
Delta Encoding in a Compressed Domain

Shmuel T. Klein and Moti Meir

Department of Computer Science
Bar Ilan University

Ramat Gan 52900, Israel
Tel: (972–3) 531 8865 Fax: (972–3) 736 0498
tomi@cs.biu.ac.il, moti.meir@gmail.com

Abstract. A delta compression algorithm is presented, working on an LZSS com-
pressed reference file and an uncompressed version, and producing a delta file that
can be used to reconstruct the version file directly in its compressed form. This has
applications to accelerate data flow in network environments.

1 Introduction

This paper presents an algorithmic approach to work with highly correlated files in
the compressed domain. The idea is to allow small changes to be reflected upon a
reference file each time a newer file version becomes available. This ability is highly
required by caching, versioning and additive backup systems.

The standard delta compression scheme [3,1,4,9,2] takes two files and outputs the
difference between those files. Such a scheme tries to output a small amount of data
which represents the difference between the two files in their uncompressed state. As
a result, using the standard delta file scheme, one can reconstruct a version file by
using a reference file and the delta file (see Figure 1.a). Our scheme, however, encodes
a delta file that reflects the differences between the files in their compressed state.
That is, using the delta file and the compressed reference file, the decoder outputs the
compressed version file (See Figure 1.b), contrarily to standard delta schemes that
would output a version file in uncompressed form. Our scheme uses an uncompressed
version file and a compressed reference file as the inputs to the encoder, a scenario
defined as semi-compressed delta encoding in [7], in contrast with the fully-compressed

alternative treated in [6].
We provide a conceptual solution considering the fact that textual data is pro-

duced in uncompressed form and also by examination of the entire network route
between the encoding part (usually a server) and the decoding part (usually a client),
which includes intermediate network elements. The scheme considers the fact that
most of the network’s intermediate elements are indifferent to the data content and
only wish to store and forward the most recent copy of the data. For such elements,
having the ability to alter their cached copy without decompressing it first as needed
when a regular delta encoding is used, presents a great advantage. Standard schemes
producing uncompressed version files would require an encoding phase, that is, com-
pressing the file in order to save storage space and network bandwidth. This imposes
a penalty in terms of both CPU utilization and temporary storage space, which can
be saved by directly dealing with a compressed output.

The proposed encoding algorithm has two inputs: the compressed reference file
Rc, and the uncompressed version file V . The output of the encoder is a delta file
∆, which, together with Rc, is the input to the decoding algorithm that outputs the
compressed version file Vc.
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Figure 1. Schematic representation of delta encoding

The efficiency of our scheme is based on several assumptions regarding both ver-
sion and reference files:

1. The files are highly correlated
2. The changes are local and sparse
3. The changes are very small compared to the size of V .

The algorithm is an extension of LZSS [5] encoding and uses an ordered hash
table adapted from [10], to store previous occurrences of substrings. The parameters
which control the encoding are:

– Window size — the length of the sliding window. This attribute defines the maxi-
mum valid size of the jumpbacks and thereby the maximum “memory” size of the
hash table.

– Minimum Match — determines the minimum number of characters required to
match, in order to create a back pointer to the previous text.

– Synch Chunk — the maximum number of characters that are affected by a single
change. That is, the length of all changes are smaller than this number.

The output of the encoder is a set of COPY, ADD, UPDATE and SPLIT commands and
a set of characters stored in ∆, acting as a set of control commands to a decoder for
changing Rc. These commands are described in more detail in Section 4 below. The
decoder uses ∆ and Rc to build an updated compressed file equivalent to Vc. This is
done without decoding Rc but rather by changing it while it is still compressed (see
Figure 1.b)

Let Vcr[i, j] be the substring of Vc with index in the real uncompressed form,
that is, the indices i and j refer to the indices of V in their uncompressed form. For
example, if the 100 first bytes of V are compressed to the first 20 elements of Vc,
then we have Vc[1, 20] = Compress(V [1, 100]) = Vcr[1, 100]. This provides a reverse
mapping between the compressed domain and the uncompressed domain locations.
We shall use the same notation when referring to just one character of V or R, that
is Vcr[50] = i is the location in Vc that corresponds to character V [50].
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2 The Encoding Algorithm

2.1 Overview

The algorithm encodes V and iteratively compares the results to Rc. During the
processing, a sequence of characters and back pointers is generated, and checked
for matches with Rc. If a mismatch is detected — denote the location of this local

mismatch point by LMP — the original LZSS algorithm would output a file that
will greatly differ from Rc. The result would be two encoded files, which were highly
correlated when uncompressed, and when compared in the compressed domain loose
their high resemblance. The current encoding fixes this problem by synchronizing
both files. As a consequence there will be a local synchronization point (LSP) after
which the output will match exactly the reference file, up to the next LMP. We assume
here that the distance from LSP to LMP is at least Synch Chunk, otherwise the two
changes are considered as one.

Several types of mismatches need to be addressed:

– one element is a back pointer while the other is a character;
– both elements are characters, but different ones;
– both elements are back pointers, but their copy length differs;
– both elements are back pointers, but their jump back length differs.

Maintaining a Local Reconstructed Buffer (LRB) in combination with the assump-
tion of a limited change results in the ability to track the change. At each step, the
algorithm checks whether a substitution, insertion or deletion of characters can ex-
plain the change, and continues according to the results by locating the LSPs in
the uncompressed domain. When these points are found, the hash table is updated
accordingly.

For example, consider the case of inserting a line of text into the version file. The
LRB created by the reference instructions and the version data will match at a point
in the version text which is beyond the inserted change. Since the change is assumed
to be relatively small, the number of characters inserted is found by running a loop
up to synch chunk size, trying to find this substring in the version file.

In order to compare the new version with the reference, we must be able to
reconstruct the original substrings which might be represented by pointers in the
reference file. This has led to the need of decoding the reference file in order to
reconstruct the original data in the change area of V [7], which is the string starting
one element prior to the actual change and ending at most Synch Chunk characters
after the end of the change. The idea of running from right to left in Rc from elements
prior to LMP, collecting the needed reference data characters, does not work well in
most cases due to the fact that a back pointer in the encoded file can point to another
back pointer, and so on, creating a chain. In addition to being expensive, this right
to left decoding is not local. Since we want to maintain a local approach which
greatly decreases memory needs, the semi compressed domain is exploited by using
the reference characters and pointers to reconstruct the original data in the change
area.

There is, however, one exception to the above. Since we use elements from Rc to
reconstruct the reference data using the version data, care has to be taken in the
case of self-pointers, i.e., when the copy length is larger than the offset. Indeed, the
possibility of self-pointers is one of the major features of LZ77 schemes like LZSS,
enabling the compression of variable-length repetitive strings; for example, a string
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of 50 a’s can be compressed as a[offset = 1, length = 49]. The solution is to use the
already reconstructed buffer as a reference for self pointers.

2.2 Substitution

This is the simplest case, e.g., a date field has been updated in the version file. The
following steps are executed, referring to Figure 2:

1. find the actual change size by comparing characters from the LRB and V , bounded
by the Synch Chunk parameter;

2. insert a new quarantine zone [K,K + i] to the mismatch list;
3. output the relevant commands (split and update pointers) to ∆;
4. advance the Rc index to point to the location of the LSP, and also advance the

version index to the same LSP.

Version File

indices

Reference File
indices

1 2 3 4 5 6 7  …  K’… (K+i)’     K+i+1… N

Mismatch point

Difference

Block
Next Match

1 2 3 4 5 6 7 …  K … (K+i)      K+i+1 ...N

Figure 2. Schematic representation of substitution

The algorithm works because skipping over the change in both files and backwards
updating V to the pre-change state, brings us to a point (LSP) where we just need
to synchronize the hash tables. After this synchronization, the encoding process is
the same, hence the output of the encoder are COPY and UPDATE commands up to the
next mismatch. As we can see in Figure 2, jumping in both files as close as possible
to index K + i + 1 will bring us to the LSP. The reason that one does not always get
exactly to K + i + 1 is that the exact pointers from Rc are used and they are not
split. However, breaking the back pointers to get to the exact spot in V is feasible
and could in certain cases result in better compression.

2.3 Insertion

An inserted string may dramatically change the original LZSS output, as shown in
Figure 3. V is scanned for an occurrence of the content of LRB inside the defined
limited area, defined to start from K − j up to K + i, where i is the Synch Chunk
size and j is the maximum change size. The simplest way to deal with the insertion
is to adjoin the inserted block to ∆ with a single ADD and one ADJUST command. One
could also consider using the hash table to add the newly inserted text as a sequence
of pointers, which might improve compression.

In any case, a set of adjustment commands needs to be added to correct the back
pointers of Rc. Each back pointer which points to the index in V prior to LMP has
to be increased by the length of the insertion. If the increased length exceeds the
maximum defined, the back pointer is split and the exceeding part is inserted as
individual characters.
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Version File
indices

Reference File

indices

1 2 3 4 5 6 7 … (K-j)…(K-1)   K … (K+i) …  N

1 2 3 4 5 6 7 …  K … (K+i) …  N

Mismatch point

Missing

Block
Next Match

Figure 3. Schematic representation of insertion

2.4 Deletion

Deletion is similar to insertion, but here the LRB is scanned for an occurrence of a
substring of V . The steps are, referring to Figure 4:

1. LRB ←− decode(Rc[K,K + i], V )
2. search for V [K + j,K + i] in LRB;
3. output to ∆ a COPY command up to LMP; if LMP lies within a string compressed

by a pointer, this pointer has to be split or some prefix of this string needs to be
inserted by an ADD command;

4. output to ∆ an ADJUST command for [K,K +i] of Rc to reduce the relevant offsets
by the length of the deleted string.

Version File

indices

Reference File
indices

1 2 3 4 5 6 7  …  K+j   ...  (K+i)         … N

Mismatch point

Difference

Block
Next Match

1 2 3 4 5 6 7 …  K … (K+j-1) (K+j) ... (K+i)  … N

Figure 4. Schematic representation of deletion

3 The Decoding Algorithm

The descriptive nature of ∆ is used to apply change commands to Rc, thereby trans-
forming it into a file which is equivalent to Vc. The decoding process is linear in time
and storage but is slightly more complex than the original LZSS decoding. This is
due to the fact that pointers need to be adjusted along the way as data is inserted to
or deleted from Vc. Moreover, the chain breaking mechanism might result in pointer
splitting, as discussed above.
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The algorithm is as follows, with the SPLITTO3 command explained below:

while ∆ commands exist do:
if COPY command

copy substring of Rc to Vc

if ADD command
insert string into Vc

if ADJUST pointers [i, j]
do, up to window size from j + 1

add the change size to the jump value of the pointers that
point to a location preceding i;

if the pointer is invalidated, issue a SPLITTO3 command
end do

end if
end while

As can be seen, the decoder runs in linear time and does not require additional
memory. The algorithm performs a few more passes on parts of the data, but assuming
the input is large relative to the window size, these passes are negligible. Further, if
we consider a worst case scenario of needing to act upon many pointers pointing to
the changed area, the pointers are bounded by the offset bits allocated for the pointer
which bounds the entire procedure to part of the data. We assume that this is a small
part compared to the input size. Again, if the changes are frequent in the input, the
result will be a larger delta file and will require much work in the decoder. In such a
case, it might be better to send the entire compressed version file and start fresh.

4 The Delta File

The delta file encapsulates commands which instruct the decoder how to convert its
old compressed reference into a new compressed version. By applying the commands
of the delta file, the decoding algorithm outputs the compressed version file with
very low computational needs. The delta file is constructed such that the decoding
complexity will be as small as possible and most of the computational effort is done
by the encoder. This policy was chosen in order to be consistent with the hop by hop

scheme to which this new compression suits. Reducing the complexity of the decoder
in both time and storage allows small or computationally weak caching devices to be
one of the hops along the way. Also, since the changes are the result of changes in
the server side, the server can do most of the work for all the hops along the path
to the clients. This will allow better utilization of the network nodes along the path
between the server and the clients including the clients themselves.

Most of the previous work on delta files refers to an uncompressed domain, for
example VCDIFF [8]. In our case, one needs in addition to the ADD, COPY and RUN

commands of VCDIFF also means to split a pointer in order to insert changes. The
new SPLITTO3 command breaks a pointer into three parts: the (possibly empty)
prefix represents the pointer to the data portion which did not change; the middle
part represents the change to be inserted and the (again possibly empty) suffix points
to the representation of the remaining data. This methodology allows us to break the
pointers of the compressed file and perform chain breaking with very little effort by
the decoder.
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In order to maintain this idea of lowering the computational demands of the
decoder, we write all needed commands to ∆ such that the decoder algorithm will
not need to trace the restriction zones. This might lead to a larger delta file, but the
size penalty is reasonable when the complexity needed by the hops is lower by doing
most of the chain breaking at the encoder side.

Summarizing, the complete delta file command set consists of:

– COPY — similar to the copy of VCDIFF, it tells the decoder to copy a substring
from the reference file to the decoded file.

– ADDP — Adds a pointer to Vc. This command is similar to VCDIFF’s ADD command,
but adds a pointer, not characters.

– ADDS — Adds a string. Instructs the decoder to embed the command’s parameter
string into Vc in its current index. This command is similar to other delta file
encoding ADD commands.

– SPLITTO3 — the basic pointer breaking technique when a change which is in the
middle of an area covered by a pointer is encountered. The decoder has to replace
the changed pointer so that the result will be a reflection of the change in the
compressed output. We split the pointer into three parts, the prefix part up to
the change, the inserted part, which can be some string or a pointer to an early
appearance, and a suffix part covering the remainder. The SPLITTO3 command
is also used when the encoder gets to a backpointer which points to a restricted
zone. Since restricted zones need to be ignored as they represent invalid data,
the command is used to break these pointers. The encoding algorithm stores each
restricted zone and detects the first pointers that point to a restricted zone, then
splits them. This way, we apply chain breaking, since, if we have P1 pointing to
a point in a restricted zone, and P2 pointing to P1, then by fixing P1 we also
take care of P2 and the rest of the pointers that are connected to them. Also,
this way we remove the decoder’s need to trace pointers to restricted zones, hence
simplifying the decoding algorithm.

– ADJUSTJP — Instructs the decoder to adjust all the offset sizes of the pointers,
starting from a given start index up to a window size in Rc.

The size of the delta file is a major factor in the proposed scheme. Imagine a case
where the compressed version is similar in size to the delta file. This overabundance
of data is not needed since we could have sent Vc instead of the delta file. Sending Vc

results is consuming less resources since there is no need for decoding along the path
in each hop. Therefore, the rule is that if |∆| ≪ |Vc|, send ∆. Otherwise, it is better
to send Vc.

The following is a small sample of ∆ in its textual form. In practice we used a
binary code in order to encode the commands. Further, when dealing with very large
files, in which the delta file is also large enough, ∆ itself can be compressed in order
to further reduce its size.
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COPY [from = 0, to = 77]
SPLITTO3 [offset = 114, length = 113]

PrefixPointer = [offset = 114, length = 103]
Change = [’2’] // substitute one character
SuffixPointer = [offset = 9, length = 9]

COPY [from = 81, to = 180]

The sample above represents a ∆ of changing a single character in a file V con-
sisting of 2864 1-byte numbers. In this example, a single number 1 has been changed
into the number 2. The original file was compressed using LZSS to become Rc of size
180 bytes. The decoder algorithm manipulates Rc using the above ∆ to output Vc.

5 Experiments

Table 1 summarizes the benefits of using the proposed algorithm. Real life HTML
files have been used, e.g., www.cnn.com, with uncompressed size of 107 KByte, text
files such as RFC’s and a set of synthetic files, including many repetitions. The change
type has been restricted in the tests to substitutions (S) and insertions (I), as dele-
tions behave symmetrically to insertions. The results are compared to the binary
uncompressed delta encoding scheme XDelta, which uses zlib to compress its delta
file that requires a decompression phase before it can be used to reconstruct the
uncompressed version. Our scheme takes into consideration that network elements
are indifferent to the content of the data and thus prefer to maintain cached files
in their compressed form and not to decompress them for running the delta encod-
ing algorithm or recompress them after reconstruction. The results are compared to
re-encoding the new version data, since this scenario represents a reference imple-
mentation of compression based transactions between a client and a server, for both
types of regular recompression and the proposed delta encoding.

File Number of Change Change size GZip CDDelta Xdelta
Changes type (bits) (bits) (bits) (bits)

CNN 0 No change 0 168472 67 1160
CNN 1 S 8 169944 145 1688
CNN 1 I 128 170024 265 1808
CNN 2 S 48 168496 255 1784
CNN 2 I 1608 168744 1912 2408
CNN 3 I 1872 168744 2254 2592
CNN 4 I 2144 168912 2652 2864
CNN 5 I 2408 169088 3042 3032
CNN 6 I 2672 169120 3384 3144

synthetic 1 S 8 1960 201 1712
synthetic 1 I 24 2136 217 1800
synthetic 1 S 72 2016 257 1728

Table 1: Experimental results

The first row of Table 1 describes the case of no change in the version file. Even
though this case looks odd at first, it is a real life case. When considering the network
elements that cache the data from a server, combined with the HTTP cache control
commands, we see that many data objects, including textual HTML files, have an



Shmuel T. Klein and Moti Meir: Delta Encoding in a Compressed Domain 63

expiration time. This expiration time causes the caching element to ask the server if
the data was modified (the if-modified-since HTTP attribute) and in some cases,
depending on both the network element and the server type, it causes the network
element to ask for a new version. In this typical case, our scheme will always output
a 67 bit command which is to copy the entire reference file.

The encoder performance has been tested on an Intel’s core 2 due processor
2.4 GHz, and achieved a throughput of 36 MByte/sec on one CPU. This performance
is similar to our LZSS encoder implementation. A 3 bit field was used to represent
the command, and 32 bits for an index in the file, such as the from field of the COPY

command. When referring to offsets, as in the ADJUSTP command, 16 bits were used,
since the window size was up to 64 Kbytes.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7
x 10

4

Number of changes

s
iz

e
in b
it
s

Delta file size growth as fuction of changes

up to 120 characters

up to 80 characters

up to 40 characters in one change

Figure 5. Size of delta file as function of the number of changes

From Table 1 we can see that on this data, a factor of about 46 is gained when
compared to the compressed size of the file. The Delta file size increases when there
are more changes. However, changes that were tested reflect a change of 7.4 lines
with an average size of 45 characters per line. It must be noted that these results are
without compression of the delta file and with no compression of the changed data
relative to itself or relative to the entire file as a reference.

Figure 5 shows the size increase in bits of the delta file as a function of the number
of changes, where each such change affects a randomly chosen set of 40, 80 and 120
characters. We can see that the size of the delta file increases linearly with the number
of changes.

Figure 6 visualizes the data included in Table 1 concerning the size relation be-
tween a gzip compressed file (CNN) and the Delta file for our insertion tests. The
x-axis gives the number of insertions, and the y -axis the size of the file on a logarith-
mic scale. We can see that the Delta file size increases with the number of inserted
characters, while the insertion has only a negligible effect on the size of the new ver-
sion gzip compressed file. The Delta file consists mostly of the inserted characters
themselves.
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Figure 6. Comparing Gzip and Delta sizes

6 Conclusion

We focused on the semi-compressed delta encoding problem for LZSS encoded files, in
an application in which the reconstructed version file is directly given in compressed
form. This can greatly reduce network traffic and the CPU and storage requirements of
the various network elements. The algorithm is based on a partial local reconstruction
of a previous occurrence of the data, using the compressed reference and the new
version.
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