Reactive Links to Save Automata States

Maxime Crochemore and Dov M. Gabbay

King’s College London

Abstract. The goal of the reactive automata model is to reduce the space required
for the implementation of automata. A reactive automaton has extra links whose role
is to change the behaviour of the whole automaton. These links do not increase their
expressiveness. Typical examples of regular expressions associated with deterministic
automata of exponential size according to the length of the expression show that reac-
tive links provide an alternative representation of total linear size.

Keywords: automaton, language representation, reactivity.

1 Introduction and background

This note introduces the notion of reaction for automata and shows that using reactive
links can reduce dramatically the number of states of an automaton. Within this
framework some examples of state reduction are striking.

The basic use of automata is for testing if a word belongs to a regular language
(membership testing). It can be done either on a regular describing the language or
with an automaton, which is equivalent due to Kleene’s Theorem (see for example
[5]). When the automaton is deterministic the acceptance of a word of length m can
be tested in linear time using O(kn) space, where k is the size of the alphabet and
n the number of states of the automaton. If the automaton is non deterministic the
alternative is to simulate an equivalent deterministic automaton or to transform it into
a deterministic automaton. The first option leads to O(mn) membership time with
space proportional to that of the non-deterministic automaton. The second option
yields linear membership but at the cost of the determinisation which can be time
and space exponential in the number of states. For related algorithms, see [1] or [€]
and references therein. Both solutions are indeed implemented in the many variants
of grep software aimed at locating regular motifs in texts. See also [7] for extra
implementations and applications.

The notion of reactive automata was introduced in [B] and [4], as part of a general
reactive methodology. The basic idea is that a reactive system is a system that dy-
namically changes during its execution as a reaction to the manner it is being utilised.
A reactive system has to be distinguished from a time-dependent system as it is not
dependent on an objective clock.

Reactive automaton Figure 1, displays an example of a reactive automaton. Consider
the automaton (ii), which has one state i. The transition is indicated as above by
the single-head arrow and reactivity by the double-head arrow. For simplicity we
assume we have only one letter a. Assume 7 is the initial state as well as the terminal
state. Upon receiving a letter a the machine stays at ¢, and can accept or continue.
The status of ¢ as a terminal state is then cancelled by the reactive arrow. Upon
receiving a second letter a the machine cannot accept anymore the word aa as ¢ is
no longer a terminal state. Instead if the machine receives a third letter a state i is
reactivated as a terminal state and the machine can accept the word a®. Obviously

Maxime Crochemore, Dov M. Gabbay: Reactive Links to Save Automata States, pp. 1-8 .
Proceedings of PSC 2010, Jan Holub and Jan Zdarek (Eds.), ISBN 978-80-01-04597-8 (© Czech Technical University in Prague, Czech Republic

2 Proceedings of the Prague Stringology Conference 2010

(i) (i)

Figure 1. Two reactive automata accepting the language a®"*1. All arcs are initially
active. (i) The automaton uses a reactive edge-to-edge link to cancel or activate the
arc from the initial state ¢ to the terminal state ¢. (ii) The automaton uses a reactive
edge-to-state link to flip the status of state ¢ alternately as terminal and non terminal.

this reactive automaton accepts words of the form a?"**, n > 0, only. To implement

such an acceptor without reactivity we would need more states (at least two for this
example).

In the next section we define the notion of a reactive automaton and show in
Section B that the expressive power of automata is unchanged by adding reactive
links. In Section 4 we state the reduction power of reactive links. Examples of reactive
automata given in Section § have only a linear number of reactive links while they
are logarithmically smaller than the minimal automata associated with their accepted
language. Some remarks and open questions are stated in the conclusion.

2 Reactive automata

We formally define reactive automata starting with the notion of reactive transfor-
mation assuming the reader has some knowledge of automata definition.

Definition 1 (Switch Reactive Transformation). Let R C S x X' x S be the
transition relation of an (ordinary) automaton A. Let Tt, T~ be two subsets of
(S x X x8S)x (SxXxS); they are composed of pairs of the form ((p,o,q), (r,T,s))
where o,7 € X, p,q,r,s € S, and (p,0,q) € R.

We define a transformation (p,o,q) — R®%9 for (p,o,q) € R using the sets
T* and T~ as follows:
RPo9) = (R\ {(r,7,s) | (r,7,8) € R and ((p,0,q), (r,7,5)) € T~})

U{(r,7,s) | (r,7,s) € R and ((p,0,q), (r,7,s)) € T*}

Definition 2 (Switch Reactive Automaton).

1. A reactive automaton is an ordinary non-deterministic automaton with a switch
reactive transformation, i.e. a triple R = (A, TT,T™) which defines the switch
reactive transformation above.

2. Let o109---0, be a word on the alphabet X. We define the notion of a (non-
deterministic) run of R over o0y ---0,. The run is a sequence of pairs (px, R),
k=0,...,n, defined as follows:

Step 0. We start with the pair (po, Ro) = (i, R) from the automaton A =
(S,i, X, F,R).

Step k > 0. Assume pairs (po, Ro), (p1, R1), - -, (pr—1, Rx_1) have been defined as
the result of a run over o0y -+ - ox_1. Then, state py is such that (pg_1, 0k, Pr) €

Ry and R, = R](Cp_klflyak’pk).

Maxime Crochemore and Dov M. Gabbay: Reactive Links to Save Automata States 3

Figure 2. Reactive automaton on the alphabet A = {a, b, c} accepting the language
A*aA"c. The automaton is deterministic. Any a-transition activates a c-arc from its
origin state to the centre, which is the only terminal state. Any b-transition switches
off such an arc. If a run over a word stops in the terminal state (the last step is a
c-transition), the (n + 1)th letter before the end of the word must be a, so the word
belongs to the language, and conversely.

3. We say that the reactive automaton R accepts the word oy049--- 0, if there is a
run of the automaton over this word that ends with p, € F.

Figure 2 shows a reactive automaton that changes its arcs going to the unique
terminal state. The automaton is deterministic and has linear size, O(n). The au-
tomaton accepts the language A*aA"c over the alphabet A = {a,b, c}. It is known
that the minimal deterministic (ordinary) automaton accepting the same language
has 2"t! + 1 states (see [3]).

Figure 3. Reactive deterministic automaton on the alphabet A = {a,b} accepting
the language A*aA" similar to the language of the automaton of Figure 2. Initially, the
automaton has no terminal state and it uses edge-to-state reaction. Any a-transition
makes its starting state a terminal state. Any b-transition transforms its starting
state into a non-terminal state. If the run over a word stops in a terminal state, since
the state has been set as a terminal state by an a-transition on the nth letter before,
the word belongs to the language, and conversely.

The definitions extend to accommodate edge-to-state reaction. For example, Fig-
ure § shows another reactive automaton which changes its terminal states only and

4 Proceedings of the Prague Stringology Conference 2010

accepts a language similar to that of Figure 2. The definition of a reactive automaton
changing its terminal states is a simple adaptation of the above definition. Changing
terminal states can be simulated in the model of switch reactive automata as follows
without altering the possible determinism: all potential terminal states are made non
terminal and linked by an e-arc to a unique terminal node; reactive links to states
are redirected to the new e-arcs.

3 Reactivity and non-reactivity

We focus on switch reactive automata and show that their expressive power is identical
to the one of ordinary automata. The proof can be adapted to automata with the
various types of reactive links described in previous sections.

Theorem 3. Any switch reactive deterministic or non-deterministic automaton is
equivalent to an (ordinary) deterministic or non-deterministic automaton, respec-
tively.

Proof. Let R = (A, T*, T). We define the automaton B = (S, (i, R), X, F, }A%) whose
set of states S is composed of pairs of the form (x,R') where x € S and R’ is
related to R via the switch reactive transformation using T* and T~. The transition
relation R of B is defined using T+ and T~ as follows: ((z1, Ry), 0, (2, Ry)) € R iff
(x1,0,29) € Ry and Ry = Rﬁ“’”’“). Then B = (g,i, M F, R)

It is straightforward to see that a run of R on o105 - - - g, corresponds to a run of
B on the same word and vice versa. O

Remark We saw that a switch reactive automaton actually starts as an ordinary au-
tomaton A = (5,4, F, R) and then changes into different automata while receiving
the input. The proof extends to Reactive Automata with state-to-state or edge-to-
state reactive links. Therefore, changes can either affect the transition relation or the
terminal states as shown on the previous examples.

4 Saving states of automata using reactive links

Reactive links can be used to reduce the number of states of (ordinary) automata.
We state the fundamental results for deterministic and non-deterministic automata.

Theorem 4. Any automaton A with kn states admits an equivalent reactive automa-
ton R(A) with k +n states. If A is deterministic, so is R(A).

The construction in the proof of the above theorem cannot be iterated to reduce
further the number of states.

Using higher levels of reactive links (e.g. reactive links from arc to reactive links)
the next statement holds. As above the construction in the proof cannot be iterated.

Theorem 5. If A is deterministic automaton with k™ states, it has an equivalent
reactive automaton R(A) with k - n states.

Maxime Crochemore and Dov M. Gabbay: Reactive Links to Save Automata States 5)

5 Examples in size reduction

The use of reactive links in automata can dramatically reduce the size of a deter-
ministic automaton accepting a given regular language. The two previous sections
show that this is possible for deterministic as well as non-deterministic automata but
with a large number of reactive arcs. Instead, in the next examples, reactivity keeps
the total size of automata as small as the size of their non-deterministic equivalent
but without loosing determinism. In these examples determinism without reactivity
leads to an exponential blow up of the number of states and then of the total size of
automata.

Figure 4. Two deterministic reactive automata accepting the set of strings in which
each letter of the alphabet {aj,as,...,a;} appears at most once. All loop arcs are
initially active. Loops on state i are made inactive after their first use. (i) Incomplete
version. (ii) Complete version: only arcs from i to s are initially inactive and become
active after the first use of their corresponding loop on state 1.

Figure 5. A deterministic reactive automaton accepting the set of strings that are
permutations of the letters aj, as,...,a;. All loops on the initial state are initially
active and other e-arcs are inactive. One reactive link for letter a; cancels its respective
loop while the second activates its associated e-arc.

The first example corresponds to the finite language of words in which each letter
of the alphabet appears at most once (see Figure 4). Its principle is that loops on
the initial state are cancelled by a reactive link immediately after being used. States
of a deterministic automaton for the language have to store the set of letters already
treated and therefore the minimal automaton has at least an exponential number of
states. Instead the total size of the reactive automaton accepting the language is O (k)
on a k-letter alphabet.

The automaton of Figure § accepts all the k! permutations of letters. To do that we
add a path of length k from the initial state to the unique terminal state. Compared
with the automaton of the previous example, the aim is to count the number of
letters treated on the initial state. Each loop on the initial state has an additional
reactive link that activates its associated e-arc on the path. So, the terminal state can

6 Proceedings of the Prague Stringology Conference 2010

be reached only if all e-arc are activated. We view the automaton as deterministic
because its light non-determinism due to e-arcs can be remove by considering a special
symbol marking the end of words. The size of the reactive automaton is O(k), which
contrasts with the O(2*) size of the minimal automaton accepting the language.

Figure 6. Non-deterministic automaton on the alphabet A = {a, b} accepting the
language A*aA™. Its equivalent reactive automata of Figures 2 and 3 have sizes of the
same order.

The language A*aA” is accepted by the non-deterministic automaton of Figure §
that has n+ 2 states and O(n) total size. The non-determinism appears on the initial
state only. It is known that the minimal deterministic automaton accepting the same
language has 2" states (see [fj]) and then also O(2") total size, while the equivalent
reactive automaton of Figure 2 has only also n + 2 states. It is noticeable that it has
O(n) total size despite the addition of reactive links.

Figure 7. Non-deterministic automaton on the alphabet A = {a, b} accepting the
language AS"(aA™)*. All states are initial states.

The last remarkable example concerns the language AS"(aA™)* on the alphabet
A = {a,b}. Figure 7 displays a non-deterministic automaton accepting it. It is non-
deterministic because all its n+1 states are initial states. Figure § shows an equivalent
reactive automaton, which, as above, may be considered as deterministic since e-arcs
are useful only at the end of the input word. Reactive links are from b-transitions and
cancel their associated e-arc to the terminal state. The number of states is n + 2 and
the total size is O(n). This is to be compared with the result of Béal et al. [2], which
shows that the minimal deterministic automaton for this language has an exponential
number of states.

Maxime Crochemore and Dov M. Gabbay: Reactive Links to Save Automata States 7

Figure 8. Reactive deterministic automaton on the alphabet A = {a,b} accepting
the same language AS"(aA™)* as the automaton of Figure 7. It has only one terminal
state in the center. During a run, at least one e-arc remains if some positions of letter
a in the input word form a non extendible arithmetic progression of period n. The
automaton has only one more state and twice as many arcs as the automaton of
Figure .

6 Conclusion

The strength of reactive links in automata comes essentially from the reduction of
the size of their implementation. Designing a non-deterministic automaton to solve a
Pattern Matching question leads to slow algorithms requiring extra work to be imple-
mented. Instead, the use of reactive links can turn a non-deterministic automaton into
a deterministic Pattern Matching machine. This has two simultaneous advantages:
little effort at implementation and efficient running time since the basic operation
required when parsing a stream of data with an automaton is table lookup to change
state, which avoids any other more time demanding low or high level instruction.

Open question In some sense, reactivity competes with non-determinism to get small
automata accepting a given language, although they are not antagonist concepts.
Because despite results of Section 4 showing that reactivity reduces significantly the
number of states of automata, the solution requires in general a large number of extra
links. But the significant examples of Section B raise our hope that this number can
indeed be fairly small.

This note leaves open the question of whether, given a language described by a
regular expression of size r, there is a reactive deterministic automaton of size O(r)
accepting it.

References

1. A. V. AHo: Algorithms for finding patterns in strings, in Handbook of Theoretical Computer
Science, Volume A: Algorithms and Complexity (A), MIT Press, 1990, pp. 255-300.

2. M.-P. BEAL, M. CROCHEMORE, F. MIcNoOSI, A. RESTIVO, AND M. SCIORTINO: Computing
forbidden words of regular languages. Fundamenta Informaticae, 56(1,2) 2003, pp. 121-135.

3. D. M. GABBAY: Reactive Kripke semantics and arc accessibility, in Combinatorial Logic,
W. Carnielli, F. M. Dionesio, and P. Mateus, eds., Centre of Logic and Computation, University
of Lisbon, 2004, pp. 7—20.

4. D. M. GABBAY: Reactive Kripke semantics and arc accessibility, in Pillars of Computer Science:
Essays dedicated to Boris (Boaz) Trakhtenbrot on the occasion of his 85th birthday, A. Avron,
N. Dershowitz, and A. Rabinovitch, eds., vol. 4800 of LNCS, Springer-Verlag, Berlin, 2008,
pp. 292-341.

8 Proceedings of the Prague Stringology Conference 2010

5. J. E. HOPCROFT, R. MOTWANI, AND J. D. ULLMAN: Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, third edition ed., 2006.

6. M. LOTHAIRE, ed., Applied Combinatorics on Words, Cambridge University Press, 2005.

7. G. NAVARRO AND M. RAFFINOT: Flexible Pattern Matching in Strings—Practical on-line search
algorithms for texts and biological sequences, Cambridge University Press, 2002.

