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Abstract. The shapes of binary trees can be encoded as permutations having a very
special property. These permutations are tree permutations, or equivalently they avoid
subwords of the type 231. The generation of binary trees in natural order corresponds
to the generation of these special permutations in the lexicographic order. In this pa-
per we use a stringologic approach to the generation of these special permutations:
decompositions of essential parts into the subwords having staircase shapes. A given
permutation differs from the next one with respect to its tail called here the working
suffix. Some new properties of such working suffixes are discovered in the paper and
used to design effective algorithms transforming one tree permutation into its succes-
sor or predecessor in the lexicographic order. The algorithms use a constant amount
of additional memory and they look only at those elements of the permutation which
belong to the working suffix. The best-case, average-case and worst-case time complex-
ities of the algorithms are O(1), O(1), and O(n) respectively. The advantages of our
stringologic approach are constant time and iterative generation, while other known
algorithms are usually recursive or not constant-memory ones.
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1 Introduction

The generation in natural order of the shapes of binary trees with n nodes corresponds
to the lexicographic generation of all special permutations of elements 1, 2, . . . , n. This
is easy when done recursively and more technical when done iteratively. Our goal is
to do it iteratively and at the same time with small time and small space (constant-
memory). The natural order of trees as well as its corresponding tree permutations
are defined in [3]. It’s worth mentioning that the natural order of binary trees is also
called an A-order of binary trees [6] and tree permutations are often referred to as
stack-sortable permutations or 231-avoiding permutations [13].

In this paper we explore stringologic approach and consider carefully the structure
of subwords of special permutations. We introduce the notion of the working suffix of
the permutation and reveal its staircase structure. The working suffix is a concatena-
tion of descending staircases, with bottom points of staircases strictly increasing.

We say that the permutation p = (p1, p2, . . . , pn) of the integer numbers 1, 2, . . . , n
is 231-avoiding (or that p avoids the pattern 231) if there are no such indices 1 ≤
i2 < i3 < i1 ≤ n such that pi1 < pi2 < pi3 .

In other words the subsequence (a, b, c) matches the pattern 231 iff

a < b > c < a.

A permutation p avoids the pattern 231 if there is no subsequence of p which matches
pattern 231 (see Figure 1).
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Figure 1. Subsequence (pi, pj, pk) matching the pattern 231. Permutation p is 231-
avoiding if there is no subsequence of p matching the pattern 231.

Example 1. The permutation
(4, 1, 2, 5, 3, 6, 7)

is not a 231-avoiding since the subsequence 4, 5, 3 matches (in the sense of order)
pattern 231, while the permutation

(4, 1, 2, 3, 5, 6, 7)

avoids the pattern 231.

A binary tree T is either a null tree or it consists of a node called the root and
two binary trees denoted left(T ) and right(T ). Let |T | denote the size of T . In the
former case, the size of T is zero; in the latter case, |T | = 1 + |left(T )| + |right(T )|.
The natural order [3] of binary trees follows the recursive definition:
We say that T1 ≺ T2 if

1. |T1| < |T2|, or
2. |T1| = |T2| and left(T1) ≺ left(T2), or
3. |T1| = |T2| and left(T1) = left(T2) and right(T1) ≺ right(T2),

This order is related to the order relation given by D. E. Knuth in [4, Sec. 2.3.1,
excercise 25] specialized to unlabeled binary trees, and is also known as A-order of
binary trees [6].

Let T be a binary tree on n nodes. We can represent the tree T as a sequence of
the integer numbers 1, 2, . . . , n first labeling the nodes with their position’s number
as they appear in the inorder traversal of the tree and then listing those labels as
they appear in the preorder traversal of the tree. We shall call such a representation
preorder-inorder representation and the corresponding sequence tree permutation.
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Figure 2. A binary tree T and the string (5, 2, 1, 3, 4, 7, 6) = preorder(inorder(T ))
representing its shape. (5, 2, 1, 3, 4, 7, 6) is the tree permutation of T .
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Interestingly, the natural order of binary trees is preserved by the lexicographic
order on their preorder-inorder representation [1] (see Figure 3).

Lemma 2. For the binary trees T1 ≺ T2 iff the tree permutation of T1 is lexicograph-
ically smaller than tree permutation of T2.

1 2 3 4 1 2 4 3 1 3 2 4 1 4 2 3 1 4 3 2 2 1 3 4 2 1 4 3

3 1 2 4 3 2 1 4 4 1 2 3 4 1 3 2 4 2 1 3 4 3 1 2 4 3 2 1

Figure 3. Binary trees for n = 4 listed in the lexicographic order on their preorder-
inorder representation

The most important property of tree permutations which is employed in this paper
is their equivalence with 231-avoiding permutations [1].

Lemma 3. A permutation p is a tree permutation iff it is 231-avoiding.

Further on we will refer to this property as the basic property.

Let p = (p1, p2, . . . , pn) be a tree permutation. The suffix of p which makes p
different from its successor in the lexicographic order is called working suffix.

Example 4. For tree permutations for n = 4 the working suffixes are underlined as
follows:

1 2 3 4 1 2 4 3 1 3 2 4 1 4 2 3 1 4 3 2 2 1 3 4 2 1 4 3
3 1 2 4 3 2 1 4 4 1 2 3 4 1 3 2 4 2 1 3 4 3 1 2 4 3 2 1

The working suffix for permutation 1234 is 34 since the next permutation is 1243.
The working suffix for 4321 is empty, since there is no successor for 4321.

We shall call a decreasing sequence of consecutive numbers a descending stairs
sequence and refer to its first (largest) element as the top of the sequence and last
(smallest) element as the bottom of the sequence. A single number always forms trivial
descending stairs sequence.

2 Working Suffix Properties

In this section we elaborate on the basic property of tree permutations and present
a few properties of the working suffix. Those properties in consequence let us con-
struct effective algorithms transforming a given tree permutation into its successor
or predecessor in the lexicographic order.

Lemma 5. Let p be a tree permutation and let i be the index of the first position
of its working suffix. If tree permutation q is the successor of p in the lexicographic
order, then qi = pi + 1.
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Proof. Since the suffix qi, qi+1, . . . , qn is a permutation of the working suffix
pi, pi+1, . . . , pn then there exists an index k > i such that qk = pi.

Suppose for the sake of contradiction that qi > pi + 1. There exists an index j
such that pj = pi + 1. Due to the basic property j > i since otherwise we would have
three indices j < i < k for which qk = pi < qj = pi + 1 < qi.

Having such an index j > i for which pj = pi+1 we can construct a permutation r
by exchanging elements pj and pi and then sorting the suffix starting at index i+1 in
ascending order. The permutation r = (p1, p2, . . . , pi−1, pi + 1, ri+1, . . . , rn) is a valid
tree permutation with ri = pi + 1 > pi and ri+1 < ri+2 < · · · < rn. Hence p ≺ r and
r ≺ q which contradicts with q being the successor of p. ⊓⊔

Lemma 6. Let p be a tree permutation and let i be the index of the first position
of its working suffix, then there exist no such indices j, k such that i < j < k and
pk = pj + 1.

Proof. The proof is similar to that of Lemma 5.
Let q = (q1, q2, . . . , qi−1, qi, qi+1, . . . , qn) be the successor of p. Since the working

suffix of p starts at index i therefore q = (p1, p2, . . . , pi−1, qi, qi+1, . . . , qn), with qi =
pi + 1.

Suppose for the sake of contradiction that there exist indices i < j < k such
that pk = pj + 1. Then we can construct a new permutation r from p by exchanging
elements pj with pk and sorting the suffix starting at index j + 1 in ascending order.
The permutation r = (p1, p2, . . . , pj−1, pk, rk+1, rk+2, . . . , rn) with rj = pk > pj and
rk+1 < rk+2 < · · · < rn is a valid tree permutation. Hence we have p ≺ r and also
r ≺ q which contradicts with q being the successor of p. ⊓⊔

Lemma 7. Let p = (p1, p2, . . . , pn) be a tree permutation and i be the starting index
of its working suffix. For any index i ≤ k < n, pk > pk+1 implies that pk = pk+1 + 1.

Proof. Let q = (q1, q2, . . . , qi−1, qi, qi+1, . . . , qn) be the successor of p. Since the working
suffix of p starts at index i, therefore q = (p1, p2, . . . , pi−1, qi, qi+1, . . . , qn), with qi =
pi + 1.

Assume that there exists an index k such that i ≤ k < n and pk > pk+1. Suppose
for the sake of contradiction that pk > pk+1 + 1. Let j be an index for which pj =
pk+1 + 1. Due to the basic property j > k + 1. We obtain a contradiction since we
have indices i < k + 1 < j for which pj = pk+1 + 1 which is impossible with respect
to Lemma 6. ⊓⊔

Theorem 8. For any tree permutation p = (p1, p2, . . . , pn) its (not empty) working
suffix starting at index i forms a staircase of descending stairs sequences (possibly of
length 1) for which the top element pi of the first descending stairs sequence is equal
to pj − 1, where j is the index of the bottom step of the following second descending
stairs sequence. Furthermore for no other indices i < k < l, pk = pl − 1.

This theorem is the direct consequence of the previously proven lemmas 5,6,7. See
Figure 4 for graphic interpretation of this theorem.



S. Smyczyński: Constant-memory Iterative Generation of Special Strings Representing. . . 187

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

p = (9, 6, 3, 2, 1, 5, 4, 7, 8, 11, 10, 22, 19, 17,13, 12, 16, 15,14, 18, 21, 20, 25, 24, 23)

Figure 4. The tree permutation p represented in a graphic form with shaded parts
corresponding to the special staircase structure of the working suffix. The black dot
appears above the top of the first sequence of descending stairs and the gray one at
the bottom of the following sequence of descending stairs.
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q = (9, 6, 3, 2, 1, 5, 4, 7, 8, 11, 10, 22, 19, 17,14, 12,13, 15, 16, 18, 20, 21, 23, 24, 25)

Figure 5. Graphic representation of the tree permutation q, which is the successor
of the tree permutation p from Figure 4.

3 The Algorithm

The lemmas 5, 6 presented in the previous section provide us enough information
about the structure of the working suffix to design the algorithm transforming given
tree permutation p into its successor. The algorithm consists of two steps:

1. Finding the first pair of indices i < j starting from the end of p such that pj =
pi + 1. From lemmas 5 and 6 we know that index i must be then the starting
position of the working suffix of p.
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2. Transforming the found working suffix by exchanging the elements pi and pj and
then sorting the suffix starting from position i + 1 in ascending order.

The theorem 8 on the other hand gives us an exact way how to implement the above
mentioned steps effectively by exploiting the staircase structure of the working suffix.

The algorithm Next(p) presented in this section is in fact a direct implementation
of the theorem 8.

Algorithm 1: Next(P )

Step 1. Find the working suffix.

Let lbs, cbs and cs denote respectively the index of the bottom of the last seen
descending stairs sequence, the index of the bottom of the current descending
stairs sequence, and the current step index.

lbs := n; cbs := n; cs := n;
repeat

cs := cs − 1;
If we processed the whole permutation then there is no next one
if cs < 1 then

return false;
end

Check if we reach the bottom of the previous descending stairs sequence
if P [cs] < P [cs + 1] then

lbs := cbs;
cbs := cs;

end

until P [lbs] = P [cs] + 1 ;

Step 2. Changing the working suffix to form the successor of P . The cs points
at the first element of the working suffix with P [lbs] = P [cs] + 1.

Exchange the elements P [cs] and P [lbs], and then sort the suffix starting at
position cs + 1 in ascending order (by reversing the stairs).

swap(P [cs], P [lbs]);
cs := cs + 1;
while cs < n do

Let es denote the end of the current descending stairs sequence
es = cs + 1;
while es ≤ n and P [es] < P [cs] do

es := es + 1;
end

Change the current descending stairs sequence into increasing sequence
reverse(P , cs, es − 1);
cs := es;

end

return true; The permutation P has been transformed to its successor.
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The work done by the algorithm Next(p) can simply be reverted. During the
execution of the algorithm Next(p) the staircase of descending stairs sequences is
changed into a staircase of ascending stairs sequences. The element which was at
the starting position of the working suffix is the top of the first of ascending stairs
sequences, and the element which is placed at the starting position of the working
suffix after the execution of the algorithm delimits the new staircase of ascending
stairs sequences and simply allows us to find the starting index of the working suffix.

The algorithm Prev(p) transforms the given tree permutation p into its predeces-
sor in the lexicographic order.

Algorithm 2: Prev(P )

Step 1. Find the working suffix of P predecessor.

Let cts and cs denote respectively the index of the top of the current ascending
stairs sequence, and the current step index.

cts := n; cs := n;
repeat

cs := cs − 1;
If we processed whole permutation then there is no previous one
if cs < 1 then

return false;
end

Check if we reach the top of the preceding ascending stairs sequence
if P [cs] < P [cs + 1] − 1 then

cts := cs;
end

until P [cs] = P [cts] + 1 ;

Step 2. Changing the working suffix to form the predecessor of P . The cs

points at the first element of the working suffix with P [cs] = P [cts] + 1.

Exchange the elements P [cs] and P [cts], and then reverse each ascending
stairs sequence in the rest of the working suffix starting at position cs + 1.

swap(P [cs], P [cts]);
cs := cs + 1;
while cs < n do

Let es denote the end of the current ascending stairs sequence
es = cs + 1;
while es ≤ n and P [es] = P [es − 1] + 1 do

es := es + 1;
end

Change the current ascending stairs sequence into descending sequence
reverse(P , cs, es − 1);
cs := es;

end

return true; The permutation P has been transformed to its predecessor.
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4 Time Complexity

Let us recall that the number of binary trees with n nodes or equivalently the number
of the tree permutations of length n is given by the Catalan number [4]

Cn =

(
2n

n

)

/(n + 1).

Let Wn be the sum of lengths of the working suffixes for all tree permutations.
Since the algorithm Next(p) performs work proportional to the length of the work-
ing suffix of the given permutation p, therefore its average-case time-complexity in
enumerating all Cn tree permutations is O(Wn

Cn

).
Each tree permutation p can be represented as p = p1p

′p′′ where p′ is itself a tree
permutation of length p1 − 1 and p′′ is a tree permutation of length n− p1 translated
by having p1 added to each element [3] (see Figure 6).

p = 8

p
′

︷ ︸︸ ︷

4 1 3 2 6 5 7

p
′′

︷ ︸︸ ︷

4 3 1 2⊕8

︷ ︸︸ ︷

12 11 9 10

Figure 6. Example of the decomposition of tree permutation
(8, 4, 1, 3, 2, 6, 5, 7, 12, 11, 9, 10).

Using this recursive property of the tree permutations we can formulate the re-
currence formula for Wn. If we fix p1 then p′′ is a tree permutation of length n − p1

and p′ of length p1 − 1. There are exactly Cp1−1 permutations of length p1 − 1. So
each working suffix of p′′ appears in p exactly Cp1−1 times. Therefore the summarized
length of all working suffixes of p starting in p′′ is equal to Cp1−1Wn−p1

.
When the working suffix of p starts in p′ then its length is equal to the length of the

working suffix of p′ plus length of p′′ which is equal to n−p1. Since the working suffix
of p starts in p′ each time this permutation is going to be changed (except the last
change which will be connected with changing the value of p1) then the summarized
length of working suffixes starting at p′ is equal to Wp1−1 + (n − p1)(Ci−1 − 1).

Now summarizing those values for each possible value of p1 and adding n(n − 1)
for the summarized length of all working suffixes which changes the whole string, we
obtain the following recurrence equation:

Wn =
n∑

i=1

(

Ci−1Wn−i + Wi−1 + (n − i)(Ci−1 − 1)
)

+ n(n − 1)

Solving this recurrence we obtain Wn = Cn+1 − n − 1.

Since the Catalan numbers satisfy the recursive relation C1 = 1, Cn+1 = 2(2n+1)
n+2

Cn,
we may conclude that the average-case time-complexity of the algorithm Next(p) is
constant since O(Wn

Cn

) = O(1).
This proves the following theorem:

Theorem 9. (Main Result) For a tree permutation p we can compute the next tree
permutation in the lexicographic order in constant amortized time using only a con-
stant amount of additional memory.
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The algorithm Prev(p) presented in the previous section was obtained by a simple
modification of the Next(p) algorithm and similarly performs work proportional to
the length of the working suffix of the given permutation p, therefore we obtain a
similar result:

Theorem 10. For a tree permutation p we can compute the previous tree permutation
in the lexicographic order in constant amortized time using only a constant amount
of additional memory.
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