
On Bijective Variants of the

Burrows-Wheeler Transform

Manfred Kufleitner

Universität Stuttgart, FMI,
Universitätsstr. 38, 70569 Stuttgart, Germany

kufleitner@fmi.uni-stuttgart.de

Abstract. The sort transform (ST) is a modification of the Burrows-Wheeler trans-
form (BWT). Both transformations map an arbitrary word of length n to a pair con-
sisting of a word of length n and an index between 1 and n. The BWT sorts all rotation
conjugates of the input word, whereas the ST of order k only uses the first k letters
for sorting all such conjugates. If two conjugates start with the same prefix of length
k, then the indices of the rotations are used for tie-breaking. Both transforms output
the sequence of the last letters of the sorted list and the index of the input within the
sorted list. In this paper, we discuss a bijective variant of the BWT (due to Scott),
proving its correctness and relations to other results due to Gessel and Reutenauer
(1993) and Crochemore, Désarménien, and Perrin (2005). Further, we present a novel
bijective variant of the ST.

1 Introduction

The Burrows-Wheeler transform (BWT) is a widely used preprocessing technique
in lossless data compression [5]. It brings every word into a form which is likely to
be easier to compress [18]. Its compression performance is almost as good as PPM
(prediction by partial matching) schemes [7] while its speed is comparable to that
of Lempel-Ziv algorithms [13,14]. Therefore, BWT based compression schemes are a
very reasonable trade-off between running time and compression ratio.

In the classic setting, the BWT maps a word of length n to a word of length n and
an index (comprising O(log n) bits). Thus, the BWT is not bijective and hence, it
is introducing new redundancies to the data, which is cumbersome and undesired in
applications of data compression or cryptography. Instead of using an index, a very
common technique is to assume that the input has a unique end-of-string symbol
[3,18]. Even though this often simplifies proofs or allows speeding up the algorithms,
the use of an end-of-string symbol introduces new redundancies (again O(log n) bits
are required for coding the end-of-string symbol).

We discuss bijective versions of the BWT which are one-to-one correspondences
between words of length n. In particular, no index and no end-of-string symbol is
needed. Not only does bijectivity save a few bits, for example, it also increases data
security when cryptographic procedures are involved; it is more natural and it can
help us to understand the BWT even better. Moreover, the bijective variants give
us new possibilities for enhancements; for example, in the bijective BWT different
orders on the letters can be used for the two main stages.

Several variants of the BWT have been introduced [2,17]. An overview can be
found in the textbook by Adjeroh, Bell, and Mukherjee [1]. One particularly important
variant for this paper is the sort transform (ST), which is also known under the name
Schindler transform [22]. In the original paper, the inverse of the ST is described only

Manfred Kufleitner: On Bijective Variants of the Burrows-Wheeler Transform, pp. 65–79.

Proceedings of PSC 2009, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04403-2 c© Czech Technical University in Prague, Czech Republic

66 Proceedings of the Prague Stringology Conference 2009

very briefly. More precise descriptions and improved algorithms for the inverse of the
ST have been proposed recently [19,20,21]. As for the BWT, the ST also involves an
index or an end-of-string symbol. In particular, the ST is not onto and it introduces
new redundancies.

The bijective BWT was discovered and first described by Scott (2007), but his
exposition of the algorithm was somewhat cryptic, and was not appreciated as such.
In particular, the fact that this transform is based on the Lyndon factorization went
unnoticed by Scott. Gil and Scott [12] provided an accessible description of the algo-
rithm. Here, we give an alternative description, a proof of its correctness, and more
importantly, draw connections between Scott’s algorithm and other results in combi-
natorics on words. Further, this variation of the BWT is used to introduce techniques
which are employed at the bijective sort transform, which makes the main contribu-
tion of this paper. The forward transform of the bijective ST is rather easy, but we
have to be very careful with some details. Compared with the inverse of the bijective
BWT, the inverse of the bijective ST is more involved.

Outline. The paper is organized as follows. In Section 2 we fix some notation
and repeat basic facts about combinatorics on words. On our way to the bijective
sort transform (Section 6) we investigate the BWT (Section 3), the bijective BWT
(Section 4), and the sort transform (Section 5). We give full constructive proofs for
the injectivity of the respective transforms. Each section ends with a running example
which illustrates the respective concepts. Apart from basic combinatorics on words,
the paper is completely self-contained.

2 Preliminaries

Throughout this paper we fix the finite non-empty alphabet Σ and assume that Σ
is equipped with a linear order ≤. A word is a sequence a1 · · · an of letters ai ∈ Σ,
1 ≤ i ≤ n. The set of all such sequences is denoted by Σ∗; it is the free monoid over Σ
with concatenation as composition and with the empty word ε as neutral element.
The set Σ+ = Σ∗ \{ε} consists of all non-empty words. For words u, v we write u ≤ v
if u = v or if u is lexicographically smaller than v with respect to the order ≤ on the
letters. Let w = a1 · · · an ∈ Σ+ be a non-empty word with letters ai ∈ Σ. The length

of w, denoted by |w|, is n. The empty word is the unique word of length 0. We can
think of w as a labeled linear order: position i of w is labeled by ai ∈ Σ and in this
case we write λw(i) = ai, so each word w induces a labeling function λw. The first
letter a1 of w is denoted by first(w) while the last letter an is denoted by last(w).
The reversal of a word w is w = an · · · a1. We say that two words u, v are conjugate

if u = st and v = ts for some words s, t, i.e., u and v are cyclic shifts of one another.
The j-fold concatenation of w with itself is denoted by wj. A word u is a root of w
if w = uj for some j ∈ N. A word w is primitive if w = uj implies j = 1 and hence
u = w, i.e., w has only the trivial root w.

The right-shift of w = a1 · · · an is r(w) = ana1 · · · an−1 and the i-fold right
shift ri(w) is defined inductively by r0(w) = w and ri+1(w) = r(ri(w)). We have
ri(w) = an−i+1 · · · ana1 · · · an−i for 0 ≤ i < n. The word ri(w) is also well-defined
for i ≥ n and then ri(w) = rj(w) where j = i mod n. We define the ordered con-

jugacy class of a word w ∈ Σn as [w] = (w1, . . . , wn) where wi = ri−1(w). It is
convenient to think of [w] as a cycle of length n with a pointer to a distinguished

Manfred Kufleitner: On Bijective Variants of the Burrows-Wheeler Transform 67

starting position. Every position i, 1 ≤ i ≤ n, on this cycle is labeled by ai. In par-
ticular, a1 is a successor of an on this cycle since the position 1 is a successor of the
position n. The mapping r moves the pointer to its predecessor. The (unordered)
conjugacy class of w is the multiset {w1, . . . , wn}. Whenever there is no confusion,
then by abuse of notation we also write [w] to denote the (unordered) conjugacy
class of w. For instance, this is the case if w is in some way distinguished within its
conjugacy class, which is true if w is a Lyndon word. A Lyndon word is a non-empty
word which is the unique lexicographic minimal element within its conjugacy class.
More formally, let [w] = (w,w2, . . . , wn), then w ∈ Σ+ is a Lyndon word if w < wi

for all i ∈ {2, . . . , n}. Lyndon words have a lot of nice properties [15]. For instance,
Lyndon words are primitive. Another interesting fact is the following.

Fact 1 (Chen, Fox, and Lyndon [6]). Every word w ∈ Σ+ has a unique factor-

ization w = vs · · · v1 such that v1 ≤ · · · ≤ vs is a non-decreasing sequence of Lyndon

words.

An alternative formulation of the above fact is that every word w has a unique
factorization w = vns

s · · · vn1

1 where ni ≥ 1 for all i and where v1 < · · · < vs is a
strictly increasing sequence of Lyndon words. The factorization of w as in Fact 1 is
called the Lyndon factorization of w. It can be computed in linear time using Duval’s
algorithm [9].

Suppose we are given a multiset V = {v1, . . . , vs} of Lyndon words enumerated
in non-decreasing order v1 ≤ · · · ≤ vs. Now, V uniquely determines the word w =
vs · · · v1. Therefore, the Lyndon factorization induces a one-to-one correspondence
between arbitrary words of length n and multisets of Lyndon words of total length n.
Of course, by definition of Lyndon words, the multiset {v1, . . . , vs} of Lyndon words
and the multiset {[v1], . . . , [vs]} of conjugacy classes of Lyndon words are also in
one-to-one correspondence.

We extend the order ≤ on Σ as follows to non-empty words. Let wω = www · · ·
be the infinite sequences obtained as the infinite power of w. For u, v ∈ Σ+ we
write u ≤ω v if either uω = vω or uω = paq and vω = pbr for p ∈ Σ∗, a, b ∈ Σ
with a < b, and infinite sequences q, r; phrased differently, u ≤ω v means that the
infinite sequences uω and vω satisfy uω ≤ vω. If u and v have the same length, then
≤ω coincides with the lexicographic order induced by the order on the letters. For
arbitrary words, ≤ω is only a preorder since for example u ≤ω uu and uu ≤ω u. On
the other hand, if u ≤ω v and v ≤ω u then u|v| = v|u|. Hence, by the periodicity
lemma [10], there exists a common root p ∈ Σ+ and g, h ∈ N such that u = pg and
v = ph. Also note that b ≤ ba whereas ba ≤ω b for a < b.

Intuitively, the context of order k of w is the sequence of the first k letters of w.
We want this notion to be well-defined even if |w| < k. To this end let contextk(w)
be the prefix of length k of wω, i.e., contextk(w) consists of the first k letters on the
cycle [w]. Note that our definition of a context of order k is left-right symmetric to the
corresponding notion used in data compression. This is due to the fact that typical
compression schemes are applying the BWT or the ST to the reversal of the input.

An important construction in this paper is the standard permutation πw on the
set of positions {1, . . . , n} induced by a word w = a1 · · · an ∈ Σn [11]. The first step
is to introduce a new order ¹ on the positions of w by sorting the letters within w
such that identical letters preserve their order. More formally, the linear order ¹ on
{1, . . . , n} is defined as follows: i ¹ j if

ai < aj or ai = aj and i ≤ j.

68 Proceedings of the Prague Stringology Conference 2009

1 b c b c c b c b c a b b a a b a
2 a b c b c c b c b c a b b a a b
3 b a b c b c c b c b c a b b a a
4 a b a b c b c c b c b c a b b a
5 a a b a b c b c c b c b c a b b
6 b a a b a b c b c c b c b c a b
7 b b a a b a b c b c c b c b c a
8 a b b a a b a b c b c c b c b c
9 c a b b a a b a b c b c c b c b

10 b c a b b a a b a b c b c c b c
11 c b c a b b a a b a b c b c c b
12 b c b c a b b a a b a b c b c c
13 c b c b c a b b a a b a b c b c
14 c c b c b c a b b a a b a b c b
15 b c c b c b c a b b a a b a b c
16 c b c c b c b c a b b a a b a b

(a) Conjugacy class [w]

5 a a b a b c b c c b c b c a b b
4 a b a b c b c c b c b c a b b a
8 a b b a a b a b c b c c b c b c
2 a b c b c c b c b c a b b a a b
6 b a a b a b c b c c b c b c a b
3 b a b c b c c b c b c a b b a a
7 b b a a b a b c b c c b c b c a

10 b c a b b a a b a b c b c c b c
12 b c b c a b b a a b a b c b c c
1 b c b c c b c b c a b b a a b a

15 b c c b c b c a b b a a b a b c
9 c a b b a a b a b c b c c b c b

11 c b c a b b a a b a b c b c c b
13 c b c b c a b b a a b a b c b c
16 c b c c b c b c a b b a a b a b
14 c c b c b c a b b a a b a b c b

(b) Lexicographically sorted

5 a a b a b c b c c b c b c a b b
2 a b c b c c b c b c a b b a a b
4 a b a b c b c c b c b c a b b a
8 a b b a a b a b c b c c b c b c
3 b a b c b c c b c b c a b b a a
6 b a a b a b c b c c b c b c a b
7 b b a a b a b c b c c b c b c a
1 b c b c c b c b c a b b a a b a

10 b c a b b a a b a b c b c c b c
12 b c b c a b b a a b a b c b c c
15 b c c b c b c a b b a a b a b c
9 c a b b a a b a b c b c c b c b

11 c b c a b b a a b a b c b c c b
13 c b c b c a b b a a b a b c b c
16 c b c c b c b c a b b a a b a b
14 c c b c b c a b b a a b a b c b

(c) Sorted by 2-order contexts

Figure 1. Computing the BWT and the ST of the word w = bcbccbcbcabbaaba

Let j1 ≺ · · · ≺ jn be the linearization of {1, . . . , n} according to this new order. Now,
the standard permutation πw is defined by πw(i) = ji.

Example 2. Consider the word w = bcbccbcbcabbaaba over the ordered alphabet a <
b < c. We have |w| = 16. Therefore, the positions in w are {1, . . . , 16}. For instance,
the label of position 6 is λw(6) = b. Its Lyndon factorization is w = bcbcc · bc · bc ·
abb · aab · a. The context of order 7 of the prefix bcbcc of length 5 is bcbccbc and the
context of order 7 of the factor bc is bcbcbcb. For computing the standard permutation
we write w column-wise, add positions, and then sort the pairs lexicographically:

word w w with positions sorted
b (b, 1) (a, 10)
c (c, 2) (a, 13)
b (b, 3) (a, 14)
c (c, 4) (a, 16)
c (c, 5) (b, 1)
b (b, 6) (b, 3)
c (c, 7) (b, 6)
b (b, 8) (b, 8)
c (c, 9) (b, 11)
a (a, 10) (b, 12)
b (b, 11) (b, 15)
b (b, 12) (c, 2)
a (a, 13) (c, 4)
a (a, 14) (c, 5)
b (b, 15) (c, 7)
a (a, 16) (c, 9)

This yields the standard permutation

πw =

(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10 13 14 16 1 3 6 8 11 12 15 2 4 5 7 9

)

.

The conjugacy class [w] of w is depicted in Figure 1(a); the i-th word in [w] is written
in the i-th row. The last column of the matrix for [w] is the reversal w of w.

3 The Burrows-Wheeler transform

The Burrows-Wheeler transform (BWT) maps words w of length n to pairs (L, i)
where L is a word of length n and i is an index in {1, . . . , n}. The word L is usually

Manfred Kufleitner: On Bijective Variants of the Burrows-Wheeler Transform 69

referred to as the Burrows-Wheeler transform of w. In particular, the BWT is not
surjective. We will see below how the BWT works and that it is one-to-one. It follows
that only a fraction of 1/n of all possible pairs (L, i) appears as an image under the
BWT. For instance (bacd, 1) where a < b < c < d is not an image under the BWT.

For w ∈ Σ+ we define M(w) = (w1, . . . , wn) where {w1, . . . , wn} = [w] and
w1 ≤ · · · ≤ wn. Now, the Burrows-Wheeler transform of w consists of the word
BWT(w) = last(w1) · · · last(wn) and an index i such that w = wi. Note that in
contrast to the usual definition of the BWT, we are using right shifts; at this point
this makes no difference but it unifies the presentation of succeeding transforms. At
first glance, it is surprising that one can reconstruct M(w) from BWT(w). Moreover,
if we know the index i of w in the sorted list M(w), then we can reconstruct w from
BWT(w). One way of how to reconstruct M(w) is presented in the following lemma.
For later use, we prove a more general statement than needed for computing the
inverse of the BWT.

Lemma 3. Let k ∈ N. Let
⋃s

i=1 [vi] = {w1, . . . , wn} ⊆ Σ+ be a multiset built

from conjugacy classes [vi]. Let M = (w1, . . . , wn) satisfy contextk(w1) ≤ · · · ≤
contextk(wn) and let L = last(w1) · · · last(wn) be the sequence of the last symbols.

Then

contextk(wi) = λLπL(i) · λLπ2
L(i) · · · λLπk

L(i)

where πt
L denotes the t-fold application of πL and λLπt

L(i) = λL

(

πt
L(i)

)

.

Proof. By induction over the context length t, we prove that for all i ∈ {1, . . . , n}
we have contextt(wi) = λLπL(i) · · · λLπt

L(i). For t = 0 we have context0(wi) = ε and
hence, the claim is trivially true. Let now 0 < t ≤ k. By the induction hypothesis,
the (t − 1)-order context of each wi is λLπL(i) · · ·λLπt−1

L (i). By applying one right-
shift, we see that the t-order context of r(wi) is λL(i) · λLπ1

L(i) · · ·λLπt−1
L (i).

The list M meets the sort order induced by k-order contexts. In particular,
(w1, . . . , wn) is sorted by (t− 1)-order contexts. Let (u1, . . . , un) be a stable sort by t-
order contexts of the right-shifts (r(w1), . . . , r(wn)). The construction of (u1, . . . , un)
only requires a sorting of the first letters of (r(w1), . . . , r(wn)) such that identical
letters preserve their order. The sequence of first letters of the words r(w1), . . . , r(wn)
is exactly L. By construction of πL, it follows that (u1, . . . , un) = (wπL(1), . . . , wπL(n)).
Since M is built from conjugacy classes, the multisets of elements occurring in
(w1, . . . , wn) and (r(w1), . . . , r(wn)) are identical. The same holds for the multisets
induced by (w1, . . . , wn) and (u1, . . . , un). Therefore, the sequences of t-order contexts
induced by (w1, . . . wn) and (u1, . . . , un) are identical. Moreover, we conclude

contextt(wi) = contextt(ui) = contextt(wπL(i)) = λLπL(i) · λLπ2
L(i) · · · λLπt

L(i)

which completes the induction. We note that in general ui 6= wi since the sort order
of M beyond k-order contexts is arbitrary. Moreover, for t = k + 1 the property
contextt(wi) = contextt(ui) does not need to hold (even though the multisets of
(k + 1)-order contexts coincide). ⊓⊔

Note that in Lemma 3 we do not require that all vi have the same length. Applying
the BWT to conjugacy classes of words with different lengths has also been used for
the Extended BWT [17].

Corollary 4. The BWT is invertible, i.e., given (BWT(w), i) where i is the index

of w in M(w) one can reconstruct the word w.

70 Proceedings of the Prague Stringology Conference 2009

Proof. We set k = |w|. Let M = M(w) and L = BWT(w). Now, by Lemma 3 we see
that

w = wi = contextk(wi) = λLπ1
L(i) · · ·λLπ

|L|
L (i).

In particular, w = λLπ1
L(i) · · ·λLπ

|L|
L (i) only depends on L and i. ⊓⊔

Remark 5. In the special case of the BWT it is possible to compute the i-th element
wi of M(w) by using the inverse π−1

L of the permutation πL:

wi = λLπ
−|wi|+1
L (i) · · ·λLπ−1

L (i)λL(i).

This justifies the usual way of computing the inverse of (BWT(w), i) from right to left
(by using the restriction of π−1

L to the cycle containing the element i). The motivation
is that the (required cycle of the) inverse π−1

L seems to be easier to compute than the
standard permutation πL.

Example 6. We compute the BWT of w = bcbccbcbcabbaaba from Example 2. The
lexicographically sorted list M(w) can be found in Figure 1(b). This yields the trans-
form (BWT(w), i) = (bacbbaaccacbbcbb, 10) where L = BWT(w) is the last column of
the matrix M(w) and w is the i-th row in M(w). The standard permutation of L is

πL =

(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 6 7 10 1 4 5 12 13 15 16 3 8 9 11 14

)

.

Now, π1
L(10) · · · π16

L (10) gives us the following sequence of positions starting with
πL(10) = 15:

15
πL7→ 11

πL7→ 16
πL7→ 14

πL7→ 9
πL7→ 13

πL7→ 8
πL7→ 12

πL7→ 3
πL7→ 7

πL7→ 5
πL7→ 1

πL7→ 2
πL7→ 6

πL7→ 4
πL7→ 10.

Applying the labeling function λL to this sequence of positions yields

λL(15)λL(11)λL(16)λL(14)λL(9)λL(13)λL(8)λL(12)

· λL(3)λL(7)λL(5)λL(1)λL(2)λL(6)λL(4)λL(10)

= bcbccbcbcabbaaba = w,

i.e., we have successfully reconstructed the input w from (BWT(w), i).

4 The bijective Burrows-Wheeler transform

Now we are ready to give a comprehensive description of Scott’s bijective variant of the
BWT and to prove its correctness. It maps a word of length n to a word of length n—
without any index or end-of-string symbol being involved. The key ingredient is the
Lyndon factorization: Suppose we are computing the BWT of a Lyndon word v, then
we do not need an index since we know that v is the first element of the list M(v).
This leads to the computation of a multi-word BWT of the Lyndon factors of the
input.

The bijective BWT of a word w of length n is defined as follows. Let w = vs · · · v1

with vs ≥ · · · ≥ v1 be the Lyndon factorization of w. Let LM(w) = (u1, . . . , un) where
u1 ≤ω · · · ≤ω un and where the multiset {u1, . . . , un} =

⋃s

i=1[vi]. Then, the bijective
BWT of w is BWTS(w) = last(u1) · · · last(un). The S in BWTS is for Scottified. Note
that if w is a power of a Lyndon word, then BWTS(w) = BWT(w).

Manfred Kufleitner: On Bijective Variants of the Burrows-Wheeler Transform 71

In some sense, the bijective BWT can be thought of as the composition of the
Lyndon factorization [6] with the inverse of the Gessel-Reutenauer transform [11].
In particular, a first step towards a bijective BWT can be found in a 1993 article
by Gessel and Reutenauer [11] (prior to the publication of the BWT [5]). The link
between the Gessel-Reutenauer transform and the BWT was pointed out later by
Crochemore et al. [8]. A similar approach as in the bijective BWT has been employed
by Mantaci et al. [16]; instead of the Lyndon factorization they used a decomposition
of the input into blocks of equal length. The output of this variant is a word and a
sequence of indices (one for each block). In its current form, the bijective BWT has
been proposed by Scott [23] in a newsgroup posting in 2007. Gil and Scott gave an
accessible version of the transform, an independent proof of its correctness, and they
tested its performance in data compression [12]. The outcome of these tests is that
the bijective BWT beats the usual BWT on almost all files of the Calgary Corpus
[4] by at least a few hundred bytes which exceeds the gain of just saving the rotation
index.

Lemma 7. Let w = vs · · · v1 with vs ≥ · · · ≥ v1 be the Lyndon factorization of w,

let LM(w) = (u1, . . . , un), and let L = BWTS(w). Consider the cycle C of the

permutation πL which contains the element 1 and let d be the length of C. Then

λLπ1
L(1) · · ·λLπd

L(1) = v1.

Proof. By Lemma 3 we see that
(

λLπ1
L(1) · · ·λLπd

L(1)
)|v1| = vd

1 . Since v1 is primi-

tive it follows λLπ1
L(1) · · ·λLπd

L(1) = vz
1 for some z ∈ N. In particular, the Lyndon

factorization of w ends with vz
1.

Let U be the subsequence of LM(w) which consists of those ui which come from
this last factor vz

1. The sequence U contains each right-shift of v1 exactly z times.
Moreover, the sort-order within U depends only on |v1|-order contexts.

The element v1 = u1 is the first element in U since v1 is a Lyndon word. In
particular, π0

L(1) = 1 is the first occurrence of r0(v1) = v1 within U . Suppose πj
L(1)

is the first occurrence of rj(v1) within U . Let πj
L(1) = i1 < · · · < iz be the indices of

all occurrences of rj(v1) in U . By construction of πL, we have πL(i1) < · · · < πL(iz)
and therefore πj+1

L (1) is the first occurrence of rj+1(v1) within U . Inductively, πj
L(1)

always refers to the first occurrence of rj(v1) within U (for all j ∈ N). In particular

it follows that π
|v1|
L (1) = 1 and z = 1. ⊓⊔

Theorem 8. The bijective BWT is invertible, i.e., given BWTS(w) one can recon-

struct the word w.

Proof. Let L = BWTS(w) and let w = vs · · · v1 with vs ≥ · · · ≥ v1 be the Lyndon
factorization of w. Each permutation admits a cycle structure. We decompose the
standard permutation πL into cycles C1, . . . , Ct. Let ij be the smallest element of the
cycle Cj and let dj be the length of Cj. We can assume that 1 = i1 < · · · < it.

We claim that t = s, dj = |vj|, and λLπ1
L(ij) · · ·λLπ

dj

L (ij) = vj. By Lemma 7

we have λLπ1
L(i1) · · ·λLπd1

L (i1) = v1. Let π′
L denote the restriction of πL to the set

C = C2 ∪ · · · ∪ Ct, where by abuse of notation C2 ∪ · · · ∪ Ct denotes the set of all
elements occurring in C2, . . . , Ct. Let L′ = BWTS(vs · · · v2). The word L′ can be
obtained from L by removing all positions occurring in the cycle C1. This yields a
monotone bijection

α : C → {1, . . . , |L′|}

72 Proceedings of the Prague Stringology Conference 2009

such that λL(i) = λL′α(i) and απL(i) = πL′α(i) for all i ∈ C. In particular, πL′ has
the same cycle structure as π′

L and 1 = α(i2) < · · · < α(it) is the sequence of the
minimal elements within the cycles. By induction on the number of Lyndon factors,

vs · · · v2 = λL′π1
L′α(it) · · ·λL′πdt

L′α(it) · · · λL′π1
L′α(i2) · · ·λL′πd2

L′ (i2)

= λL′απ1
L(it) · · ·λL′απdt

L (it) · · · λL′απ1
L(i2) · · ·λL′απd2

L (i2)

= λLπ1
L(it) · · ·λLπdt

L (it) · · · λLπ1
L(i2) · · ·λLπd2

L (i2).

Appending λLπ1
L(i1) · · ·λLπd1

L (i1) = v1 to the last line allows us to reconstruct w by

w = λLπ1
L(it) · · ·λLπdt

L (it) · · · λLπ1
L(i1) · · ·λLπd1

L (i1).

Moreover, t = s and dj = |vj|. We note that this formula for w only depends on L
and does not require any index to an element in LM(w). ⊓⊔

Example 9. We again consider the word w = bcbccbcbcabbaaba from Example 2 and
its Lyndon factorization w = v6 · · · v1 where v6 = bcbcc, v5 = bc, v4 = bc, v3 = abb,
v2 = aab, and v1 = a. The lists ([v1], . . . , [v6]) and LM(w) are:

([v1], . . . , [v6])
1 a
2 a a b
3 b a a
4 a b a
5 a b b
6 b a b
7 b b a
8 b c
9 c b

10 b c
11 c b
12 b c b c c
13 c b c b c
14 c c b c b
15 b c c b c
16 c b c c b

LM(w)
1 a
2 a a b
4 a b a
5 a b b
3 b a a
6 b a b
7 b b a
8 b c

10 b c
12 b c b c c
15 b c c b c
9 c b

11 c b
13 c b c b c
16 c b c c b
14 c c b c b

Hence, we obtain L = BWTS(w) = abababaccccbbcbb as the sequence of the last
symbols of the words in LM(w). The standard permutation πL induced by L is

πL =

(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 3 5 7 2 4 6 12 13 15 16 8 9 10 11 14

)

The cycles of πL arranged by their smallest elements are C1 = (1), C2 = (2, 3, 5),
C3 = (4, 7, 6), C4 = (8, 12), C5 = (9, 13), and C6 = (10, 15, 11, 16, 14). Applying
the labeling function λL to the cycle Ci (starting with the second element) yields
the Lyndon factor vi. With this procedure, we reconstructed w = v6 · · · v1 from L =
BWTS(w).

5 The sort transform

The sort transform (ST) is a BWT where we only sort the conjugates of the input
up to a given depth k and then we are using the index of the conjugates as a tie-
breaker. Depending on the depth k and the implementation details this can speed up
compression (while at the same time slightly slowing down decompression).

Manfred Kufleitner: On Bijective Variants of the Burrows-Wheeler Transform 73

In contrast to the usual presentation of the ST, we are using right shifts. This
defines a slightly different version of the ST. The effect is that the order of the
symbols occurring in some particular context is reversed. This makes sense, because
in data compression the ST is applied to the reversal of a word. Hence, in the ST
of the reversal of w the order of the symbols in some particular context is the same
as in w. More formally, suppose w = x0ca1x1ca2x2 · · · casxs for c ∈ Σ+ then in the
sort transform of order |c| of w, the order of the occurrences of the letters ai is not
changed. This property can enable better compression ratios on certain data.

While the standard permutation is induced by a sequence of letters (i.e., a word)
we now generalize this concept to sequences of words. For a list of non-empty words
V = (v1, . . . , vn) we now define the k-order standard permutation νk,V induced by V .
As for the standard permutation, the first step is the construction of a new linear
order ¹ on {1, . . . , n}. We define i ¹ j by the condition

contextk(vi) < contextk(vj) or contextk(vi) = contextk(vj) and i ≤ j.

Let j1 ≺ · · · ≺ jn be the linearization of {1, . . . , n} according to this new order. The
idea is that we sort the line numbers of v1, . . . , vn by first considering the k-order
contexts and, if these are equal, then use the line numbers as tie-breaker. As before,
the linearization according to ¹ induces a permutation νk,V by setting νk,V (i) = ji.
Now, νk,V (i) is the position of vi if we are sorting V by k-order context such that
the line numbers serve as tie-breaker. We set Mk(v1, . . . , vn) = (w1, . . . , wn) where
wi = vνk,V (i). Now, we are ready to define the sort transform of order k of a word w:
Let Mk([w]) = (w1, . . . , wn); then STk(w) = last(w1) · · · last(wn), i.e., we first sort
all cyclic right-shifts of w by their k-order contexts (by using a stable sort method)
and then we take the sequence of last symbols according to this new sort order as the
image under STk. Since the tie-breaker relies on right-shifts, we have ST0(w) = w, i.e.,
ST0 is the reversal mapping. The k-order sort transform of w is the pair (STk(w), i)
where i is the index of w in Mk([w]). As for the BWT, we see that the k-order sort
transform is not bijective.

Next, we show that it is possible to reconstruct Mk([w]) from STk(w). Hence,
it is possible to reconstruct w from the pair (STk(w), i) where i is the index of w
in Mk([w]). The presentation of the back transform is as follows. First, we will in-
troduce the k-order context graph Gk and we will show that it is possible to re-
build Mk([w]) from Gk. Then we will show how to construct Gk from STk(w). Again,
the approach will be slightly more general than required at the moment; but we will
be able to reuse it in the presentation of a bijective ST.

Let V = ([u1], . . . , [us]) = (v1, . . . , vn) be a list of words built from conjugacy
classes [ui] of non-empty words ui. Let M = (w1, . . . , wn) be an arbitrary per-
mutation of the elements in V . We are now describing the edge-labeled directed
graph Gk(M) – the k-order context graph of M – which will be used later as a pre-
sentation tool for the inverses of the ST and the bijective ST. The vertices of Gk(M)
consist of all k-order contexts contextk(w) of words w occurring in M . We draw an
edge (c1, i, c2) from context c1 to context c2 labeled by i if c1 = contextk(wi) and
c2 = contextk(r(wi)). Hence, every index i ∈ {1, . . . , n} of M defines a unique edge
in Gk(M). We can also think of last(wi) as an additional implicit label of the edge
(c1, i, c2), since c2 = contextk(last(wi)c1).

A configuration (C, c) of the k-order context graph Gk(M) consists of a subset of
the edges C and a vertex c. The idea is that (starting at context c) we are walking

74 Proceedings of the Prague Stringology Conference 2009

along the edges of Gk(M) and whenever an edge is used, it is removed from the set
of edges C. We now define the transition

(C1, c1)
u
→ (C2, c2)

from a configuration (C1, c1) to another configuration (C2, c2) with output u ∈ Σ∗

more formally. If there exists an edge in C1 starting at c1 and if (c1, i, c2) ∈ C1 is
the unique edge with the smallest label i starting at c1, then we have the single-step
transition

(C1, c1)
a
→ (C1 \ {(c1, i, c2)} , c2) where a = last(wi)

If there is no edge in C1 starting at c1, then the outcome of (C1, c1) → is undefined.

Inductively, we define (C1, c1)
ε
→ (C1, c1) and for a ∈ Σ and u ∈ Σ∗ we have

(C1, c1)
au
→ (C2, c2) if (C1, c1)

u
→ (C′, c′) and (C′, c′)

a
→ (C2, c2)

for some configuration (C′, c′). Hence, the reversal au is the label along the path of

length |au| starting at configuration (C1, c1). In particular, if (C1, c1)
u
→ (C2, c2) holds,

then it is possible to chase at least |u| transitions starting at (C1, c1); vice versa, if we
are chasing ℓ transitions then we obtain a word of length ℓ as a label. We note that
successively taking the edge with the smallest label comes from the use of right-shifts.
If we had used left-shifts we would have needed to chase largest edges for the following
lemma to hold. The reverse labeling of the big-step transitions is motivated by the
reconstruction procedure which will work from right to left.

Lemma 10. Let k ∈ N, V = ([v1], . . . , [vs]), ci = contextk(vi), and G = Gk(Mk(V)).
Let C1 consist of all edges of G. Then

(C1, c1)
v1→ (C2, c1)

(C2, c2)
v2→ (C3, c2)
...

(Cs, cs)
vs→ (Cs+1, cs).

Proof. Let Mk(V) = (w1, . . . , wn). Consider some index i, 1 ≤ i ≤ s, and let
(u1, . . . , ut) = ([v1], . . . , [vi−1]). Suppose that Ci consists of all edges of G except
for those with labels νk,V (j) for 1 ≤ j ≤ t. Let q = |vi|. We write vi = a1 · · · aq and
ut+j = rj−1(vi), i.e., [vi] = (ut+1, . . . , ut+q). Starting with (Ci,1, ci,1) = (Ci, ci), we show
that the sequence of transitions

(Ci,1, ci,1)
aq

→ (Ci,2, ci,2)
aq−1

→ · · · (Ci,q, ci,q)
a1→ (Ci,q+1, ci,q+1)

is defined. More precisely, we will see that the transition (Ci,j, ci,j)
aq+1−j

−→ (Ci,j+1, ci,j+1)
walks along the edge

(

ci,j, νk,V (t + j), ci,j+1

)

and hence indeed is labeled with the let-
ter aq+1−j = last(ut+j) = last(wνk,V (t+j)). Consider the context ci,j. By induction, we
have ci,j = contextk(ut+j) and no edge with label νk,V (ℓ) for 1 ≤ ℓ < t + j occurs
in Ci,j while all other labels do occur. In particular, (ci,j, νk,V (t+ j), ci,j+1) for ci,j+1 =
contextk(r(ut+j)) = contextk(ut+j+1) is an edge in Ci,j (where contextk(r(ut+j)) =
contextk(ut+j+1) only holds for j < q; we will consider the case j = q below). Suppose
there were an edge (ci,j, z, c

′) ∈ Ci,j with z < νk,V (t+j). Then contextk(wz) = ci,j and
hence, wz has the same k-order context as wνk,V (t+j). But in this case, in the construc-

tion of Mk(V) we used the index in V as a tie-breaker. It follows ν−1
k,V (z) < t+1 which

Manfred Kufleitner: On Bijective Variants of the Burrows-Wheeler Transform 75

contradicts the properties of Ci,j. Hence, (ci,j, νk,V (t + j), ci,j+1) is the edge with the
smallest label starting at context ci,j. Therefore, Ci,j+1 = Ci,j\{(ci,j, νk,V (t + j), ci,j+1)}

and (Ci,j, ci,j)
aq+1−j

−→ (Ci,j+1, ci,j+1) indeed walks along the edge (ci,j, νk,V (t+ j), ci,j+1).
It remains to verify that ci,1 = ci,q+1, but this is clear since ci,1 = contextk(ut+1) =

contextk(r
q(ut+1)) = ci,q+1. ⊓⊔

Lemma 11. Let k ∈ N, V = ([v1], . . . , [vs]), M = Mk(V) = (w1, . . . , wn), and L =
last(w1) · · · last(wn). Then it is possible to reconstruct Gk(M) from L.

Proof. By Lemma 3 it is possible to reconstruct the contexts ci = contextk(wi). This
gives the vertices of the graph Gk(M). Write L = a1 · · · an. For each i ∈ {1, . . . , n}
we draw an edge (ci, i, contextk(aici)). This yields the edges of Gk(M). ⊓⊔

Corollary 12. The k-order ST is invertible, i.e., given (STk(w), i) where i is the

index of w in Mk([w]) one can reconstruct the word w.

Proof. The construction of w consists of two phases. First, by Lemma 11 we can com-
pute Gk(Mk([w])). By Lemma 3 we can compute c = contextk(w) from (STk(w), i).
In the second stage, we are using Lemma 10 for reconstructing w by chasing

(C, c)
w
→ (∅, c)

where C consists of all edges in Gk(Mk([w])). ⊓⊔

Efficient implementations of the inverse transform rely on the fact that the k-
order contexts of Mk([w]) are ordered. This allows the implementation of the k-order
context graph Gk in a vectorized form [1,19,20,21].

Example 13. We compute the sort transform of order 2 of w = bcbccbcbcabbaaba from
Example 2. The list M2([w]) is depicted in Figure 1(c). This yields the transform
(ST2(w), i) = (bbacabaacccbbcbb, 8) where L = ST2(w) is the last column of the ma-
trix M2([w]) and w is the i-th element in M2([w]). Next, we show how to reconstruct
the input w from (L, i). The standard permutation induced by L is

πL =

(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 5 7 8 1 2 6 12 13 15 16 4 9 10 11 14

)

.

Note that πL has four cycles C1 = (1, 3, 7, 6, 2, 5), C2 = (4, 8, 12), C3 = (9, 13),
and C4 = (10, 15, 11, 16, 14). We obtain the context of order 2 of the j-th word by
cj = λLπL(j)λLπ2

L(j). In particular, c1 = aa, c2 = c3 = c4 = ab, c5 = c6 = ba, c7 = bb,
c8 = c9 = c10 = c11 = bc, c12 = ca, c13 = c14 = c15 = cb, and c16 = cc. With L and
these contexts we can construct the graph G = G2(M2([w]). The vertices of G are
the contexts and the edge-labels represent positions in L. The graph G is depicted
below:

ba aa ca cb

bb ab bc cc

1

2

3
4

56

7 8

9
1
0

1
1

12 1
3

14

1
5

16

76 Proceedings of the Prague Stringology Conference 2009

We are starting at the context ci = c8 = bc and then we are traversing G along
the smallest edge-label amongst the unused edges. The sequence of the edge labels
obtained this way is

(8, 2, 5, 3, 1, 6, 7, 4, 12, 9, 13, 10, 14, 16, 11, 15).

The labeling of this sequence of positions yields w = abaabbacbcbccbcb. Since we are
constructing the input from right to left, we obtain w = bcbccbcbcabbaaba.

6 The bijective sort transform

The bijective sort transform combines the Lyndon factorization with the ST. This
yields a new algorithm which serves as a similar preprocessing step in data com-
pression as the BWT. In a lot of applications, it can be used as a substitute for
the ST. The proof of the bijectivity of the transform is slightly more technical than
the analogous result for the bijective BWT. The main reason is that the bijective
sort transform is less modular than the bijective BWT (which can be grouped into a
‘Lyndon factorization part’ and a ‘Gessel-Reutenauer transform part’ and which for
example allows the use of different orders on the alphabet for the different parts).

For the description of the bijective ST and of its inverse, we rely on notions from
Section 5. The bijective ST of a word w of length n is defined as follows. Let w =
vs · · · v1 with vs ≥ · · · ≥ v1 be the Lyndon factorization of w. Let Mk([v1], . . . , [vs]) =
(u1, . . . , un). Then the bijective ST of order k of w is LSTk(w) = last(u1) · · · last(un).
That is, we are sorting the conjugacy classes of the Lyndon factors by k-order contexts
and then take the sequence of the last letters. The letter L in LSTk is for Lyndon.

Theorem 14. The bijective ST of order k is invertible, i.e., given LSTk(w) one can

reconstruct the word w.

Proof. Let w = vs · · · v1 with vs ≥ · · · ≥ v1 be the Lyndon factorization of w, let
ci = contextk(vi), and let L = LSTk(w). By Lemma 11 we can rebuild the k-order
context graph G = Gk(Mk([v1], . . . , [vs])) = (w1, . . . , wn) from L. Let C1 consist of all
edges in G. Then by Lemma 10 we see that

(C1, c1)
v1→ (C2, c1)
...

(Cs, cs)
vs→ (Cs+1, cs).

We cannot use this directly for the reconstruction of w since we do not know the
Lyndon factors vi and the contexts ci.

The word v1 is the first element in the list Mk([v1], . . . , [vs]) because v1 is lexi-
cographically minimal and it appears as the first element in the list ([v1], . . . , [vs]).
Therefore, by Lemma 3 we obtain c1 = contextk(v1) = λLπL(1) · · ·λLπk

L(1).

The reconstruction procedure works from right to left. Suppose we have already
reconstructed w′vj · · · v1 for j ≥ 0 with w′ being a (possibly empty) suffix of vj+1.
Moreover, suppose we have used the correct contexts c1, . . . , cj+1. Consider the con-

Manfred Kufleitner: On Bijective Variants of the Burrows-Wheeler Transform 77

figuration (C′, c′) defined by

(C1, c1)
v1→ (C2, c1)
...

(Cj, cj)
vj

→ (Cj+1, cj)

(Cj+1, cj+1)
w′

→ (C′, c′)

We assume that the following invariant holds: Cj+1 contains no edges (c′′, ℓ, c′′′) with
c′′ < cj+1. We want to rebuild the next letter. We have to consider three cases. First,
if |w′| < |vj+1| then

(C′, c′)
a
→ (C′′, c′′)

yields the next letter a such that aw′ is a suffix of vj+1. Second, let |w′| = |vj+1| and
suppose that there exists an edge (cj+1, ℓ, c

′′′) ∈ C′ starting at c′ = cj+1. Then there
exists a word v′ in [vj+2], . . . , [vs] such that contextk(v

′) = cj+1. If contextk(vj+2) 6=
cj+1 then from the invariant it follows that contextk(vj+2) > cj+1 = contextk(v

′). This
is a contradiction, since vj+2 is minimal among the words in [vj+2], . . . , [vs]. Hence,
contextk(vj+2) = cj+2 = cj+1 and the invariant still holds for Cj+2 = C′. The last
letter a of vj+2 is obtained by

(C′, c′) = (Cj+2, cj+2)
a
→ (C′′, c′′).

The third case is |w′| = |vj+1| and there is no edge (cj+1, ℓ, c
′′′) ∈ C′ starting at

c′ = cj+1. As before, vj+2 is minimal among the (remaining) words in [vj+2], . . . , [vs].
By construction of G, the unique edge (c′′, ℓ, c′′′) ∈ C′ with the minimal label ℓ has the
property that wℓ = vj+2. In particular, c′′ = cj+2. Since vj+2 is minimal, the invariant
for Cj+2 = C′ is established. In this case, the last letter a of vj+2 is obtained by

(Cj+2, cj+2)
a
→ (C′′, c′′′).

We note that we cannot distinguish between the first and the second case since we do
not know the length of vj+1, but in both cases, the computation of the next symbol is
identical. In particular, in contrast to the bijective BWT we do not implicitly recover
the Lyndon factorization of w. ⊓⊔

We note that the proof of Theorem 14 heavily relies on two design criteria. The first
one is to consider Mk([v1], . . . , [vs]) rather than Mk([vs], . . . , [v1]), and the second is to
use right-shifts rather than left-shifts. The proof of Theorem 14 yields the following
algorithm for reconstructing w from L = LSTk(w):

(1) Compute the k-order context graph G = Gk and the k-order context c1 of the
last Lyndon factor of w.

(2) Start with the configuration (C, c) where C contains all edges of G and c := c1.
(3) If there exists an outgoing edge starting at c in the set C, then

– Let (c, ℓ, c′) be the edge with the minimal label ℓ starting at c.
– Output λL(ℓ).
– Set C := C \ {(c, ℓ, c′)} and c := c′.
– Continue with step (3).

(4) If there is no outgoing edge starting at c in the set C, but C 6= ∅, then
– Let (c′, ℓ, c′′) ∈ C be the edge with the minimal label ℓ.

78 Proceedings of the Prague Stringology Conference 2009

– Output λL(ℓ).
– Set C := C \ {(c′, ℓ, c′′)} and c := c′′.
– Continue with step (3).

(5) The algorithm terminates as soon as C = ∅.

The sequence of the outputs is the reversal w of the word w.

Example 15. We consider the word w = bcbccbcbcabbaaba from Example 2 and its
Lyndon factorization w = v6 · · · v1 where v6 = bcbcc, v5 = bc, v4 = bc, v3 = abb, v2 =
aab, and v1 = a. For this particular word w the bijective Burrows-Wheeler transform
and the bijective sort transform of order 2 coincide. From Example 9, we know L =
LST2(w) = BWTS(w) = abababaccccbbcbb and the standard permutation πL. As in
Example 13 we can reconstruct the 2-order contexts c1, . . . , c16 of M2([v1], . . . , [v6]):
c1 = c2 = aa, c3 = c4 = ab, c5 = c6 = ba, c7 = bb, c8 = c9 = c10 = c11 = bc,
c12 = c13 = c14 = c15 = cb, and c16 = cc. With L and the 2-order contexts we can
construct the graph G = Gk(M2([v1], . . . , [v6])):

ba aa cb

bb ab bc cc

1
2

3

4

56

7

8

9
1
0

1
1

1
2

1
3

14

1
5

16

We are starting with the edge with label 1 and then we are traversing G along the
smallest unused edges. If we end in a context with no outgoing unused edges, then
we are continuing with the smallest unused edge. This gives the sequence (1, 2, 5, 3)
after which we end in context aa with no unused edges available. Then we continue
with the sequences (4, 6, 7) and (8, 12, 9, 13, 10, 14, 16, 11, 15). The complete sequence
of edge labels obtained this way is

(1, 2, 5, 3, 4, 6, 7, 8, 12, 9, 13, 10, 14, 16, 11, 15)

and the labeling of this sequence with λL yields w = abaabbacbcbccbcb. As for the
ST, we are reconstructing the input from right to left, and hence we get w =
bcbccbcbcabbaaba.

7 Summary

We discussed two bijective variants of the Burrows-Wheeler transform (BWT). The
first one is due to Scott. Roughly speaking, it is a combination of the Lyndon fac-
torization and the Gessel-Reuternauer transform. The second variant is derived from
the sort transform (ST); it is the main contribution of this paper. We gave full con-
structive proofs for the bijectivity of both transforms. As a by-product, we provided
algorithms for the inverse of the BWT and the inverse of the ST. For the latter,
we introduced an auxiliary graph structure — the k-order context graph. This graph
yields an intermediate step in the computation of the inverse of the ST and the bijec-
tive ST. It can be seen as a generalization of the cycle decomposition of the standard
permutation — which in turn can be used as an intermediate step in the computation
of the inverse of the BWT and the bijective BWT.

Manfred Kufleitner: On Bijective Variants of the Burrows-Wheeler Transform 79

Acknowledgments. The author would like to thank Yossi Gil and David A. Scott for
many helpful discussions on this topic as well as Alexander Lauser, Antonio Restivo,
and the anonymous referees for their numerous suggestions which improved the pre-
sentation of this paper.

References

1. D. Adjeroh, T. Bell, and A. Mukherjee: The Burrows-Wheeler Transform: Data Com-

pression, Suffix Arrays, and Pattern Matching, Springer Publishing Company, Incorporated,
2008.

2. Z. Arnavut and M. Arnavut: Investigation of block-sorting of multiset permutations. Int.
J. Comput. Math., 81(10) 2004, pp. 1213–1222.

3. B. Balkenhol and S. Kurtz: Universal data compression based on the Burrows-Wheeler

transformation: Theory and practice. IEEE Trans. Computers, 49(10) 2000, pp. 1043–1053.
4. T. Bell, I. H. Witten, and J. G. Cleary: Modeling for text compression. ACM Comput.

Surv., 21(4) 1989, pp. 557–591.
5. M. Burrows and D. J. Wheeler: A block-sorting lossless data compression algorithm, Tech.

Rep. 124, Digital SRC Research Report, 1994.
6. K. T. Chen, R. H. Fox, and R. C. Lyndon: Free differential calculus, IV—The quotient

groups of the lower central series. Ann. Math., 68(1) 1958, pp. 81–95.
7. J. G. Cleary and I. H. Witten: Data compression using adaptive coding and partial string

matching. IEEE Trans. Commun., 32(4) 1984, pp. 396–402.
8. M. Crochemore, J. Désarménien, and D. Perrin: A note on the Burrows-Wheeler trans-

formation. Theor. Comput. Sci., 332(1-3) 2005, pp. 567–572.
9. J.-P. Duval: Factorizing words over an ordered alphabet. J. Algorithms, 4(4) 1983, pp. 363–381.
10. N. J. Fine and H. S. Wilf: Uniqueness theorems for periodic functions. Proc. Amer. Math.

Soc., 16 1965, pp. 109–114.
11. I. M. Gessel and C. Reutenauer: Counting permutations with given cycle structure and

descent set. J. Comb. Theory, Ser. A, 64(2) 1993, pp. 189–215.
12. J. Gil and D. A. Scott: A bijective string sorting transform, submitted.
13. A. Lempel and J. Ziv: A universal algorithm for sequential data compression. IEEE Trans.

Inform. Theory, 23(3) 1977, pp. 337–343.
14. A. Lempel and J. Ziv: Compression of individual sequences via variable-rate coding. IEEE

Trans. Inform. Theory, 24(5) 1978, pp. 530–536.
15. M. Lothaire, ed., Combinatorics on Words, Addison-Wesley, Reading, MA, 1983.
16. S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino: An extension of the Burrows

Wheeler transform and applications to sequence comparison and data compression, in Combina-
torial Pattern Matching, CPM 2005, Proceedings, vol. 3537 of LNCS, Springer, 2005, pp. 178–
189.

17. S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino: An extension of the Burrows-

Wheeler transform. Theor. Comput. Sci., 387(3) 2007, pp. 298–312.
18. G. Manzini: An analysis of the Burrows-Wheeler transform. Journal of the ACM, 48(3) 2001,

pp. 407–430.
19. G. Nong and S. Zhang: Unifying the Burrows-Wheeler and the Schindler transforms, in Data

Compression Conference, DCC 2006. Proceedings, IEEE Computer Society, 2006, p. 464.
20. G. Nong and S. Zhang: Efficient algorithms for the inverse sort transform. IEEE Trans.

Computers, 56(11) 2007, pp. 1564–1574.
21. G. Nong, S. Zhang, and W. H. Chan: Computing inverse ST in linear complexity, in

Combinatorial Pattern Matching, CPM 2008, Proceedings, vol. 5029 of LNCS, Springer, 2008,
pp. 178–190.

22. M. Schindler: A fast block-sorting algorithm for lossless data compression, in Data Compres-
sion Conference, DCC 1997. Proceedings, IEEE Computer Society, 1997, p. 469.

23. D. A. Scott: Personal communication, 2009.

