
Parallel algorithms for degenerate and weighted

sequences derived from high throughput

sequencing technologies

Costas S. Iliopoulos1,2, Mirka Miller1,3,4, and Solon P. Pissis1

1 Dept. of Computer Science, King’s College London, London WC2R 2LS, England
csi@dcs.kcl.ac.uk, solon.pissis@kcl.ac.uk

2 Digital Ecosystems & Business Intelligence Institute, Curtin University, GPO Box U1987
Perth WA 6845, Australia

3 School of Electrical Engineering and Computer Science, The University of Newcastle
Callaghan NSW 2308, Australia

4 Dept. of Mathematics, University of West Bohemia, Pilsen, Czech Republic
mirka.miller@newcastle.edu.au

Abstract. Novel high throughput sequencing technologies have redefined the way
genome sequencing is performed. They are able to produce millions of short sequences
in a single experiment and with a much lower cost than previous methods. In this
paper, we address the problem of efficiently mapping and classifying millions of de-
generate and weighted sequences to a reference genome, based on whether they occur
exactly once in the genome or not, and by taking into consideration probability scores.
In particular, we design parallel algorithms for Massive Exact and Approximate Unique

Pattern Matching for degenerate and weighted sequences derived from high throughput
sequencing technologies.

Keywords: parallel algorithms, string algorithms, high throughput sequencing tech-
nologies

1 Introduction

The computational biology applications that have been developed for decades are
strongly related to the technology that generates the data they consider. The algo-
rithms, and the application parameters, are tuned in such a way that they abolished
intrinsic limitations of the technology. As an example, the length of the data to be
processed, or the quality/error rate that accompanies this data, are crucial elements
that are considered for choosing the appropriate data structure for preprocessing,
storing, analyzing, and comparing sequences. Moreover, the way solutions are im-
proved reflects both computer science and biotechnology advances.

Among the large number of equipment that produce data, the DNA sequencers
play a central role. DNA sequencing is the generic term for all biochemical methods
that determine the order of the nucleotide bases in a DNA sequence. It consists of
obtaining (generally relatively short) fragments of a DNA sequence (typically less
than a thousand bp - base pair). The Sanger sequencing method [17,18] has been the
workhorse technology for DNA sequencing for almost 30 years. It has been slowly
replaced by technologies that used different colored fluorescent dyes [16,22] and poly-
acrylamide gels. Later, the gels were replaced by capillaries, increasing the length of
individual obtained fragments from 450 to 850 bp. Despite the many technological
advances, obtaining the complete sequence of a genome was carried out in very large

Costas S. Iliopoulos, Mirka Miller, Solon P. Pissis: Parallel algorithms for degenerate and weighted sequences derived from high throughput sequencing

technologies, pp. 249–262.

Proceedings of PSC 2009, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04403-2 c© Czech Technical University in Prague, Czech Republic

250 Proceedings of the Prague Stringology Conference 2009

dedicated “sequencing factories”, which require hundreds of automatic sequencers
using highly automated pipelines.

Along the years, sophisticated algorithms have been developed for assembling
whole genomes, from a simple bacterial genome [6] to the human genome [7]. These
algorithms were following the progress of the sequencing technologies, and were fully
taking into account all the biases introduced by the equipment.

Very recent advances, based either on sequencing-by-synthesis (SBS) or on hy-
bridization and ligation, are producing millions of short reads overnight. Depending
on the technology (454 Life Science, Solexa/Illumina or Polony Sequencing, to name
a few), the size of the fragments can range from a dozen of base pairs to several
hundreds.

These high throughput sequencing technologies have the potential to assemble a
bacterial genome during a single experiment and at a moderate cost [8] and are aimed
in sequencing DNA genomic sequences. One such technology, PyrosequencingTM, mas-
sively parallelises the sequencing via microchip sensors and nanofluids, and it produces
reads that are approximately 200 bp long, and may not improve beyond 300 bp in
the near future [24]. In contrast, the technology developed by the Solexa/Illumina [2],
generates millions of very short mate-pair reads ranging from 25 [26] to 50 [8] bp long,
although in the future this number may be increased to 75. The results of these new
technologies mark the beginning of a new era of high throughput short read sequenc-
ing that moves away form the traditional Sanger methods. The common denominator
of these technologies is the fact that they are able to produce a massive amount of
relatively short reads. Due to this massive amount of data generated by the above
systems, efficient algorithms for mapping short sequences to a reference genome are
in great demand.

Popular alignment programs like BLAST or BLAT are not successful because they
focus on the alignment of fewer and longer sequences [11]. Recently, a new thread of
applications addressing the short sequences mapping problem has been devised for
this particular objective. These applications are based on the pigeonhole principle,
and make use of hashing and short key indexing techniques.

ELAND is the mapping algorithm developed as part of the Illumina pipeline. It
is optimized to map very short reads of 20 − 32 bp ignoring additional bases when
the reads are longer, whilst allowing at most two mismatches between the read and
the genomic sequence [21]. SOAP [14] supports multi-threaded parallel computing
and allows up to two mismatches, or a gap of 1-3 bp without any other mismatch.
SeqMap [11] allows up to 5 mixed mismatches and inserted/deleted nucleotides in
mapping.

RMAP [21] and MAQ [13] are ungapped mapping programs, which take read
qualities, base position probabilities, and mate-pair information into account. Their
strategies resemble the strategies developed by Ewing et al. in [5], where at each
position of the reads a quality score is assigned, which encodes the probability that
the base at that position is either rightly or wrongly positioned.

The last two applications show the necessity for a measure of accuracy concern-
ing the mapping methods. Accuracy can be quantified in terms of sensitivity and
specificity. Possible causes of limitations in the accuracy of these experiments include
sequencing errors arising from any part of the high throughput experiment, variation
between sampled genome that generated the reads and the reference genome, as well
as ambiguities caused by repeats in the reference genome [21].

C. S. Iliopoulos, M. Miller, S. P. Pissis: Parallel algorithms for degenerate and. . . 251

Therefore, the limitations of the equipment used, or the natural polymorphisms
that can be observed between individual samples can give rise to uncertain sequences,
where in some positions more than one nucleotide can be present. These sequences,
where more than one base are possible in certain positions, are called degenerate or
indeterminate sequences.

Figure 1 presents the sequence logo of a degenerate DNA sequence, which is the
consensus DNA sequence derived from different reads at the same location. In this
consensus degenerate sequence, one can note that in some positions more than one
base occurs, and in fact all bases (A,C,G, T in the case of DNA sequences) may
occur.

Figure 1. A sequence logo of a biological degenerate sequence. Picture taken from
[19].

Degenerate string pattern matching has mainly been handled by bit mapping tech-
niques (Shift-Or method) [1,28]. These techniques have been used to find matches
for a degenerate pattern in a string [9], and the agrep utility [27] has been virtually
one of the few practical algorithms available for degenerate pattern matching.

Very often, each position of a sequence is accompanied by probabilities of each
base occuring in the specific position. In the case of the high throughput experiments,
these quality scores, which accompany the raw sequence data, describe the confidence
of bases in each read [21]. The sequencing quality scores assign a probability to the
four possible nucleotides for each sequenced base. Bases with low quality scores are
more likely to be sequencing errors. These sequences, where the probability of every
symbol’s occurrence at every location is given, are called weighted sequences.

Weighted sequences are also used to represent relatively short sequences such as
binding sites, as well as long sequences such as protein families profiles [3]. Addi-
tionally, they have been used to represent complete chromosome sequences that were
obtained using the traditional method of whole-genome shotgun strategy.

In this paper, we present parallel algorithms for addressing the problem of effi-
ciently mapping uniquely occuring short reads to a reference genome. In particular,
we design parallel algorithms for Massive Exact and Approximate Unique Pattern

Matching for degenerate and weighted sequences derived from high throughput se-

252 Proceedings of the Prague Stringology Conference 2009

quencing technologies. Our approach differs from the above mapping programs in
three key points:

– it preprocesses the genomic sequence based on the reads length, by using word-
level parallelism, before mapping the reads to it. This provides efficiency to the
method.

– it does not index and hash the reads, but instead it converts each read to a unique
arithmetic value. This results to a much higher sensitivity in terms of the number
of reads perfectly mapped to the reference genome.

– it directly classifies the mapped reads into unique and duplicate matches, i.e. into
reads that occur exactly once in the genome and into reads that occur more than
once. The uniqueness of a mapped read guarantees an adequate placement on the
sequence, and provides anchors that will be used for placing mate-pair reads, and
other connected reads as well. It also identifies something that is totally region
specific, while most of the genome is repetitive.

The rest of the paper is structured as follows. In Section 2, we present the prelimi-
naries. In Section 3, we define the problem of Massive Exact and Approximate Unique
Pattern Matching for degenerate and weighted sequences. In Section 4 and Section
5, we present the parallel algorithms for solving the exact and the approximate case,
respectively. Finally, we briefly conclude with some future work in Section 6.

2 Preliminaries

A string is a sequence of zero or more symbols from an alphabet Σ. The set of all
strings over Σ is denoted by Σ∗. The length of a string x is denoted by |x|. The empty

string, that is the string of length zero, is denoted by ǫ. The i-th symbol of a string
x is denoted by x[i].

A string w is a substring of x if x = uwv, where u, v ǫ Σ∗. We denote by x[i . . . j]
the substring of x that starts at position i and ends at position j. Conversely, x is
called a superstring of w. A string w is a prefix of x if x = wy, for y ǫ Σ∗. Similarly,
w is a suffix of x if x = yw, for y ǫ Σ∗.

In this work, we are considering the finite alphabet Σ for DNA sequences, where
Σ = {A,C,G, T}.

A degenerate string is a sequence t = t[1 . . . n], where t[i] ⊆ Σ for each i. When
a position of the string is degenerate, and it can match more than one element from
the alphabet Σ, we say that this position has non-solid symbol. If in a position only
one element of the alphabet Σ is present, we refer to this symbol as solid.

A weighted string over alphabet Σ is a sequence s = s[1 . . . n] of sets of couples. In
particular, each s[i] is a set ((q1, πi(q1)), (q2, πi(q2)), . . . , (q|Σ|, πi(q|Σ|)), where πi(qj) is
the occurrence probability of character qj at position i. A symbol qj occurs at position
i of a weighted sequence s = s[1 . . . n] if and only if the probability of occurrence
of symbol qj at position i is greater than zero, i.e. πi(qj) > 0. For every position

1 ≤ i ≤ n,
∑|Σ|

j=1
πi(qj) = 1. For example,

(

A 0.8

C 0.2

)

is a non-solid symbol, implying that

base A occurs with probability 80 % and C with probability 20 %.

3 Problems definition

We denote the generated short reads as the set p0, p1, . . . , pr−1 and we call them pat-

terns. Notice that r is a very large integer number (r > 107). Due to the massive

C. S. Iliopoulos, M. Miller, S. P. Pissis: Parallel algorithms for degenerate and. . . 253

amount of data, specialized solutions are needed to various sequencing-related prob-
lems. The length ℓ of each pattern is nowadays typically between 25 and 50 bp long,
and we denote that constant range, without loss of generality, as ℓmin ≤ ℓ ≤ ℓmax.
We assume that the data is derived from high quality sequencing methods and there-
fore we will consider patterns with at most µ = 3 non-solid symbols. We are given a
genomic solid sequence t = t[1 . . . n] and a positive threshold k ≥ 0.

We define the Massive Exact and Approximate Unique Pattern Matching problem
for degenerate and weighted sequences as follows.

Problem 1.

Find whether the degenerate pattern pi = pi[1 . . . ℓ], for all 0 ≤ i < r, of length
ℓmin ≤ ℓ ≤ ℓmax, with at most µ non-solid symbols, occurs with at most k-mismatches
in t = t[1 . . . n], exactly once.

Problem 2.

Find whether the weighted pattern pi = pi[1 . . . ℓ], for all 0 ≤ i < r, of length
ℓmin ≤ ℓ ≤ ℓmax, with at most µ non-solid symbols, occurs with at most k-mismatches
in t = t[1 . . . n], exactly once, with probability at least c, if

∏ℓ

i=1
πi(qi) ≥ c.

We mainly focus on the following classes of both problems:

Class 1. pi occurs in t exactly once
Class 2. pi occurs with at most 1-mismatch in t, exactly once
Class 3. pi occurs with at most 2-mismatches in t, exactly once

Class 2 and Class 3 correspond to cases where the pattern either contains a se-
quencing error (quality score associated with read is indicating it), or a small differ-
ence between a mutant and the reference genome, which will have an impact on the
proteins that have to be translated, as explored in [23,25].

4 Massive Exact Unique Pattern Matching in Parallel

In this section, we solve the problem of Class 1. The focus is to find occurrences of
pattern pi, for all 0 ≤ i < r, in text t = t[1 . . . n]. In particular, we are interested in
whether pi occurs in t exactly once.

The proposed algorithm makes use of the message-passing paradigm, by using p
processing elements. The following assumptions for the model of communications in
the parallel computer are made. The parallel computer comprises a number of nodes.
Each node comprises one or several identical processors interconnected by a switched
communication network. The time taken to send a message of size n between any
two nodes is independent of the distance between nodes and can be modelled as
tcomm = ts +ntw, where ts is the latency or start-up time of the message, and tw is the
transfer time per data. The links between two nodes are full-duplex and single-ported:
a message can be transferred in both directions by the link at the same time, and
only one message can be sent and one message can be received at the same time.

In addition, the proposed parallel algorithm makes use of word-level parallelism
by compacting strings into single computer words that we call signatures. We get
the signature σ(x) of a string x, by transforming it to its binary equivalent using
2-bits-per-base encoding of the DNA alphabet (see Table 1), and packing its decimal
value into a computer word (see Table 2).

254 Proceedings of the Prague Stringology Conference 2009

The idea of employing signatures is long known to computer scientists, introduced
by Dömölki in [4] in 1964 for his Shift-Or algorithm, a string matching algorithm
based on only few bitwise logical operations. The most well known application is
the four Russians algorithm, which packs rows of boolean matrices into computer
words speeding up boolean matrix multiplication. A randomised version of finger-

prints (modulo a prime number) was employed by Karp and Rabin in [12] for solving
the pattern matching problem. Their method cannot be used in our pattern match-
ing problem as our signatures are small and, thus, there is no practical speed up by
reducing it modulo a prime number.

A 0 0
C 0 1
G 1 0
T 1 1

Table 1. Binary Encoding of DNA alphabet

String x A G C A T
Binary form 0 0 1 0 0 1 0 0 1 1
Signature σ(x) 1 4 7

Table 2. Signature of AGCAT

Our aim is to preprocess text t and create two sets of lists Λℓmin
, . . . , Λℓmax

and
Λ′

ℓmin
, . . . , Λ′

ℓmax
. Each list Λℓ, for all ℓmin ≤ ℓ ≤ ℓmax, holds each duplicate substring

of length ℓ of t. Each list Λ′
ℓ, for all ℓmin ≤ ℓ ≤ ℓmax, holds each unique substring of

length ℓ of t.
An outline of the parallel algorithm, for all ℓmin ≤ ℓ ≤ ℓmax, is as follows:

Problem Partitioning. We use a data decomposition approach to partition the text
t with the sliding window mechanism into a set of substrings z1, z2, . . . , zn−ℓ+1, where
zi = t[i . . . i + ℓ− 1], for all 1 ≤ i ≤ n− ℓ + 1.

Step 1. We assume that text t is stored locally on the master processor. We make
sure that the load is evenly balanced by distributing z1, z2, . . . , zn−ℓ+1 among the p
available processors. Each processor ρq, for all 0 ≤ q < p, is allocated a fair amount
aq of substrings, as shown in Equation 1.

aq =

{⌈n−ℓ+1

p
⌉, if q < n− ℓ + 1 mod p

⌊n−ℓ+1

p
⌋, otherwise

(1)

We denote zfirstq
, . . . , zlastq

as the set of the allocated substrings of length ℓ of processor
ρq.

Example. Table 3 shows the processors allocation for the case of t = GGGTCTA,
ℓ = 3 and p = 3.

Step 2. Each processor ρq compacts each allocated substring zi, for all first q ≤ i ≤
last q, into a signature σ(zi), packs it in a couple (i, σ(zi)), where i represents the
matching position of zi in t, and adds the couple to a local list Zq. Notice that, as

C. S. Iliopoulos, M. Miller, S. P. Pissis: Parallel algorithms for degenerate and. . . 255

ρq aq firstq lastq Allocated substrings

ρ0 2 1 2 z1 = GGG, z2 = GGT

ρ1 2 3 4 z3 = GTC, z4 = TCT

ρ2 1 5 5 z5 = CTA

Table 3. Processors allocation for t = GGGTCTA, ℓ = 3 and p = 3

soon as we compact zfirstq
into σ(zfirstq

), then each σ(zi), for all first q + 1 ≤ i ≤ last q,

can be retrieved in constant time (using “shift”-type of operation).

Step 3. We sort the local lists Zq based on the signature’s field, in parallel, using
Parallel Sorting by Regular Sampling (PSRS) [20], a practical parallel deterministic
sorting algorithm. Notice that parallel sorting means rearranging the elements of the
local lists Zq, so that each processor ρq still has a fair amount in Zq, but with the
smallest signatures stored in sorted order by processor ρ0, ρ1 etc.

Step 4. Each processor ρq runs sequentially through its sorted list Zq and checks
whether the signatures in Zq[x] and Zq[x + 1] are equal, for all 0 ≤ x < |Aq| − 1. If
they are equal, then ρq adds Zq[x] to a new list Lq. If not, then Zq[x] is added to a
new list L′

q.

Step 5. Each processor ρq, for all 1 ≤ q < p, sends the first element in Zq to the
neighbour processor ρq−1. Then, each processor ρq, for all 0 ≤ q < p − 1, compares
the signature of the last element in Zq, to the signature of the element received from
processor ρq+1. If they are equal, then processor ρq adds the element to the list Lq,
else it is added to the list L′

q.

Step 6. We perform a gather operation, in which processor ρ0 collects a unique
message, local list Lq, from each processor ρq, for all 1 ≤ q < p, and stores each local
list Lq in rank order, resulting in a new combined sorted list Λℓ. We do the same with
the local list L′

q, resulting in a new sorted combined list Λ′
ℓ. Processor ρ0 performs a

one-to-all broadcast to send both lists Λℓ and Λ′
ℓ to all other processors.

Main Step. Assume that the two sets of lists Λℓmin
, . . . , Λℓmax

and Λ′
ℓmin

, . . . , Λ′
ℓmax

are
created and stored on each processor ρq. We extend the set of patterns p0, p1, . . . , pr−1

to a new set p′0, p
′
1, . . . , p

′
r′−1

, r < r′, as follows.
We make sure that each processor ρq is allocated a fair amount of query patterns

from the set p0, p1, . . . , pr−1, in a similar way as in step 1.

1. Problem 1. For each degenerate pattern pi of length ℓ with λ non-solid symbols,
such that λ ≤ µ, we create

∏ℓ

j=1
|pi[j]| new patterns, each differing in λ positions.

2. Problem 2. For each weighted pattern pi of length ℓ with λ non-solid symbols,
such that λ ≤ µ, we create

∏ℓ

j=1
|pi[j]| new patterns, each differing in λ positions.

We select each of those patterns, say s = s[1 . . . ℓ], with s[1] = (q1, π1(q1)), s[2] =

(q2, π2(q2)), . . . , s[ℓ] = (qℓ, πℓ(qℓ)), that satisfy
∏ℓ

j=1
πj(qj) ≥ c.

Then, each processor can determine, by using a binary search, whether an allo-
cated pattern p′i of length ℓ occurs in t exactly once, in O(log n) time. If σ(p′i) ∈ Λ′

ℓ,
then p′i is a unique pattern, and the algorithm returns its matching position in t. If
σ(p′i) ∈ Λℓ, then p′i occurs in t more than once. If σ(p′i) /∈ Λℓ and σ(p′i) /∈ Λ′

ℓ, then p′i
does not occur in t.

256 Proceedings of the Prague Stringology Conference 2009

Notice that in a case when 2ℓ > w, where w is the word size of the machine (e.g.
32 or 64 in practice), our algorithm can easily be adopted by storing the signatures
in ⌈2ℓ/w⌉ computer words.

Theorem 1. Given the text t = t[1 . . . n], the set of patterns p0, p1, . . . , pr−1, the

length of each pattern ℓmin ≤ ℓ ≤ ℓmax, the word size of the machine w, and the

number of processors p, the parallel algorithm solves the Class 1 of Problem 1 and

Problem 2 in O(⌈ℓmax/w⌉(n
p

log n
p
+ r

p
ℓmax log n)) computation time and O(n log p+r)

communication time.

Proof. In step 1, assuming that the text t is kept locally on master processor, the data
distribution can be done in O(ts log p + tw

n
p
(p − 1)) communication time. In step 2,

each processor creates a fair amount of signatures inO(⌈ℓmax/w⌉n
p
) computation time.

In step 3, the PSRS algorithm can be executed in O(⌈ℓmax/w⌉n
p

log n
p
) computation

time, where n ≥ p3, and O(n/
√

p) communication time [20]. In step 4, the sequential
run through the local list Zq takes O(⌈ℓmax/w⌉n

p
) computation time. Step 5 involves

O(1) point-to-point simple message transfers and comparisons. In step 6, the gather

operation can be done in O(ts log p + tw
n
p
(p− 1)), and the one-to-all broadcast take

O((ts + twn) log p) communication time.
Assuming that the two sets (of a constant number) of lists are created, the main

step runs in O(⌈ℓmax/w⌉ r
p
ℓmax log n) computation time, for the binary search, and

O(ts log p + tw
r
p
(p − 1)) communication time, for the patterns distribution. Notice

that, since |Σ| = 4 and µ = 3, the number of the new created patterns is treated as
constant.

Hence, asymptotically, the overall time is O(⌈ℓmax/w⌉(n
p

log n
p
+ r

p
ℓmax log n)) com-

putation time, and O(n log p + r) communication time. ⊓⊔

5 Massive Approximate Unique Pattern Matching in

Parallel

In this section we solve the problem of Class 2 and Class 3. The focus is to find
occurrences of pi, for all 0 ≤ i < r, in text t = t[1 . . . n] with at most k-mismatches.
In particular, we are interested in whether pi occurs with at most 1-mismatch in t
exactly once for the problem of Class 2, or with at most 2-mismatches exactly once
for the problem of Class 3.

The proposed parallel algorithm makes use of the message-passing paradigm, by
using p processing elements, and word-level parallelism, by compacting strings into
signatures, and applying a bit-vector algorithm for efficient approximate string match-
ing with mismatches.

Our aim is to preprocess text t and create two sets of lists Λℓmin
, . . . , Λℓmax

and
Λ′

ℓmin
, . . . , Λ′

ℓmax
. Each list Λℓ, for all ℓmin ≤ ℓ ≤ ℓmax, holds each duplicate substring

of length ℓ of t with at most k-mismatches. Each list Λ′
ℓ, for all ℓmin ≤ ℓ ≤ ℓmax, holds

each unique substring of length ℓ of t.

5.1 The bit-vector algorithm for fixed-length approximate string

matching with k-mismatches

Iliopoulos, Mouchard and Pinzon in [10] presented the Max-Shift algorithm, a bit-
vector algorithm that solves the fixed-length approximate string matching problem:

C. S. Iliopoulos, M. Miller, S. P. Pissis: Parallel algorithms for degenerate and. . . 257

given a text t of length n, a pattern ρ of length m and an integer ℓ, compute the
optimal alignment of all substrings of ρ of length ℓ and a substring of t. The focus
of the Max-Shift algorithm is on computing matrix D′, which contains the best
scores of the alignments of all substrings of pattern ρ of length ℓ and any contiguous
substring of the text t.

The Max-Shift algorithm makes use of word-level parallelism in order to com-
pute matrix D′ efficiently, similar to the manner used by Myers in [15]. The algorithm
is based on the O(1) time computation of each D′[i, j] by using bit-vector operations,
under the assumption that ℓ ≤ w, where w is the number of bits in a machine word
or O(ℓ/w)-time for the general case. The algorithm maintains a bit-vector matrix
B[0 . . . m, 0 . . . n], where the bit integer B[i, j], holds the binary encoding of the path
in D′ to obtain the optimal alignment at i, j with the differences occurring as leftmost
as possible.

Here the key idea is to devise a bit-vector algorithm for the fixed-length approx-

imate string matching with at most k-mismatches problem: given a text t of length
n, a pattern ρ of length m and an integer ℓ, find all substrings of ρ of length ℓ that
match any contiguous substring of t of length ℓ with at most k-mismatches. If we
assign ρ=t, we can extract all the duplicate substrings of length ℓ of t with at most
k-mismatches. The focus is on computing matrix M , which contains the number of
mismatches of all substrings of pattern ρ of length ℓ and any contiguous substring of
the text t of length ℓ.

Example. Let the text t = ρ = GGGTCTA and ℓ = 3. Table 4 shows the matrix M .

0 1 2 3 4 5 6 7

ǫ G G G T C T A

0 ǫ 0 0 0 0 0 0 0 0
1 G 1 0 0 0 1 1 1 1
2 G 2 1 0 0 1 2 2 2
3 G 3 2 1 0 1 2 3 3
4 T 3 3 2 1 0 2 2 3
5 C 3 3 3 2 2 0 3 2
6 T 3 3 3 3 2 3 0 3
7 A 3 3 3 3 3 2 3 0

Table 4. Matrix M for t = ρ = GGGTCTA and ℓ = 3

We maintain the bit-vector B[i, j] = bℓ · · · b1, where bλ = 1, 1 ≤ λ ≤ ℓ, if there is
a mismatch of a contiguous substring of the text t[i− ℓ + 1 . . . i] and t[j − ℓ + 1 . . . j]
in the λth position. Otherwise we set bλ = 0.

Given the restraint that the integer ℓ is less than the length of the computer
word w, then the bit-vector operations allow to update each entry of the matrix B in
constant time (using “shift”-type of operation on the bit-vector). The maintenance
of the bit-vector is done via operations defined as follows:

1. shiftc(x): shifts and truncates the leftmost bit of x.
2. δH(x, y): returns the minimum number of replacements required to transform x

into y

258 Proceedings of the Prague Stringology Conference 2009

The Bit-Vector-Mismatches algorithm for computing the bit-vector matrix
B and matrix M is outlined in Figure 2.

Bit-Vector-Mismatches

⊲Input: t, n, ρ, m, ℓ

⊲Output: B, M

1 begin

2 ⊲ Initialization

3 B[0 . . .m, 0]← min(i, ℓ) 1’s; B[0, 0 . . . n]← 0

4 M [0 . . .m, 0]← min(i, ℓ); M [0, 0 . . . n]← 0

5 ⊲ Matrix B and Matrix M computation

6 for i← 1 until m do

7 for j ← 1 until n do

8 B[i, j]← shiftc(B[i− 1, j − 1]) or δH(ρ[i], t[j])

9 M [i, j]← ones(B[i, j])

10 end

Figure 2. The Bit-Vector-Mismatches algorithm for computing matrix B and
matrix M

Example. Let the text t = ρ = GGGTCTA and ℓ = 3. Table 5 shows the bit-vector
matrix B. Consider the case when i = 7 and j = 5. Cell B[7, 5] = 101 denotes
that substrings t[3 . . . 5] = CTA and t[5 . . . 7] = GTC have a mismatch in position
1, a match in position 2, and a mismatch in position 3, resulting in a total of two
mismatches, as shown in cell M [7, 5].

0 1 2 3 4 5 6 7

ǫ G G G T C T A

0 ǫ 0 0 0 0 0 0 0 0
1 G 1 0 0 0 1 1 1 1
2 G 11 10 00 00 01 11 11 11
3 G 111 110 100 000 001 011 111 111
4 T 111 111 101 001 000 011 110 111
5 C 111 111 111 011 011 000 111 101
6 T 111 111 111 111 110 111 000 111
7 A 111 111 111 111 111 101 111 000

Table 5. The bit-vector matrix B for t = ρ = GGGTCTA and ℓ = 3

Assume that the bit-vector matrix B[0 . . . m, 0 . . . n] is given. We can use the
function ones(v), which returns the number of 1’s (bits set on) in the bit-vector v, to
compute matrix M (see Figure 2, line 9).

C. S. Iliopoulos, M. Miller, S. P. Pissis: Parallel algorithms for degenerate and. . . 259

5.2 The parallel algorithm

The key idea behind parallelising the Bit-Vector-Mismatches algorithm, is that
cell B[i, j] can be computed only in terms of B[i− 1, j − 1] (see Figure 2, line 8).

An outline of the parallel algorithm, for all ℓmin ≤ ℓ ≤ ℓmax, is as follows:

Problem Partitioning. We use a functional decomposition approach, in which the
initial focus is on the computation that is to be performed rather than on the data
manipulated by the computation. We assume that the text t (and the pattern ρ = t)
is stored locally on each processor. This can be done by using a one-to-all broadcast
operation in (ts + twn) log p communication time, which is asymptotically O(n log p).
We partition the problem of computing matrix B (and M) into a set of diagonal
vectors ∆0, ∆1, . . . , ∆n+m, as shown in Equation 2.

∆ν [x] =

B[ν − x, x] : 0 ≤ x ≤ ν, (a)
B[m− x, ν −m + x] : 0 ≤ x < m + 1, (b)
B[m− x, ν −m + x] : 0 ≤ x < n + m− ν + 1, (c)

(2)

where,
(a) if 0 ≤ ν < m
(b) if m ≤ ν < n
(c) if n ≤ ν < n + m + 1

Step 1. We make sure that the load is evenly balanced among the p available pro-
cessors in each diagonal ∆ν . Each processor ρq, for all 0 ≤ q < p, is allocated a fair
amount aq[ν] of cells in each diagonal ∆ν , as shown in Equation 3.

aq[ν] =

{

⌈ |∆ν |
p
⌉, if q < |∆ν | mod p

⌊ |∆ν |
p
⌋, otherwise

(3)

We denote ∆ν [first q[ν]], . . . , ∆ν [last q[ν]] as the set of the allocated cells of processor
ρq in diagonal ∆ν .

Step 2. Each processor ρq computes each allocated cell ∆ν [x], for all first q[ν] ≤ x ≤
last q[ν], in each diagonal ∆ν , using the Bit-Vector-Mismatches algorithm.

Step 3. It is possible that in a certain diagonal ∆ν , ν > 0, a processor will need
a cell or a pair of cells, which were not computed on its local memory in diagonal
∆ν−1. We need a communication pattern in each diagonal ∆ν , for all 0 ≤ ν < n + m,
which minimises the data exchange between the processors. It is obvious, that in each
diagonal, each processor needs only to communicate with its neighbours (boundary
cells swaps).

Step 4. On every occasion a processor ρq computes a cell M [i, j] ≤ k, where i ≥ ℓ
and j ≥ ℓ, we notice two possible cases:

1. if M [i, j] = 0 and i = j, then substring t[i − ℓ + 1 . . . i] occurs in t at least once.
We compact substring t[i− ℓ + 1 . . . i] into a signature σ(t[i− ℓ + 1 . . . i]), pack it
in a couple (i− ℓ + 1, σ(t[i− ℓ + 1 . . . i])), and add the couple to a new list Zq.

260 Proceedings of the Prague Stringology Conference 2009

2. if i 6= j, then substrings t[i − ℓ + 1 . . . i] and t[j − ℓ + 1 . . . j] are considered to
be duplicates with at most k-mismatches. We compact both substrings into the
signatures σ(t[i−ℓ+1 . . . i]) and σ(t[j−ℓ+1 . . . j]), pack them in couples (i−ℓ+1,
σ(t[i− ℓ + 1 . . . i])) and (j− ℓ + 1, σ(t[j− ℓ + 1 . . . j])), and add the couples to the
list Zq.

Step 5. Assume that the diagonal supersteps ∆0, ∆1, . . . , ∆n+m are executed. The
local lists Zq are constructed, and so, we follow the steps 3-6 of the parallel algorithm
in Section 4.

Main step. Assume that the two sets of lists Λℓmin
, . . . , Λℓmax

and Λ′
ℓmin

, . . . , Λ′
ℓmax

are
created and stored on each processor ρq. We extend the set of patterns p0, p1, . . . , pr−1

to a new set p′0, p
′
1, . . . , p

′
r′−1

, r < r′, as in Section 4. Then, each processor can deter-
mine by using a binary search, whether an allocated pattern p′i of length ℓ occurs in t
exactly once, in O(log n) time. If σ(p′i) ∈ Λ′, then p′i is a unique pattern with at most
k-mismatches, and the algorithm returns its matching position in t. If σ(p′i) ∈ Λℓ,
then p′i occurs in t more than once.

Notice that, in a case where σ(p′i) /∈ Λℓ and σ(p′i) /∈ Λ′
ℓ, then p′i does not occur in

t, and we can check whether the k-mismatches occur inside the pattern p′i as follows.

1. Class 2 and Class 3. We construct a new set of patterns xj, for all 0 ≤ j < |Σ|.ℓ,
differing from p′i in one position, and we compact each xj into a signature σ(xj). If
σ(xj) ∈ Λ′

ℓ, then p′i is a unique pattern with at most 1-mismatch, and the algorithm
returns its matching position in t. If σ(xj) ∈ Λℓ, then we discard pattern p′i as it
has to occur in t exactly once. If σ(xj) /∈ Λℓ and σ(xj) /∈ Λ′

ℓ then p′i does not occur
in t.

2. Class 3. We construct a new set of patterns yj, for all 0 ≤ j < |Σ|2.
(

ℓ

2

)

, differing
from p′i in two positions, and we compact each yj into a signature σ(yj). If σ(yj) ∈
Λ′

ℓ, then p′i is a unique pattern with at most 2-mismatches, and the algorithm
returns its matching position in t. If σ(yj) ∈ Λℓ, then we discard pattern p′i as it
has to occur in t exactly once. If σ(yj) /∈ Λℓ and σ(yj) /∈ Λ′

ℓ then p′i does not occur
in t.

In general, for the problem of k-mismatches, for each pattern p′i of length ℓ that
does not occur in t, we construct k new sets of patterns, each containing |Σ|λ.

(

ℓ

λ

)

patterns differing from p′i in λ positions, for all 1 ≤ λ ≤ k.

Theorem 2. Given the text t = t[1 . . . n], the set of patterns p0, p1, . . . , pr−1, the

length of each pattern ℓmin ≤ ℓ ≤ ℓmax, the word size of the machine w, and the num-

ber of processors p, the parallel algorithm solves the Class 2 and Class 3 of Problem 1

and Problem 2 in O(⌈ℓmax/w⌉(n2

p
+ ℓ3maxr

p
log p)) computation time, and O(n log p+ r)

communication time.

Proof. We partition the problem of computing matrix B (and M) into a set of n+m+1
diagonal vectors, thus O(n) supersteps (since n = m). In step 1, the allocation can be
done in O(1) time. In step 2, the cells computation requires O(⌈ℓmax/w⌉n

p
) time. In

step 3, the data exchange between the processors involves O(1) point-to-point sim-
ple message transfers. In step 4, the local lists Zq are constructed in O(⌈ℓmax/w⌉n

p
)

time. Assuming that the diagonal supersteps are executed, step 5 can be done in
O(⌈ℓmax/w⌉(n

p
log n

p
)) computation time, and O(n log p) communication time (see

Section 4).

C. S. Iliopoulos, M. Miller, S. P. Pissis: Parallel algorithms for degenerate and. . . 261

Assuming that the two sets (of a constant number) of lists are created, the main

step runs in O(⌈ℓmax/w⌉(ℓ3maxr

p
log n)) computation time, for the binary search, and

O(ts log p + tw
r
p
(p− 1)) communication time, for the patterns distribution.

Hence, asymptotically, the overall time is O(⌈ℓmax/w⌉(n2

p
+ ℓ3maxr

p
log p)) computa-

tion time, and O(n log p + r) communication time. ⊓⊔

Also, the space complexity can be reduced to O(n) by noting that each diagonal
∆ν depends only on diagonal ∆ν−1.

6 Conclusion

In this paper, we have presented parallel algorithms to tackle the data emerging from
the new high throughput sequencing technologies in biology. The new technologies
produce a huge number of very short sequences and these sequences need to be
classified, tagged and recognised as parts of a reference genome. Our algorithms can
manipulate this data for degenerate and weighted sequences for Massive Exact and
Approximate Unique Pattern matching. Implementation of the algorithms described
in this paper is under way and will be presented in the near future.

References

1. R. Baeza-Yates and G. Gonnet: A new approach to text searching. Communications of the
ACM, 35 1992, pp. 74–82.

2. S. Bennett: Solexa ltd. Pharmacogenomics, 5(4) 2004, pp. 433–438.
3. M. Christodoulakis, C. S. Iliopoulos, L. Mouchard, K. Perdikuri, A. Tsakalidis,

and K. Tsichlas: Computation of repetitions and regularities on biological weighted sequences.
Journal of Computational Biology, 13(6) 2006, pp. 1214–1231.

4. B. Dömölki: An algorithm for syntactic analysis. Computational Linguistics, 8 1964, pp. 29–46.
5. B. Ewing, L. Hillier, M. C. Wendl, and P. Green: Base-Calling of Automated Sequencer

Traces UsingPhred.I. Accuracy Assessment. Genome Research, 8(3) 1998, pp. 175–185.
6. R. D. Fleischmann, M. D. Adams, O. White, R. A. Clayton, E. F. Kirkness, A. R.

Kerlavage, C. J. Bult, J. F. Tomb, B. A. Dougherty, and J. M. Merrick: Whole-

genome random sequencing and assembly of Haemophilus influenzae. Science, 269 1995, pp. 496–
512.

7. C. Genomics: The sequence of the human genome. Science, 291 2001, pp. 1304–1351.
8. D. Hernandez, P. Francois, L. Farinelli, M. Osteras, and J. Schrenzel: De novo

bacterial genome sequencing: millions of very short reads assembled on a desktop computer.

Genome Res, March 2008.
9. J. Holub, W. F. Smyth, and S. Wang: Fast pattern-matching on indeterminate strings. J.

of Discrete Algorithms, 6(1) 2008, pp. 37–50.
10. C. S. Iliopoulos, L. Mouchard, and Y. Pinzon: The max-shift algorithm for approximate

string matching, in Proceedings of the 5th Workshop on Algorithm Engineering (WAE’01),
Aarhus, Denmark, 2001, G.S. Brodal and D. Frigioni and A.Marchetti-Spaccamela, eds., pp. 13–
25.

11. H. Jiang and W. H. Wong: Seqmap: mapping massive amount of oligonucleotides to the

genome. Bioinformatics, 24(20) 2008, pp. 2395–2396.
12. R. M. Karp and M. O. Rabin: Efficient randomized pattern-matching algorithms. IBM J.

Res. Dev., 31(2) 1987, pp. 249–260.
13. H. Li, J. Ruan, and R. Durbin: Mapping short DNA sequencing reads and calling variants

using mapping quality scores. Genome Research, 18(11) 2008, pp. 1851–1858.
14. R. Li, Y. Li, K. Kristiansen, and J. Wang: SOAP: short oligonucleotide alignment program.

Bioinformatics, 24(5) 2008, pp. 713–714.

262 Proceedings of the Prague Stringology Conference 2009

15. E. W. Myers: A fast bit-vector algorithm for approximate string matching based on dynamic

progamming. Journal of the ACM 46, 1999, pp. 395–415.
16. J. M. Prober, G. L. Trainor, R. J. Dam, F. W. Hobbs, C. W. Robertson, R. J.

Zagursky, A. J. Cocuzza, M. A. Jensen, and K. Baumeister: A system for rapid DNA

sequencing with fluorescent chain-terminating dideoxynucleotides. Science, 238 1987, pp. 336–
341.

17. F. Sanger and A. R. Coulson: A rapid method for determining sequences in DNA by primed

synthesis with DNA polymerase. J. Mol. Biol., 94 1975, pp. 441–448.
18. F. Sanger, S. Nicklen, and A. R. Coulson: DNA sequencing with chain-terminating

inhibitors. Proc. Natl. Acad. Sci. USA, 74 1977, pp. 5463–5467.
19. M. C. Shaner, I. M. Blair, and T. D. Schneider: Sequence logos: A powerful, yet simple,

tool, in Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System
Sciences, Volume 1: Architecture and Biotechnology Computing, T. N. Mudge, V. Milutinovic,
and L. Hunter, eds., IEEE Computer Society Press, 1993, pp. 813–821.

20. H. Shi and J. Schaeffer: Parallel sorting by regular sampling. J. Parallel Distrib. Comput.,
14(4) 1992, pp. 361–372.

21. A. Smith, Z. Xuan, and M. Zhang: Using quality scores and longer reads improves accuracy

of solexa read mapping. BMC Bioinformatics, 9(1) 2008, p. 128.
22. L. M. Smith, J. Z. Sanders, R. J. Kaiser, P. Hughes, C. Dodd, C. R. Connell,

C. Heiner, S. B. Kent, and L. E. Hood: Fluorescence detection in automated DNA sequence

analysis. Nature, 321 1986, pp. 674–679.
23. M. Sultan, M. H. Schulz, H. Richard, A. Magen, A. Klingenhoff, M. Scherf,

M. Seifert, T. Borodina, A. Soldatov, D. Parkhomchuk, D. Schmidt, S. O’Keeffe,

S. Haas, M. Vingron, H. Lehrach, and M.-L. Yaspo: A Global View of Gene Activity

and Alternative Splicing by Deep Sequencing of the Human Transcriptome. Science, 321(5891)
2008, pp. 956–960.

24. A. Sundquist, M. Ronaghi, H. Tang, P. Pevzner, and S. Batzoglou: Whole-genome

sequencing and assembly with high-throughput, short-read technologies. PLoS ONE, 2 2007.
25. Z. Wang, M. Gerstein, and M. Snyder: Rna-seq: a revolutionary tool for transcriptomics.

Nature reviews. Genetics, November 2008.
26. R. L. Warren, G. G. Sutton, S. J. Jones, and R. A. Holt: Assembling millions of short

DNA sequences using SSAKE. Bioinformatics, 23(4) February 2007, pp. 500–501.
27. S. Wu and U. Manber: Agrep- a fast approximate pattern-matching tool. Proceedings USENIX

Winter 1992 Technical Conference, San Francisco, CA, 1992, pp. 153–162.
28. S. Wu and U. Manber: Fast text searching: allowing errors. Commun. ACM, 35(10) 1992,

pp. 83–91.

