at line 11
takes at most O(m) time while the for-loops at lines 15 and 23 take at most O(mβ)
and O(mα) time respectively. Summing up, the algorithm has a O(nm max(α, β))
worst-case time complexity, which becomes O(nm2)-time when max(α, β) = Θ(m).

4.2 Average-case analysis

Next, we evaluate the average time complexity of the algorithm M-Sampling as-
suming the uniform distribution and independence of characters.

Given integers 1 ≤ α, β ≤ m ≤ n and an alphabet Σ of size σ ≥ 4, for j =
0, 1, . . . , n−1 we consider the following nonnegative random variables over the sample
space of the pairs of strings P, T ∈ Σ∗ of length m and n, respectively:

– X(j) =
Def

the length lj ≤ α of the longest factor of P which is a suffix of Tj,

– Y (j) =
Def

the length lrj ≤ β of the longest factor of P r which is a suffix of Tj,

– Z(j) =
Def

|Sj|, where we recall that Sj = {0 ≤ i ≤ m − 1 | Pi ⊒md Tj}.



D.Cantone et al.: Approximate String Matching Allowing for Inversions and Translocations 45

Then the run-time of a call to the M-Sampling algorithm with parameters
(P, T, α, β) is proportional to

n−1
∑

j=1



Z(j − 1) +

Y (j)
∑

k=2

Z(j − k) +





X(j)
∑

k=1

Z(j − 2k) + X(j)







 , (3)

where the external summation refers to the main for-loop (at line 6), and the three
terms within it take care of the internal for-loops at lines 11, 15, and 23, in that
order.

The average-case complexity of the M-Sampling algorithm is thus the expecta-
tion of (3), which, in view of the linearity of expectation, is equal to

n−1
∑

j=1



E(Z(j − 1)) + E





Y (j)
∑

k=2

Z(j − k)



 + E





X(j)
∑

k=1

Z(j − 2k)



 + E(X(j))



 . (4)

Since
E(X(j)) ≤ E(X(n − 1))
E(Y (j)) ≤ E(Y (n − 1))
E(Z(j)) ≤ E(Z(n − 1)) ,

for 0 ≤ j ≤ n − 1,2 and also

E(X(n − 1)) = E(Y (n − 1)) ,

by putting
X =

Def
X(n − 1) and Z =

Def
Z(n − 1) ,

expression (4) gets bounded from above by

n−1
∑

j=1

(

E(Z) + E

(

X
∑

k=2

Z

)

+ E

(

X
∑

k=1

Z

)

+ E(X)

)

. (5)

For i = 0, . . . ,m − 1, let Zi be the indicator variable

Zi =
Def

{

1 if i ∈ Sn−1

0 otherwise ,

so that

Z =
m−1
∑

i=0

Zi and E(Z2
i ) = E(Zi) = Pr{Pi ⊒md T} .

Likewise, for k = 1, . . . ,m, let Xk be the indicator variable

Xk =
Def

{

1 if X ≥ k

0 otherwise ,

so that

X =
m

∑

k=1

Xk and E(X2
k) = E(Xk) = Pr{X ≥ k} .

2 In fact, for j = m, . . . , n − 1 all inequalities hold as equalities.



46 Proceedings of the Prague Stringology Conference 2010

The we have

X
∑

k=1

Z = XZ =

(

m
∑

k=1

Xk

)

·
(

m−1
∑

i=0

Zi

)

=
m

∑

k=1

m−1
∑

i=0

XkZi .

Therefore

E

(

X
∑

k=2

Z

)

≤ E

(

X
∑

k=1

Z

)

=
m

∑

k=1

m−1
∑

i=0

E(XkZi) ,

yielding the following upper bound for (5):

n−1
∑

j=1

(

E(Z) + 2 ·
m

∑

k=1

m−1
∑

i=0

E(XkZi) + E(X)

)

. (6)

To estimate each of the terms E(XkZi) in (6), we use the well-known Cauchy-
Schwarz inequality which in the context of expectations assumes the form

|E(UV )| ≤
√

E(U2)E(V 2) ,

for any two random variables U and V such that E(U2), E(V 2) and E(UV ) are all
finite.

Then, for 1 ≤ k ≤ m and 0 ≤ i ≤ m − 1, we have

E(XkZi) ≤
√

E(X2
k)E(Z2

i ) =
√

E(Xk)E(Zi) . (7)

From (7), it then follows that (6) is bounded from above by

n−1
∑

j=1

(

E(Z) + 2 ·
m

∑

k=1

m−1
∑

i=0

√

E(Xk)E(Zi) + E(X)

)

=
n−1
∑

j=1

(

E(Z) + 2 ·
(

m
∑

k=1

√

E(Xk)

)

·
(

m−1
∑

i=0

√

E(Zi)

)

+ E(X)

)

. (8)

To better understand (8), we evaluate the expectations E(X) and E(Z) and the

sums
∑m

k=1

√

E(Xk) and
∑m−1

i=0

√

E(Zi). To this purpose, it will be useful to estimate
also the expectations

– E(Xk) = Pr{X ≥ k}, for 1 ≤ k ≤ m, and
– E(Zi) = Pr{Pi ⊒md T}, for 0 ≤ i ≤ m − 1.

Concerning E(Xk) = Pr{X ≥ k}, we reason as follows. Since T [n − k .. n − 1]
ranges uniformly over a collection of σk strings and there can be at most min(σk,m−
k + 1) distinct factors of length k in P , the probability Pr{X ≥ k} that one of them
matches T [n−k .. n−1] is at most min

(

1, m−k+1
σk

)

, so that, for k = 1, . . . ,m, we have

E(Xk) ≤ min

(

1,
m − k + 1

σk

)

. (9)

Then, in view of (9), we have:

E(X) =
m

∑

i=0

i · Pr{X = i} =
m

∑

i=1

Pr{X ≥ i} ≤
m

∑

i=1

min

(

1,
m − i + 1

σi

)

. (10)



D.Cantone et al.: Approximate String Matching Allowing for Inversions and Translocations 47

Let k be the smallest integer 1 ≤ k < m such that m−k+1
σk < 1. Then from (10) we

have

E(X) ≤
k−1
∑

i=1

1 +
m

∑

i=k

m − i + 1

σi
≤ k − 1 + (m − k + 1)

m
∑

i=k

1

σi

< k − 1 +
σ

σ − 1
· m − k + 1

σk
< k − 1 +

σ

σ − 1
< k + 1 .

(11)

Since m−(k+1)+1

σk+1
≥ 1, then σk+1 ≤ m − (k + 1) + 1 ≤ m − 1, so that

k + 1 < logσ m . (12)

From (11) and (12), we obtain

E(X) < logσ m . (13)

Likewise, from (9) and (12) we have

m
∑

k=1

√

E(Xk) ≤
m

∑

k=1

√

min

(

1,
m − k + 1

σk

)

=
k−1
∑

k=1

1 +
m

∑

k=k

√

m − k + 1

σk

≤ k − 1 +
√

m − k + 1 ·
m

∑

k=k

1√
σk

< k − 1 +

√
σ√

σ − 1
·

√

m − k + 1

σk
(14)

< k − 1 +

√
σ√

σ − 1
≤ k + 1 < logσ m ,

where k is defined as above.
Next we estimate E(Zi) = Pr{Pi ⊒md T}, for 0 ≤ i ≤ m − 1.
Let us denote by µ(i) the number of distinct strings which have an md-match

with a given string of length i and whose characters are pairwise distinct. Then

Pr{Pi ⊒md T} ≤ µ(i + 1)

σi+1
.

From the recursion
{

µ(0) = 1

µ(k + 1) =
∑k

h=0 µ(h) +
∑⌊ k−1

2
⌋

h=1 µ(k − 2h − 1) (for k ≥ 0) ,

it is not hard to see that µ(i + 1) ≤ 3i, for i = 0, 1, . . . ,m − 1, so that we have

E(Zi) = Pr{Pi ⊒md T} ≤ 3i

σi+1
. (15)

Then, concerning E(Z), from (15) we have

E(Z) = E

(

m−1
∑

i=0

Zi

)

=
m−1
∑

i=0

E(Zi) ≤
m−1
∑

i=0

3i

σi+1
<

1

σ
· 1

1 − 3
σ

=
1

σ − 3
≤ 1 (16)

(we recall that we have assumed σ ≥ 4).



48 Proceedings of the Prague Stringology Conference 2010

Likewise, from (15) we have

m−1
∑

i=0

√

E(Zi) ≤
m−1
∑

i=0

√

3i

σi+1
<

1√
σ
· 1

1 −
√

3
σ

=
1

√
σ −

√
3

< 4 . (17)

From (16), (13), (14), and (17), it then follows that (8) is bounded from above by

(n − 1) · (9 logσ m + 1) ,

yielding a O(n logσ m) average-time complexity for the M-Sampling algorithm.

4.3 Space complexity

In order to evaluate the space complexity of the M-Sampling algorithm, we observe
that in the worst case, during the j-th iteration of its main for-loop, the sets Fk

j−k

and Sj−2k, for 1 ≤ k ≤ α, must be kept in memory to handle translocations, as
well as the sets Sj−k, for 2 ≤ k ≤ β, to handle inversions. However, as explained
before, we do not keep the values of Fk

j−k explicitly but rather we maintain only their
corresponding T -configurations of the automaton A(P ). Thus, we need O(α)-space
for the last α configurations of the automaton and O(m max(α, β))-space to keep
the last max(2α, β) values of the sets Sj−k, considering the maximum cardinality of
each set is m. Observe also that, although the size of the DAWG is linear in m, the
end–pos(·) function can require O(m2)-space. Therefore, the total space complexity
of the M-Sampling algorithm is O(m2).

5 Experimental evaluation

In this section we present some experimental results which allow to compare in terms
of running times the M-Sampling algorithm, based on the DAWG approach, against
its direct dynamic programming implementation. We have also included in our com-
parison the variant BPM-Sampling of the M-Sampling algorithm, based on the
bit-parallelism technique [2], which is briefly described in Appendix A.

We remark that sets have been implemented as bit vectors also in the first two
algorithms, so that member and insert operations can be performed in constant time.

Iteration over the elements of a set represented as a bit vector can then be imple-
mented efficiently in time proportional to its cardinality by repeatedly

(a) extracting the lowest bit set,
(b) computing its index, and
(c) masking it, until there are no more bits set.

Observe also that the index of the lowest bit set of a word x can be computed
very efficiently by the operation

⌊log2(x & (∼x + 1))⌋ ,

where & and ∼ stand respectively for the bitwise and and the bitwise complementa-
tion.

In the BPM-Sampling algorithm, bitwise operations have a Θ(⌈m/w⌉) complex-
ity, since they have to update ⌈m/w⌉ words. Instead, in the M-Sampling algorithm



D.Cantone et al.: Approximate String Matching Allowing for Inversions and Translocations 49

the corresponding operations have a Θ(⌈m/w⌉ + |Sj|) complexity, because, for each
word of the bit vector that encodes Sj, it iterates over all the bits set (|Sj| in total).
Since, on average, the sets Sj contain only a few elements, the average complexity of
iterating over all the elements of a set is O(⌈m/w⌉).

All algorithms have been implemented in the C programming language and
have been compiled with the GNU C Compiler, using the optimization options -O2

-fno-guess-branch-probability. The tests have been performed on a 1.5 GHz
PowerPC G4 with a computer word of size 32 and running times have been mea-
sured with a hardware cycle counter, available on modern CPUs.

As input files, we used a genome sequence of 4, 638, 690 base pairs of Escherichia
coli [1] and a protein sequence from the Saccharomyces cerevisiae genome [9].

For each input file, we have generated sets of 50 patterns of fixed length m,
randomly extracted from the text, for m ranging in the set {8, 16, 32, 64, 128, 256,
512}. For each set of patterns, we have calculated the mean over the running times
of the 50 runs.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 100  200  300  400  500

tim
e 

in
 m

ill
is

ec
on

ds

pattern length

Naive implementation
M-Sampling

BPM-Sampling

m M-S BPM-S

8 740.82 402.26

16 911.21 503.96

32 1068.46 615.47

64 1473.12 1462.29
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 100  200  300  400  500

tim
e 

in
 m

ill
is

ec
on

ds

pattern length

Naive implementation
M-Sampling

BPM-Sampling

m M-S BPM-S

8 247.00 141.53

16 273.77 162.10

32 294.60 183.24

64 379.26 385.60

Figure 2. Experimental results relative to a genome sequence of Escherichia coli with
σ = 4 (on the left) and to a protein sequence of the Saccharomyces cerevisiae genome
with σ = 20 (on the right). To ease comparison of the M-Sampling algorithm (M-S)
and the BPM-Sampling algorithm (BPM-S) for small values of m, we have also
tabulated their running times.

As can be seen from the plots in Figure 2, the M-Sampling algorithm is con-
siderably faster than its naive implementation. Indeed, even if their asymptotic time
complexity is the same, the hidden constant in the naive implementation, due to the
explicit computation of the sets Fk

j and Ik
j , is quite large. In our experiment with a

computer word of size 32, it turns out that the BPM-Sampling algorithm is faster
than the M-Sampling algorithm only for m ≤ 32, as can be observed by looking at
the running times (in milliseconds) reported in the tables. As explained above, the
complexity of the bitwise operations, on average, is the same for both algorithms.
However, the M-Sampling algorithm scales better because it requires fewer bitwise
operations. Finally, observe that the rate of growth of the M-Sampling and the
BPM-Sampling aglorithm matches the average O(n logσ m)-time complexity esti-
mated in Section 4.2 under the assumptions of equiprobability and independence of
characters.



50 Proceedings of the Prague Stringology Conference 2010

6 Conclusions

In this paper we have presented an algorithm, based on the dynamic programming
paradigm, to solve the pattern matching problem under a string distance which al-
lows translocations of equal length adjacent factors and inversions of factors. Our
algorithm, named M-Sampling, has a worst-case O(nm max(α, β))-time and O(m2)-
space complexity, where α and β are respectively the bounds on the maximum length
of any factor involved in a translocation and in an inversion. Moreover, we have
shown that under the assumption of equiprobability and independence of characters,
the M-Sampling algorithm has a O(n logσ m) average-time complexity. Finally, in
the appendix we have also briefly described an efficient implementation of the M-

Sampling algorithm based on the bit-parallelism technique, which achieves a worst-
case O(n⌈m/w⌉max(α, β))-time and O(σ⌈m/w⌉ + m⌈m/w⌉)-space complexity.

We are currently investigating how to extend our approach to handle efficiently
also translocations of factors which are not necessarily adjacent or of equal length
and how to to compute the minimum cost, when the weights are either unitary or
generic.

Acknowledgements

The authors wish to thank Paul Doukhan and Salvatore Ingrassia for helpful sugges-
tions.

References

1. R. Arnold and T. Bell: A corpus for the evaluation of lossless compression algorithms, in
DCC’97: Proceedings of the Conference on Data Compression, Washington, DC, USA, 1997,
IEEE Computer Society, http://corpus.canterbury.ac.nz/.

2. R. Baeza-Yates and G. H. Gonnet: A new approach to text searching. Commun. ACM,
35(10) 1992.

3. A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, M. T. Chen, and J. Seiferas:
The smallest automaton recognizing the subwords of a text. Theor. Comput. Sci., 40(1) 1985,
pp. 31–55.

4. M. Crochemore: Transducers and repetitions. Theor. Comput. Sci., 45(1) 1986, pp. 63–86.
5. M. Crochemore and W. Rytter: Text algorithms, Oxford University Press, 1994.
6. F. J. Damerau: A technique for computer detection and correction of spelling errors. Commun.

ACM, 7(3) 1964, pp. 171–176.
7. V. I. Levenshtein: Binary codes capable of correcting deletions, insertions and reversals. Sov.

Phys. Dokl., 10 1966, pp. 707–710.
8. G. Navarro: A guided tour to approximate string matching. ACM Comp. Surv., 33(1) 2001,

pp. 31–88.
9. C. G. Nevill-Manning and I. H. Witten: Protein is incompressible, in DCC’99: Proceedings

of the Conference on Data Compression, Washington, DC, USA, 1999, IEEE Computer Society,
http://data-compression.info/Corpora/ProteinCorpus/.

10. E. Ukkonen: Approximate string-matching with q-grams and maximal matches. Theor. Com-
put. Sci., 92(1) 1992.

11. E. Ukkonen and D. Wood: Approximate string matching with suffix automata. Algorithmica,
10(5) 1993.



D.Cantone et al.: Approximate String Matching Allowing for Inversions and Translocations 51

A A bit-parallel implementation

In this appendix we present an efficient simulation of the M-Sampling algorithm
based on the bit-parallelism technique [2]. The bit-parallelism technique takes advan-
tage of the intrinsic parallelism of the bit operations inside a computer word, allowing
to cut down the number of operations that an algorithm performs by a factor of at
most w, where w is the number of bits in the computer word. All sets are represented
by vectors of m bits, where m is the length of the pattern. The i-th bit of a vector
is set to 1 if the element i belongs to the corresponding set, 0 otherwise. Note that
if m ≤ w, a whole vector fits into a single computer word, whereas if m > w then
⌈m/w⌉ computer words are needed to represent each set.

In the following we denote with & the bitwise and, with | the bitwise or, and with
≪ the shift-to-left operator.

We associate to each node of the DAWG a bit vector pos. For each node q of the
DAWG of P , pos(q) encodes the end-pos function, while, for each node q of the DAWG
of P r, pos(q) encodes the starting positions in P of the reversed factors represented
by the node, i.e. {(m − 1 − i) | i ∈ end-pos(q)}.

The bit-vectors Fk
j and Ikj , corresponding to Fk

j and Ik
j respectively, can be com-

puted by the following assignments:

Fk
j ← pos(φ(qj, k))
Ikj ← pos(φ(qr

j, k)) ≪ (k − 1) .

Each set Sj is mapped into a corresponding bit-vector Sj. Finally, for each char-
acter c of the alphabet Σ, a bit mask B[c], representing the positions of c in P , is
maintained.

The algorithm scans T from left to right and, for each position j ≥ 0, it computes
the vector Sj in terms of Sj−1, of Sj−2k, Fk

j−k, and Fk
j , for 1 ≤ k ≤ lj, and of Sj−k and

Ikj for 1 ≤ k ≤ lrj, with the following bitwise operations:

Sj ← ((Sj−1 ≪ 1) | 1) & B[T [j]]
Sj ← Sj | ((((Sj−2k ≪ k) | (1 ≪ (k − 1))) & Fk

j ) ≪ k) & Fk
j−k

Sj ← Sj | (((Sj−k ≪ k) | (1 ≪ (k − 1))) & Ikj ) ,

corresponding respectively to the relations:

Sj = {i + 1 : i ∈ Sj−1 ∪ {−1} ∧ P [i] = T [j]}
Sj = Sj ∪ {i + 2k : i ∈ Sj−2k ∪ {−1} ∧ (i + k) ∈ Fk

j ∧ (i + 2k) ∈ Fk
j−k}

Sj = Sj ∪ {i + k : i ∈ Sj−k ∪ {−1} ∧ (i + k) ∈ Ik
j } .

During the j-th iteration, if the m-th bit of Sj is set to 1, i.e., if Sj & 10m−1 6= 0m, a
match at position j is reported.

The resulting algorithm has a O(n max(α, β)⌈m/w⌉) worst-case time complexity
and a O((m+σ)⌈m/w⌉)-space complexity, where σ is the size of the alphabet. When
the length of the pattern satisfies m ≤ w, the worst-case time and space complexity
become O(n max(α, β)) and O(σ + m), respectively.


