
Filter Based Fast Matching of Long Patterns by

Using SIMD Instructions

M. Oğuzhan Külekci

TÜBİTAK-UEKAE
National Research Institute of Electronics & Cryptology

41470 Gebze, Kocaeli, Turkey
kulekci@uekae.tubitak.gov.tr

Abstract. SIMD instructions exist in many recent microprocessors supporting parallel
execution of some operations on multiple data simultaneously via a set of special in-
structions working on limited number of special registers. Although the usage of SIMD
is explored deeply in multimedia processing, implementation of encryption/decryption
algorithms, and on some scientific calculations, it has not been much addressed in pat-
tern matching. This study introduces a filter based exact pattern matching algorithm
for searching long strings benefiting from SIMD instructions of Intel’s SSE (streaming
SIMD extensions) technology. The proposed algorithm has worst, best, and average
time complexities of O(n · m), O(n/m), and O(n/m + n · m/216) respectively, while
searching an m bytes pattern on a text of n bytes. Experiments on small, medium, and
large alphabet text files are conducted to compare the performance of the new algo-
rithm with other alternatives, which are known to be very fast on long string search
operations. In all cases the proposed algorithm is the clear winner on the average.
When compared with the nearest successor, the matching speed is improved in orders
of magnitude on small alphabet sequences. The performance is 40 % better on medium
alphabets, and 50 % on natural language text.

Keywords: pattern matching, filtering, SIMD, SSE

1 Introduction

Searching for exact or approximate matches of given pattern(s) on a text file is one
of the fundamental problems in computer science. Numerous algorithms focusing
on some aspects of the general problem have been developed during the last three
decades, some of which can be found in [4,5]. Although the main problem is well
studied, recent advances in genomics research, new developments in processor archi-
tectures, and the accelerated growth of information on the Internet introduces new
challenges in the area.

This study focuses on exact matching of long patterns on random sequences via
a filtering methodology. Instead of checking the occurrence of the pattern(s) on all
over the text, filtering methods first detects the portions of the text, on which the
observation of the pattern is probable with a fast heuristic, and then performs a full
verification on those positions reported by the filtering phase. Thus, a filter based
string matching algorithm is actually composed of two parts, as filtering and the
verification. The first part aims to detect possible match positions on the text without
a deep investigation, and the verification process is checking the real existence of the
pattern on those detected positions.

Some of the previous filter based pattern matching algorithms may be listed as fol-
lows. The algorithm of Wu&Manber [18] combines bit-parallelism with a fast 2-gram
hashing heuristic filter. Later on, their algorithm is implemented as the agrep [17]

M. Oğuzhan Külekci: Filter Based Fast Matching of Long Patterns by Using SIMD Instructions, pp. 118–128.

Proceedings of PSC 2009, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04403-2 c© Czech Technical University in Prague, Czech Republic

M. O. Külekci: Filter Based Fast Matching of Long Patterns by Using SIMD Instructions 119

approximate match utility program, which is known to be very powerful especially
on approximate and multiple pattern matching. The average optimal (AOSO) and
fast average optimal (FAOSO) variants of the original shift-or [2] algorithm defined
by Fredriksson&Grabowski [7] may also be viewed from a filtering perspective since
they include a verification procedure.

The bit-parallel algorithms [14,15,9,7] that suffer from the computer word size
limitation1 in general can also be used in a filtering framework for searching patterns
longer than the computers word size. In such cases, the part of the pattern, which is
selected to be less than the word length, is searched on the text by the bit-parallel
algorithms, and rest of the pattern is verified on match positions. Moreover, char-
acter overloading for searching long patterns or multiple patterns with bit-parallel
techniques has been proposed previously [6,15,2] also.

More recently, Lecroq [13] has offered one of the most effective representative of
filtering algorithms. The simplicity and average speed of the Lecroq’s new algorithm
makes it a strong candidate in all practical cases including search on small alphabets.

The power of a filtering algorithm may be measured by two metrics: i) the dis-
tinguishing power of the proposed filtering method, ii) the computation speed of the
filtering function. If the filter is not very selective, then the average number of calls
to the verification procedure grows, which in turn degrades the performance. On the
other side, if the distinguishing power is good, but the computation of the filter is
expensive, then the speed again falls as it will consume more time to calculate the
filter value, although the recall of verification is small. This study aims to benefit
from the intrinsic SIMD instructions of the modern processors for fast calculation of
a distinguishing filter.

SIMD instructions let simultaneous execution of some operands on multiple data
by the help of a limited number of special registers. Figure 1 sketches the operation
on 128 bit SSE registers, x, y, z. In the example, each register is divided into 4 inte-
gers of 32 bit each, and the given operation ⊖ is performed and stored between the
corresponding data. Note that instead of using 4 integer portions, several other type
definitions exist on SSE intrinsics, such as viewing the 128 bit as 16 bytes, or 4 floats
also.

The original idea of SIMD was to speed up multimedia procedures, such as au-
dio/video/image processing issues. It is also used in cryptographic applications and
on some scientific computations. A good review of SIMD may be found in [8]. Despite
the fact that it has not been explored deeply in pattern matching, this study shows
that it serves as a good basis especially for filtering techniques.

x0 ⊖ y0 ⇒ z0

x1 ⊖ y1 ⇒ z1

x2 ⊖ y2 ⇒ z2

x3 ⊖ y3 ⇒ z3

Figure 1. The sketch of a sample SIMD instruction.

The algorithm introduced in this study, which will be referred as SSEF, uses Intel
streaming SIMD extensions (SSE [11]) technology. SSEF finds exact occurrences of
patterns longer than 32 bytes on random sequences. Experimental results indicated

1 Külekci [12] has proposed a bit-parallel algorithm which is not restricted with the computer word
size limitation.

120 Proceedings of the Prague Stringology Conference 2009

that on the average it is approximately 6 times faster than Lecroq’s new algorithm,
and 15% better than the backward oracle and suffix oracle methods, which are mainly
the best choices for long patterns until now.

2 Preliminaries and Basics

Let string S of k characters be shown as S = s0s1s2 · · · sk−1. Assuming each character
is represented by a single byte, S[i . . . j] shows the byte array [sisi+1si+2 · · · sj], where
0 ≤ i ≤ j < k. The individual bits of byte si are denoted by si = bi

0b
i
1b

i
2b

i
3b

i
4b

i
5b

i
6b

i
7,

where bi
0 is referred as sign(si). In chunks of 16 bytes, same string is represented

by S = C0C1C2 · · ·C⌊(k−1)/16⌋, where Ci = si·16si·16+1si·16+2 · · · si·16+15, for 0 ≤ i ≤
⌊(k − 1)/16⌋. The last block C⌊(k−1)/16⌋ is not complete if k 6= 0 mod 16. In that case,
the remaining bytes of the block are set to zero as sj = 0 for k − 1 < j.

Given text T and pattern P of lengths n and m bytes, the number of 16-byte
blocks in T and P are denoted by N = ⌈n/16⌉ and M = ⌈m/16⌉ respectively. The
individual bytes of text T are accessed by ti, 0 ≤ i < n, and similarly the 16-byte
blocks are addressed by Di, 0 ≤ i < N . The byte and block symbols for pattern P
are pi, 0 ≤ i < m, and Qi, 0 ≤ i < M respectively. Figure 2 demonstrates the defined
structure.

D0 D1 DN−1

t0t1 . . . t15 t16t17 . . . t31 t(N−1)·16t(N−1)·16+1 . . . tn−1

a) The representation of text T .

Q0 Q1 QM−1

p0p1 . . . p15 p16p17 . . . p31 p(M−1)·16p(M−1)·16+1 . . . pm−1

a) The representation of pattern P .

Figure 2.

The proposed filtering algorithm is designed to be effective on long patterns, where
the lower limit for m is 32 (32 ≤ m). Although it is possible to adapt the algorithm
for lesser lengths, the performance gets worse under 32. The number L is defined
as L = ⌊m/16⌋ − 1, which is the zero-based address of the last 16-byte block of Q
whose individual bytes are totally composed of pattern bytes without any padding.
For example, if m = 42, the 16-byte blocks of the pattern will be Q = Q0Q1Q2, where
the last 6 bytes of Q2 are padded with zero. The L value for m = 42 is L = 1, which
indicates the last whole block of the pattern is Q1. Actually, if length of the pattern is
a multiple of 16, there is no remainder in the last 16-byte block, and thus, L = M −1.
In the other case, L should point to the block preceding the last one as the last one
is not a complete block, making L = M − 2.

The basic idea of the proposed algorithm is to compute a filter on block Dz·L+L,
where 0 ≤ z < ⌊N/L⌋, to explore if it is appropriate to observe pattern P beginning
from any byte inside the prior blocks Dz·L to Dz·L+(L−1). If the filter value indicates
some of the alignments are possible, then those fitting ones are compared with the
text byte by byte.

M. O. Külekci: Filter Based Fast Matching of Long Patterns by Using SIMD Instructions 121

Figure 3 demonstrates this basic idea by assuming i = z ·L. Note that as m ≥ 32,
and L = ⌊m/16⌋ − 1, the pattern fills the bytes in Di+L always.

Block No Di Di+1 Di+L−1 Di+L

Bytes of T ti·16 t(i+1)·16 t(i+L−1)·16 . . . t(i+L)·16 . . . t(i+1)·16+15

P aligned to ti·16 p0 p16 p(L−1)·16 . . . pL·16 . . . pL·16+15

P aligned to ti·16+1 p0 p15 p(L−1)·16−1 . . . pL·16−1 . . . pL·16+14

. .

P aligned to ti·16+15 p0 p1 p(L−1)·16−15 . . . pL·16−15 . . . pL·16

. .

P aligned to t(i+L)·16−1 p0 p1 . . . p16

Figure 3. Appropriate alignments of pattern P according to the filter value computed
from Di+L,for any i = z · L

3 The SSEF Exact Pattern Matching Algorithm

3.1 Preprocessing

The preprocessing stage of the algorithm consist of compiling the possible filter values
of the pattern according to the alignments shown in figure 3. Formally, the filter
values for P [(L · 16) . . . (L · 16 + 15)], P [(L · 16 − 1) . . . (L · 16 + 14)], . . . , P [1 . . . 16]
are computed and stored in a linked list, which will be referred as FList from now
on. The pseudo-code of the preprocessing procedure is depicted in Algorithm 1.

Algorithm 1 PreProcess(P = p0p1p2 · · · pm−1,K)

1: for i = 0 to 65535 do

2: FList[i] = ∅;
3: end for

4: L = ⌊m/16⌋ − 1
5: for i = 0 to L · 16 − 1 do

6: r = L · 16 − i;
7: f = sign(pi << K) · 215 + sign(pi+1 << K) · 214 + · · · + sign(pi+15 << K)
8: FList[f] = FList[f] ∪ i;
9: end for

10: return L;

The corresponding filter of a 16 bytes sequence is the 16 bits formed by concatenat-
ing the sign bits of each byte after shifting by K bits as shown in line 7 of Algorithm 1.
The reason for shifting is to generate a distinguishing filter. For example, when the
search is to be performed on an English text, the sign bits of bytes are generally 0
as in the standard ascii table the printable characters of the language reside in first
128, where the sign bits are always 0. If we do not include a shift operation, then the
filter f value will be 0 in all cases, and while passing over the text verification will be
called at each byte. On the other hand, if the text we are searching on is composed of
uniformly distributed random 256 bytes, then there is obviously no need for shifting.

122 Proceedings of the Prague Stringology Conference 2009

Hence, the K value is to be decided depending on the alphabet size and character
distribution of the text. K should be set to a value that the most informative bit of
the byte must become the sign bit after shift operation. Thus, detection of the most
informative bit among the 8 bits of a byte is required for best filtering. This is actually
the position on which the distribution of the bits among the whole text is close to
their expected values. Note that this requires an additional pass over the whole text,
which is not good in practice. A more practical approach may be to consider just the
alphabet, and assume the distribution of characters is uniform on the given text. In
that case, we are left with just the |Σ| bytes, and it is more convenient to decide on
the bit position. As an example, let’s consider pattern matching on an ascii coded
plain DNA sequence, where the alphabet is ’a’,’t’,’c’,’g’ having ascii codes 01100001,
01110100, 01100011, and 01100111 respectively. The first three bits and the fifth bit
are all same. Since the number of 1s and 0s are equal on the sixth and seventh positions
from the remaining bits, one of them, say 6th, may be used as the distinguishing bit.
Thus, while searching on a DNA sequence, setting K = 5 to move this bit to the sign
bit position would be a good choice when only the alphabet is considered.

3.2 Main algorithm

The pseudo code given in Algorithm 2 depicts the skeleton of the SSEF . After the
preprocessing stage, the main loop investigates 16-byte blocks of text T in steps of
L. If the filter f computed on Di, where i = z · L + L, and 0 ≤ z < ⌊N/L⌋, is not
empty, then the appropriate positions listed in FList[f] are verified accordingly.

Algorithm 2 SSEF(P = p0p1p2 · · · pm−1, T = t0t1t2 · · · tm−1)
1: Set K = a, 0 ≤ a < 8, according to the alphabet;
2: i = L =PreProcess(P,K);
3: while i < N do

4: f = sign(ti·16 << K) · 215 + sign(ti·16+1 << K) · 214 + · · · + sign(ti·16+15 << K)
5: for all j ∈ FList[f] do

6: if P = [t(i−L)·16+j . . . t(i−L)·16+j+m−1] then

7: pattern detected at t(i−L)·16+j ;
8: end if

9: end for

10: i = i + L;
11: end while

Flist[f] contains a linked list of integers marking the beginning of the pattern.
While investigating the filter on Di, if FList[f] contains number j, where 0 ≤ j <
16·L, the pattern potentially begins at t(i−L)·16+j. In that case, a complete verification
is to be performed between P and [t(i−L)·16+j . . . t(i−L)·16+j+m−1].

Calculating the corresponding filter of D
i via SSE intrinsics The computa-

tion of the filter f of Di in line 4 of pseudo code given in Alg. 2 is performed by 2
SSE2 intrinsic functions as
1: tmp128 = mm slli epi64(Di, K);
2: f = mm movemask epi8(tmp128);

First instruction shifts the corresponding 16 bytes of the text Di by K bits and
stores the result in a temporary 128 bit register aiming not to destruct Di itself.

Second, the instruction mm movemask epi8 returns a 16 bit mask composed of the
sign bits of the individual 16 bytes forming the 128 bit value. Figure 4 demonstrates
this function.

M. O. Külekci: Filter Based Fast Matching of Long Patterns by Using SIMD Instructions 123

Dj

b16·j
0 b16·j

1 . . . b16·j
7 b16·j+1

0 b16·j+1
1 . . . b16·j+1

7 b16·j+15
0 b16·j+15

1 . . . b16·j+15
7

⇓
mm movemask epi8

⇓

b16·j
0 b16·j+1

0 b16·j+2
0 . . . b16·j+15

0

Figure 4. The mm movemask epi8 SSE instruction as the filter.

4 Complexity Analysis

The preprocessing stage of the SSEF algorithm requires an additional space to store
the 65536 items of FList linked list. On a 32 bit machine, assuming each node consist
of an integer and a next pointer, this makes up a total of 512 KB (= 65536× 8 byte)
memory requirement.

The first loop in Algorithm 1 just initializes the FList list, and the second for loop
is run L · 16 times during the preprocessing. Thus, time complexity of preprocessing
is O(L · 16) that approximates to O(m).

SSEF algorithm investigates the N 16-byte block text T in steps of L blocks.
Total number of filtering operations is exactly ⌊N/L⌋. At each attempt, maximum
number of verification requests is L · 16, since the filter gives information about that
number of appropriate alignments of the pattern. This situation can also be viewed
from figure 3. On the other hand, if the computed filter is empty, then there is
obviously no need for verification. The verification cost is assumed to be O(m) with
the brute-force checking of the pattern.

From these facts, the best case complexity is O(⌊N/L⌋), and worst case complexity
is O(⌊N/L⌋ · (L · 16) · m). Remembering the definitions of N and L as N = ⌈n/16⌉,
and L = ⌊m/16⌋ − 1, the best/worst time complexities approximately converges to
O(n/m) and O(n.m) respectively, which are equivalent to standard Boyer-Moore [3]
algorithm.

There are at most L · 16 distinct filter values for any given pattern among the
possible 65536 values. Hence, the probability that the filter computed on Di+L hits
to a non-empty set is L · 16/65536. This indicates that verification will be requested
for ⌊N/L⌋× (L · 16/65536) times during the whole execution, assuming characters of
the text is randomly uniform distributed. The average case complexity, being sum of
the filter computation time and verification computation time, is then O(⌊N/L⌋ +
⌊N/L⌋ × (L · 16/65536) × m), which converges to O(n/m + n · m/65536).

5 Implementation and Experimental Results

The SSEF algorithm is implemented on 64 bit Intel Xeon processor with 3 GB of
memory. All of the algorithms included in tests are compiled with GNU C compiler
gcc 4.1.2 with full optimization turned on by -O3 flag.

The SSE instructions used in the study require the source data to be 16-byte
aligned for best performance. The cost of misalignment is very high [16,10,11], and
special attention was paid to make sure that the text is properly aligned. For that
purpose the input text is loaded to the memory ensuring that it is 16-byte aligned by
using union aggregate with m128i data type introduced by SSE intrinsics as shown
in figure 5.

124 Proceedings of the Prague Stringology Conference 2009

typedef union{

__m128i* data16;

unsigned char* data;

} TEXT;

Figure 5. The TEXT data type defined for 16-byte alignment of data.

The performance of SSEF algorithm is compared with:

– Lecroq’s q-hash algorithm, which is one of the best filtering algorithms [13], with
ranks q = 3 (3-hash) and q = 8 (8-hash).

– The quick search (QS) of Sunday, which is a fast implementation of standard
Boyer-Moore [3].

– The BLIM of Külekci [12], as this bit-parallel algorithm is not limited with the
computer word size, and thus can be run on long patterns also.

– Fast variants of backward oracle and suffix oracle matching [1]. BOM2 and BSOM2
are especially fast on long patterns.

|Σ| = 256 |Σ| = 128
2-bit encoded DNA sequence English text

Len. BLIM 3-hash 8-hash QS BOM2 BSOM2 SSEF BLIM 3-hash 8-hash QS BOM2 BSOM2 SSEF
32 11,06 10,69 11,05 10,53 9,46 9,47 12,03 10,38 9,44 9,75 10,05 9,65 10,04 10,88
96 12,16 11,11 10,85 11,35 9,03 9,12 9,69 11,24 9,80 9,57 10,36 8,51 8,56 8,74
160 13,20 15,14 14,64 16,06 6,60 6,88 6,64 12,50 13,31 12,85 12,56 8,08 8,03 5,95
224 14,18 14,33 13,94 15,29 5,09 5,28 4,66 13,72 12,29 12,11 12,20 6,30 6,23 4,21
288 15,14 13,87 13,57 14,43 4,12 4,23 3,58 14,89 11,57 11,66 12,03 5,11 5,06 3,21
352 16,16 13,32 13,09 13,95 3,45 3,59 2,91 16,06 11,12 11,26 11,66 4,46 4,41 2,58
416 17,14 12,81 12,66 13,28 2,96 3,05 2,44 17,22 10,43 10,67 11,32 3,82 3,75 2,17
480 18,07 12,30 12,20 12,84 2,56 2,62 2,16 18,43 10,00 10,33 11,19 3,50 3,41 1,80
544 19,14 11,87 11,85 12,55 2,22 2,24 1,90 19,53 9,38 9,85 11,05 3,03 3,02 1,62
608 20,26 11,58 11,53 12,16 1,93 1,96 1,68 20,34 9,07 9,64 10,62 2,85 2,79 1,45
672 21,01 11,33 11,23 11,86 1,69 1,67 1,54 21,26 8,65 9,36 10,39 2,60 2,55 1,34
736 22,06 11,14 11,07 11,72 1,52 1,50 1,36 22,16 8,52 9,16 10,00 2,48 2,36 1,21
800 23,00 11,00 10,89 11,53 1,37 1,41 1,21 23,22 8,28 9,04 9,91 2,28 2,26 1,13
864 23,99 10,78 10,78 11,30 1,31 1,29 1,15 24,01 7,96 8,78 9,51 2,14 2,08 1,06
928 25,07 10,76 10,74 11,40 1,20 1,24 1,09 25,05 7,75 8,67 9,28 2,00 1,99 1,01
992 26,22 10,66 10,67 11,22 1,19 1,20 0,98 25,92 7,46 8,54 8,99 1,94 1,91 0,90
1056 27,41 10,62 10,63 11,08 1,16 1,18 0,96 27,16 7,26 8,54 8,97 1,78 1,81 0,92
1248 30,82 10,48 10,53 10,89 1,10 1,15 0,92 30,44 7,07 8,39 8,37 1,72 1,70 0,84
1440 34,19 10,40 10,51 10,51 1,11 1,16 0,82 33,75 6,75 8,20 7,93 1,60 1,64 0,80
1632 38,05 10,42 10,40 10,64 1,16 1,17 0,84 37,20 6,53 8,21 7,67 1,57 1,60 0,76
1824 41,85 10,49 10,44 10,56 1,22 1,21 0,82 41,35 6,57 8,21 7,72 1,57 1,60 0,75
2000 47,09 10,40 10,46 10,99 1,28 1,25 0,81 45,84 6,26 8,08 7,62 1,57 1,60 0,76
Avg. 27,79 11,27 11,2 11,67 2,33 2,37 2,14 27,4 8,22 9,16 9,36 2,96 2,96 1,94

Table 1. Experimental comparison of algorithms on large alphabets.

Benchmarks are conducted on various text files having small (Σ = {2, 4}), medium
(Σ = {16, 20}), and large (Σ = {128, 256}) alphabets. In practice, small alphabets
mimic the nucleic acid sequences, and middle alphabets correspond to biological se-
quences with larger blocks such as amino acids or proteins. Large alphabets represent

M. O. Külekci: Filter Based Fast Matching of Long Patterns by Using SIMD Instructions 125

the case for natural languages, and series of random bytes such as the compressed
files.

The summary of the data sets2 used in the experiments are given in Table 2.
The distribution of characters are randomly uniform on all data sets except the 5th

one, which is a natural language text. Remembering the discussion in section 3, it
is enough to consider the character codings of the alphabet while deciding on the
value of bit shift amount K on test files except the English text. On natural language
text file, the experiment is repeated for all possible K values as K = 0, . . . , 7. It is
observed that the performances are compatible for K ∈ {3, 4, 5, 7}, and significantly
worse on K ∈ {1, 2}. Obviously, selecting K = 0 is the worst since it does not include
any distinguishing power on the set of printable ascii characters.

|Σ| Data set Size K-bit shift
1 2 Uniformly distributed random sequence of two characters (’a’ and ’b’). 30 MB 6
2 4 Plain ASCII coded DNA sequence from Manzini’s DNA corpus 21.6 MB 5
3 16 Uniformly distributed random sequence of 16 characters (’a’ ... ’p’). 30 MB 7
4 20 Uniformly distributed random sequence of 20 characters (’a’ ... ’t’). 30 MB 7
5 128 English text from enwik8 corpus. 20 MB 7
6 256 2-bit encoded DNA sequence from Manzini’s DNA corpus. 22.7 MB 0

Table 2. Test files used in the experiments.

Patterns of length 32 to 2000 are randomly selected from the input text, and
searched via the included algorithms. 100 samples are taken for each length, and
each sample is matched 10 times on the text. The mean user times are recorded by
getrusage function.

Tables 1 and 3 compare the timings of BLIM, 3-hash, 8-hash, QS, BOM2, BSOM2
and SSEF for various pattern lengths in milliseconds. Experimental results indicate
that the SSEF algorithm is the clear winner on all tested alphabet sizes and followed
by the BOM2 and BSOM2 algorithms, which are actually known to be the fastest ones
on long pattern matching. The performance of BOM2 and BSOM2 are quite good,
but with the increasing length of the patterns, the SSEF becomes more dominant.
The performances of BOM2/BSOM2 and SSEF improves with the increased length,
where Lec3 and Lec8 are not very much effected with the length.

Table 4 summarizes the average measured speeds of the algorithms in mega byte
per seconds on tested alphabet sizes. Based on the overall speeds depicted in this table,
the performance gain is maximum on small alphabets. SSEF is 3.62 and 2.47 times
faster than its nearest successor on binary alphabet and plain text DNA sequences
respectively. When medium size alphabets are concerned, it is 40 % faster than the
following best. On natural language text, the performance of the BOM2/BSOM2
degrades a little bit since the underlying data is not uniform now, and thus, SSEF is
50 % more speedy in this case. When timings on 256-byte alphabets are investigated,
10 % improvement is observed according to the next best BOM2 algorithm.

SSEF is approximately more than 5 times faster than the q-hash family, which is
one of the best representative of filter-then-search algorithms. Note that the speed

2 Manzini’s DNA compression benchmark corpus can be downloaded from
http://web.unipmn.it/manzini/dnacorpus.
The enwik8.txt file is the subject of the Hutter Prize compression competition, and can be down-
loaded from http://prize.hutter1.net

126 Proceedings of the Prague Stringology Conference 2009

|Σ| = 4 |Σ| = 2
Plain ascii DNA sequence Randomly uniform sequence of 2 characters

Len. BLIM 3-hash 8-hash QS BOM2 BSOM2 SSEF BLIM 3-hash 8-hash QS BOM2 BSOM2 SSEF
32 15,19 10,95 10,54 49,48 16,20 20,56 11,87 37,09 52,06 14,62 212,37 39,52 52,17 16,17
96 12,30 11,04 10,40 50,27 10,72 11,71 9,45 19,12 51,98 14,54 218,18 21,27 25,40 13,06
160 13,44 12,54 14,06 51,37 15,77 16,30 6,53 20,22 51,67 19,46 224,04 31,59 35,95 8,98
224 14,59 12,60 13,42 53,10 12,22 12,53 4,56 21,38 51,88 18,45 223,00 23,60 26,61 6,32
288 15,68 12,69 12,99 50,60 10,06 10,21 3,46 22,51 50,74 18,02 213,45 19,04 21,51 4,87
352 16,84 12,64 12,65 52,89 8,69 8,81 2,85 23,65 52,40 17,47 225,81 16,20 18,06 4,00
416 17,94 12,67 12,03 50,04 7,53 7,66 2,36 24,68 51,86 16,77 218,05 14,13 15,63 3,36
480 19,04 12,74 11,62 49,88 6,75 6,83 2,03 25,92 51,53 16,27 222,09 12,61 13,87 2,91
544 20,24 12,72 11,25 49,96 6,11 6,12 1,82 26,96 51,48 15,90 218,66 11,43 12,47 2,60
608 21,31 12,57 10,92 52,87 5,56 5,65 1,61 28,09 51,17 15,45 221,21 10,50 11,38 2,36
672 22,45 12,56 10,70 51,64 5,12 5,14 1,46 29,18 49,81 15,20 216,25 9,77 10,50 2,21
736 23,50 12,42 10,47 51,07 4,76 4,78 1,35 30,32 51,23 14,90 215,31 9,16 9,75 1,95
800 24,70 12,48 10,16 51,76 4,44 4,45 1,22 31,45 52,17 14,62 220,85 8,59 9,06 1,81
864 25,87 12,21 9,98 51,40 4,13 4,20 1,15 32,46 49,82 14,58 216,94 8,19 8,55 1,62
928 26,87 12,44 9,98 51,37 3,88 3,91 1,11 33,67 50,32 14,42 219,99 7,76 8,08 1,55
992 28,04 12,25 9,80 49,86 3,68 3,70 1,02 34,88 49,84 14,44 204,53 7,38 7,62 1,46
1056 29,42 12,33 9,74 49,15 3,46 3,50 1,00 36,31 50,32 14,32 217,54 7,07 7,31 1,30
1248 33,10 12,22 9,56 49,44 2,95 3,04 0,92 39,67 49,15 14,07 210,31 6,14 6,23 1,19
1440 36,82 12,26 9,35 48,10 2,59 2,68 0,88 43,54 51,81 14,07 215,02 5,41 5,51 1,10
1632 40,67 12,18 9,16 53,39 2,40 2,46 0,83 47,15 50,50 14,15 228,67 4,82 4,89 1,00
1824 44,68 12,18 9,18 51,01 2,27 2,27 0,84 51,21 51,56 14,27 223,11 4,42 4,44 0,96
2000 50,42 12,17 8,96 50,21 2,18 2,37 0,78 57,04 51,08 14,04 214,72 4,16 4,04 0,93
Avg. 29,62 12,27 10,31 50,81 5,23 5,48 2,12 36,80 51,01 15,04 218,52 10,47 11,64 2,89

a) Benchmarks on small alphabet sequences.

|Σ| = 20 |Σ| = 16
Randomly uniform sequence of 20 characters Randomly uniform sequence of 16 characters

Len. BLIM 3-hash 8-hash QS BOM2 BSOM2 SSEF BLIM 3-hash 8-hash QS BOM2 BSOM2 SSEF
32 14,89 14,40 14,60 15,50 13,28 13,50 15,76 15,00 14,46 14,62 16,75 13,32 13,68 16,40
96 15,87 15,30 14,48 15,12 12,32 12,47 12,79 16,00 15,34 14,48 16,15 12,48 12,71 13,06
160 17,04 19,67 19,37 15,21 10,67 11,10 8,78 17,03 18,89 19,44 15,96 11,79 12,13 9,01
224 18,16 19,23 18,50 15,22 8,33 8,66 6,16 18,16 18,61 18,55 16,12 9,26 9,44 6,32
288 19,29 18,90 18,02 15,22 6,96 7,21 4,76 19,34 18,48 17,96 16,18 7,57 7,74 4,91
352 20,42 18,70 17,38 15,20 6,04 6,21 3,86 20,45 18,30 17,40 16,06 6,39 6,54 3,99
416 21,55 18,55 16,83 15,30 5,30 5,48 3,31 21,54 18,30 16,81 16,13 5,53 5,70 3,40
480 22,64 18,34 16,20 15,26 4,69 4,92 2,89 22,67 18,17 16,28 15,94 4,84 5,05 2,92
544 23,78 18,10 15,78 15,20 4,21 4,40 2,58 23,86 18,02 15,89 16,07 4,34 4,53 2,58
608 24,89 17,96 15,39 15,38 3,83 4,06 2,33 24,95 17,90 15,43 16,11 3,98 4,15 2,33
672 26,04 17,70 15,14 15,20 3,54 3,71 2,13 26,10 17,76 15,11 16,04 3,64 3,80 2,15
736 27,19 17,68 14,86 15,22 3,23 3,43 1,94 27,19 17,54 14,87 15,97 3,38 3,53 1,92
800 28,26 17,50 14,56 15,22 3,01 3,14 1,77 28,22 17,54 14,64 16,14 3,14 3,27 1,74
864 29,45 17,32 14,52 15,18 2,74 2,96 1,64 29,50 17,42 14,48 16,06 2,97 3,06 1,64
928 30,49 17,18 14,49 15,18 2,57 2,98 1,49 30,61 17,29 14,38 16,16 2,84 2,89 1,53
992 31,73 17,14 14,31 15,14 2,41 2,65 1,38 31,80 17,26 14,30 16,16 2,69 2,81 1,47
1056 33,08 17,05 14,23 15,26 2,21 2,37 1,32 33,04 17,23 14,31 16,02 2,54 2,68 1,34
1248 36,59 16,84 14,17 15,18 1,97 2,08 1,11 36,78 16,96 14,13 16,10 2,30 2,35 1,17
1440 40,34 16,70 14,06 15,26 1,82 1,86 1,01 40,50 16,85 13,99 16,23 2,11 2,15 1,08
1632 44,08 16,56 14,04 15,24 1,71 1,81 0,96 44,04 16,86 14,04 16,08 2,00 2,01 1,00
1824 48,05 16,45 14,08 15,26 1,73 1,76 0,92 48,04 16,54 14,05 16,13 1,92 1,94 1,00
2000 53,94 16,39 14,09 15,20 1,68 1,80 0,94 53,16 16,51 14,14 16,20 1,93 2,02 0,92
Avg. 33,22 17,23 15,04 15,27 3,84 4,00 2,81 33,06 17,20 15,00 16,11 4,13 4,24 2,90

b) Benchmarks on medium alphabet sequences.

Table 3. Experimental comparison of algorithms on small and medium alphabets.

M. O. Külekci: Filter Based Fast Matching of Long Patterns by Using SIMD Instructions 127

|Σ| BLIM 3-hash 8-hash QS BOM2 BSOM2 SSEF

2 815,24 588,07 1994,18 137,29 2865,06 2577,82 10382,87
4 729,20 1760,55 2094,16 425,14 4126,17 3939,90 10201,31
16 907,38 1744,17 1999,72 1862,76 7269,64 7074,85 10347,06
20 903,09 1741,58 1994,93 1965,23 7809,45 7507,04 10659,09
128 729,85 2433,05 2182,84 2135,84 6750,49 6748,78 10307,95
256 816,72 2015,00 2026,76 1945,14 9749,29 9591,72 10585,84

Table 4. Average speed of the tested algorithms in MB/sec for each |Σ| alphabet
size.

of the proposed algorithm is not much effected with the size or distribution of the
alphabet unlike its nearest competitors BOM2 and BSOM2.

6 Conclusion

This study introduced a filter-then-search type pattern matching algorithm for long
patterns benefiting from computers intrinsic SIMD instructions. Using SIMD intrin-
sics has not been much addressed in pattern matching, and this study is an initial
exploration of designing algorithms according to that technology, which is developing
very fast.

The proposed SSEF algorithm is implemented on Intel’s SSE (version 2) technol-
ogy. Experimental benchmarks showed that on every alphabet sizes it is faster than
all competitors included in this study. Considering the orders of magnitude perfor-
mance gain on small and medium alphabet sizes, SSEF becomes a strong alternative
for exact matching of long patterns on biological sequences.

The best and worst case time complexities being O(n/m) and O(n·m) respectively
are identical with the classical Boyer-Moore type algorithms. The main improvement
comes with the average case complexity of O(n ·m/216). Note that the performance of
the algorithm is independent of the alphabet size (assuming |Σ| > 1), and conducted
experiments proves this empirically also.

References

1. C. Allauzen, M. Crochemore, and M. Raffinot: Factor oracle: A new structure for

pattern matching, in Proceedings of SOFSEM’99, vol. 1725 of LNCS, Springer Verlag, 1999,
pp. 291–306.

2. R. Baeza-Yates and G. Gonnet: A new approach to text searching. Communications of the
ACM, 35(10) 1992, pp. 74–82.

3. R. Boyer and J. Moore: A fast string searching algorithm. Communications of the ACM,
20(10) 1977, pp. 762–772.

4. C. Charras and T. Lecroq: Handbook of exact string matching algorithms, King’s Collage
Publications, 2004.

5. M. Crochemore and W. Rytter: Jewels of stringology, World Scientific Publishing, 2003.
6. K. Fredriksson: Faster string matching with super–alphabets, in Proceedings of the 9th In-

ternational Symposium on String Processing and Information Retrieval (SPIRE’2002), LNCS
2476, Springer–Verlag, 2002, pp. 44–57.

7. K. Fredriksson and S. Grabowski: Practical and optimal string matching, in Proceed-
ings of the 12th International Symposium on String Processing and Information Retrieval
(SPIRE’2005), LNCS 3772, Springer–Verlag, 2005, pp. 374–385.

128 Proceedings of the Prague Stringology Conference 2009

8. M. Hassaballah, S. Omran, and Y. Mahdy: A review of SIMD multimedia extensions and

their usage in scientific and engineering applications. The Computer Journal, 51(6) November
2008, pp. 630–649.

9. J. Holub and B.Durian: Fast variants of bit parallel approach to suffix automata. Unpublished
Lecture, University of Haifa, April 2005.

10. I. Hurbain and G. Silber: An empirical study of some x86 simd integer extensions, in
Proceedings of CPC’2006, 12th International Workshop on Compilers for Parallel Computers,
Spain, January 9–11 2006.

11. Intel Corporation, Intel Pentium 4 and Intel Xeon Processor Optimization Reference Man-

ual, 2001.
12. M. O. Külekci: A method to overcome computer word size limitation in bit-parallel pattern

matching, in Proceedings of 19th International Symposium on Algorithms and Computation,
ISAAC’2008, S.-H. Hong, H. Nagamochi, and T. Fukunaga, eds., vol. 5369 of Lecture Notes in
Computer Science, Gold Coast, Australia, December 2008, Springer Verlag, pp. 496–506.

13. T. Lecroq: Fast exact string matching algorithms. Information Processing Letters, 102(6)
2007, pp. 229–235.

14. G. Navarro and M. Raffinot: Fast and flexible string matching by combining bit-parallelism

and suffix automata. ACM Journal of Experimental Algorithms, 5(4) 2000, pp. 1–36.
15. H. Peltola and J. Tarhio: Alternative algorithms for bit-parallel string matching, in LNCS

2857, Proceedings of SPIRE’2003, 2003, pp. 80–94.
16. A. Shahbahrami, B. Juurlink, and S. Vassiliadis: Performance impact of misaligned

accesses in simd extensions, in Proceeedings of ASAP’05, IEEE Conference on Application
Spesific Systems Architecture Procesors, Washington,DC, USA, 2005, pp. 393–398.

17. S. Wu and U. Manber: Agrep – a fast approximate pattern-matching tool, in Proceedings of
USENIX Winter 1992 Technical Conference, 1992, pp. 153–162.

18. S. Wu and U. Manber: Fast text searching allowing errors. Communications of the ACM,
35(10) 1992, pp. 83–91.

