
On-line construction of a small automaton for a

finite set of words

Maxime Crochemore1 and Laura Giambruno2

1 King’s College London, London WC2R 2LS, UK, and Université Paris-Est, France
2 Dipartimento di Matematica e Applicazioni, Universitàdi Palermo, Palermo, Italy

Maxime.Crochemore@kcl.ac.uk, lgiambr@math.unipa.it

Abstract. In this paper we describe a “light” algorithm for the on-line construction
of a small automaton recognising a finite set of words. The algorithm runs in linear
time. We carried out good experimental results on the suffixes of a text, showing how
this automaton is small. For the suffixes of a text, we propose a modified construction
that leads to an even smaller automaton.

1 Introduction

The aim of this paper is to design a “light” algorithm that builds a small automaton
accepting a finite set of words and that works on-line in linear time. The study of
algorithms for the construction of automata recognising finite languages is interesting
for parsing natural text and for motif detection (see [4]). It is used also in many
software like the intensively used BLAST [2]. In particular it is important to study
algorithms with good time and space complexities since the dictionaries used for
natural languages can contain a large number of words.

It is in general easy to construct an automaton recognising a given list of words.
Initially the list can be represented by a trie (see [6]) and then, using an algorithm for
tree minimisation (see [1], [9]), we can minimise the trie to get the minimal automaton
of the finite set of words of the list. But this solution requires a large memory space
to store the temporary large data structure.

Another solution was drafted by Revuz in his thesis ([11]) where he proposed a
pseudo-minimisation algorithm that builds from set of words in lexicographic inverse
order an automaton smaller than the trie, but that is not necessarily minimal. Anyway
the solution is not completely experimentally tested and remains unpublished.

Other solutions were proposed recently by several authors (cf. [15], [13], [14], chap-
ter 2 of [5], [10], [8], [7]). For instance Watson in [15] presented a semi-incremental
algorithm for constructing minimal acyclic deterministic automata and Sgarbas et
al. in [10] proposed an efficient algorithm to insert a word in a minimal acyclic deter-
ministic automata in order to obtain yet a minimal automaton, but not so efficient
on building the automaton for a set of words. In [8] Daciuk et al. also proposed an al-
gorithm that constructs a minimal automaton for an ordered set of strings, by adding
new strings one by one and minimizing the resulting automaton.

Here we propose an intermediate solution, similar to that one of Revuz, that is to
build a rather small automaton with a light algorithm processing the list of words on-
line in linear time on the length of the list, where the length of a list is the sum of the
lengths of the elements in the list. The aim is not to get the corresponding minimal
automaton but just a small enough structure. However, the minimal automaton can
be later obtained with Revuz’ algorithm [12] that works in linear time on the size of
the acyclic automaton.

Maxime Crochemore, Laura Giambruno: On-line construction of a small automaton for a finite set of words, pp. 15–28.

Proceedings of PSC 2009, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04403-2 c© Czech Technical University in Prague, Czech Republic

16 Proceedings of the Prague Stringology Conference 2009

The algorithm works on lists satisfying the following condition: words are in right-
to-left lexicographic order. Such hypothesis on the list is not limitative since list
update is standard. Moreover with the light algorithm the automaton can possibly
be built on demand and our solution avoids building a temporary large trie.

The advantages of our algorithm are simplicity, on-line construction and the fact
that resulting automaton seems to be really close to minimal.

In particular, in this paper we show the results of experiments done on the list of
suffixes of a text. For each set we consider the ratio between the number of states of
the constructed automaton and that of the minimal automaton associated with the
set. Such ratios happen to be fairly small. For the suffixes of a text we even propose
a modified construction that results in an almost minimal automaton.

In Section 2, after some standard definitions, we define the iterative construction
of the automaton for a list of words. In Section 3 we describe the on-line algorithm
that builds the automaton and that works in linear time on the length of the list. We
bring some examples of the non minimality of this automaton. In Section 4 we deal
with sets that are suffixes of a given word. We carry out the experimental results and
we show the modified construction. Conclusions are in Section 5.

2 The algorithm for a finite set of words

For definitions on automata we refer to [3] and to [9].
Let A be a finite alphabet. Let x in A∗, then we denote by |x| the length of x, by

x[j] for 0 ≤ j < |x| the letter of index j in x and by x[j . . k] = x[j] · · · x[k]. For any
finite set X of words we will denote by |X| the cardinality of X. Let u be a word in
A∗, we denote by S(u) the set of the proper suffixes of u together with u.

A deterministic automaton over A, A = (Q, i, T, δ) consists of a finite set Q of
states, of the initial state i, of a subset T ⊆ Q of final states and of a transition

function δ : Q × A −→ Q. For each p, q in Q, a in A such that δ(p, a) = q, we call

(p, a, δ(p, a)) an edge of A. An edge e = (p, a, q) is also denoted p
a

−→ q. A path is a
sequence of consecutive edges. A path is successful if its ending state is a final state.
Given an automaton A, we denote by L(A) the language recognised by A.

Let X = (x0, . . . , xm) be a list of words in A∗ such that the list obtained reversing
each word in X is sorted according to the lexicographic order. We will build an
automaton recognising X with an algorithm that processes the list of words on-line.
In order to do this we define inductively a sequence of m + 1 automata A0

X , . . . ,Am
X ,

such that, for each k, the automaton Ak
X recognises the language {x0, . . . , xk}. In

particular Am
X will recognises X.

In the following we define A0
X and then, for each k ∈ {1, . . . ,m}, we define the

automaton Ak
X from the automaton Ak−1

X . In these automata we will define a unique
final state without any outgoing transition that we call qfin. For each k, we consider
the following functions over the set of states of Ak

X with values in N defined, for each
state j in Ak

X , as:

– Height: H(j) is the maximal length of paths from j to a final state.
– Indegree: Deg−(j) is the number of edges ending at j.
– Paths toward final states: for j 6= qfin, PF (j) is the number of paths starting at

j and ending at final states and PF (qfin) = 1.

M. Crochemore, L. Giambruno: On-line construction of a small automaton for a finite. . . 17

2.1 Definition of A0

X

Let A0
X = (Q0, i0, T0, δ0) be the deterministic automaton having as states Q0 =

{0, . . . , |x0|}, initial state i0 = 0, final state T0 = {|x0|} and transitions defined, for
each i in Q0 \ {|x0|}, by δ0(i, x0[i]) = i + 1. We will denote by qfin the final state |x0|.
For each k in {0, . . . ,m}, qfin will be the unique final state in Ak

X with no edge going
out from it. It is easy to prove that L(A0

X) = {x0}. In Figure 1 we can see A0
X for

X = (aaa,ba,aab).

2.2 Definition of Ak

X
from A

k−1

X

Assume Ak−1
X = (Qk−1, ik−1, Tk−1, δk−1) has been built and let us define Ak

X =
(Qk, ik, Tk, δk). We define ik = {0}.

Let u be the longest prefix in common between xk and the elements {x0, . . . , xk−1}.
Let s be the longest suffix in common between xk and xk−1. If |s| ≥ |xk| − |u| then
we redefine s as xk[|u|+ 1 . . |xk| − 1]. Let us consider p the end state of the path c in
Ak−1

X starting at 0 with label u. Let q be the state along the path from 0 with label
xk−1 for which the sub-path from q to qfin has label s.

Indegree-Control. The general idea of the construction of Ak
X from Ak−1

X would be to
add a path from p to q. See Figure 1. Anyway in general we cannot do this since we
would add others words other than xk, as we can see in Figure 2. This depends on
the fact that on the path c there are states r with Deg−(r) > 1. Thus, before adding
a path from p to q, we have to do a transformation of the automaton like in Figure 3.

0 1 2 3
a a a

0 1 2 3
a

b

a a

Figure 1. The automata A0
X (left) and A1

X (right) for X = (aaa,ba,aab). Since u,
the prefix in common between aaa and ba, is the empty word and since s, the suffix
in common between aaa and ba is a, the automaton A1

X is obtained from A0
X by

adding the edge (0, b, 2).

0 1 2 3
a

b

a a

b

Figure 2. Incorrect construction of A2
X for X = (aaa,ba,aab): in this case u = aa

and s = ε, but, since Deg−(2) > 1, adding the edge (2, b, 3) leads to an automaton
accepting {aaa,ba,aab,bb}.

More formally we consider separately the case in which there is a state on c with
indegree greater than 1 and the other case.

I CASE: In c there is a state with indegree greater than 1.
Let us call r the first state with Deg−(r) > 1. Let us decompose the path c as

c : 0
u0−→ r0

x[ℓ]
−→ r

u1−→ p. We construct the automaton Bk−1
X = (Q′

k−1, 0, T
′
k−1, δ

′
k−1) in

the following way. In order to construct δ′k−1:

– we delete the edge r0
x[ℓ]
−→ r,

18 Proceedings of the Prague Stringology Conference 2009

0 1 2

4

3
a

b

a a

a
0 1 2

4

3
a

b

a a
b

a

Figure 3. Automata B1
X (left) and A2

X (right) for X = (aaa,ba,aab). The automaton
B1

X is equivalent to A1
X and it is obtained from A1

X by doing a copy of the path from
0 to 4 with label aa. The automaton A2

X is obtained by adding the edge (4, b, 3)

– we construct a path from r0 with label x[ℓ]u1, let us call p′ its ending state,
– we create for each edge going out from p with label a and ending at a state t,

p
a

−→ t, the edge from p′, p′
a

−→ t.

More formally we define Q′
k−1 = Qk−1 ∪ {|Qk−1|, . . . , |Qk−1| + |u1|} and















δ′k−1(i, a) = δk−1(i, a), ∀i 6= r0,∀a ∈ A;
δ′k−1(r0, xk[ℓ]) = |Qk−1|,
δ′k−1(|Qk−1| + i, xk[ℓ + i]) = |Qk−1| + i + 1, ∀i = 0, . . . |u1| − 1;
δ′k−1(|Qk−1| + |u1|, a) = δk−1(p, a), ∀a ∈ A.

We denote by p the state |Qk−1| + |u1|.

II CASE: the other case. We consider Bk−1
X = Ak−1

X .

We consider now the automaton Bk−1
X . If xk is the prefix of a word in {x0, . . . , xk−1}

then we add p to the final states of Bk−1
X , that is T ′

k−1 = Tk−1 ∪ {p} and we define

Ak
X = Bk−1

X .
Otherwise we proceed with the following control. We have the decomposition of

xk as xk = uws, with w ∈ A+.

Paths toward final states control. As before, the general idea is to add a path from
p to q with label w, but there are some other controls that are required. In Figure
4 we see another situation in which we cannot add a path from p to q otherwise we
would add words not in X. In this case, it depends on the fact that the number of
paths from q towards final states is greater than one, that is PF [q] > 1.

0 1 2

4

3
a

b

a a
b

a

b

0 1 2

4

5

3
a

b

a a
b

a

b b

Figure 4. Incorrect construction of A3
X (left) for X = (aaa,ba,aab,abb): adding the

edge (1, b, 4) to A2
X leads to an automaton accepting {aaa,ba,aab,abb,aba}. Right

construction of A3
X (right): it is obtained by adding the path from 1 to 3 with label

bb. In particular 3 is the first state q′ in the path from 4 to 3 with PF [q′] = 1

Thus, if PF (q) > 1 then we consider in the path d from q to qfin with label s the
first state q′ such that PF (q′) = 1, if it exists. In this case we call s1 the label of the

M. Crochemore, L. Giambruno: On-line construction of a small automaton for a finite. . . 19

subpath of d from q to q′ and let s = s1s2. We call w the word ws1, s the word s2

and q the state q′. See Figure 4 for an example.
If there is no q′ with PF [q′] = 1 in the path from q to qfin with label s, then we

define q as qfin and w as ws. Otherwise we proceed with the Height control.

Height-Control. If H(p) ≤ H(q) then in general we cannot add a path from p to q

because if there is a path from q to p then we will have infinitely many words recog-
nised, as we can see in the example in Figure 5. We have to do another transformation
as in Figure 6.

If H(p) ≤ H(q) then we consider in the path d, from q to qfin with label s, the
first state q′ such that H(p) > H(q′). We call s1 the label of the subpath of d from
q to q′. Let s = s1s2. We call w the word ws1, s the word s2 and q the state q′. In
Figure 6 we have an example of the construction.

If H(p) > H(q) then we go further.

0 1 2 3
a b a

0 1 2 3
a b a

b

Figure 5. We have the automaton A0
X (left) for X = (aba,abbba) and the incorrect

construction of A1
X (right): adding the edge (2, b, 1) would lead to an automaton

accepting the infinite language {aba,a(bb)∗a}.

0 1 2 3

4 5

a b a

b

b

a

Figure 6. We have the right construction of A1
X for X = (aba,abbba).

0 1 2

4

5

3
a

b

a a
b

a

b b

b

0 1 2

4

5

6

3
a

b

a a
b

a

b

b

b

Figure 7. Incorrect construction of A4
X (left) and the right construction of A4

X (right)
for X = (aaa,ba,aab,abb,abbb).

If there exists a word in {x0, . . . , xk−1} that is a prefix of xk then, if p 6= qfin we
add p to the set of final states, that is Tk = T ′

k−1 ∪ {p}.
If p = qfin then, if we add a path from p to qfin with label w then we would

add also infinitely many words to the language recognised by the automaton, as in
the example in Figure 7. In Figure 7 it is also reported the right construction of the
automaton, as explained in the following.

20 Proceedings of the Prague Stringology Conference 2009

When p = qfin we consider the following decomposition of c, the path from 0 with

label u, c : 0
u′

−→ p′
a

−→ qfin. We delete the edge p′
a

−→ qfin. Then we add an edge
from p′ to a new state p′′ with label a and we add p′′ to the set of final states. We
call p the state p′′. More formally we define Qk = Q′

k−1 ∪ {|Q′
k−1|} and







δk(i, a) = δ′k−1(i, a), ∀i 6= p′,∀a ∈ A;
δk(p

′, a) = |Q′
k−1|,

δk(p
′, a) = δ′k−1(p

′, a), ∀b ∈ A, b 6= a;

We call p the state |Q′
k−1|.

Finally in all cases we add a path from p to q with label w, that is Qk = Q′
k−1 ∪

{|Q′
k−1| + 1, . . . , |Q′

k−1| + |w| − 3} and























δk(i, a) = δ′k−1(i, a), ∀i 6= p,∀a ∈ A;
δk(p, w[0]) = |Q′

k−1|,
δk(p, a) = δ′k−1(p, a), ∀a ∈ A, a 6= w[0];|
δk(|Q

′
k−1| + i, w[i + 1]) = |Q′

k−1| + i + 1, ∀i = 0, . . . |w| − 3;
δk(|Q

′
k−1| + |w| − 3, w[|w| − 1]) = q, ∀a ∈ A.

We have proved the following:

Theorem 1. For each k ∈ {0, . . . ,m}, the language recognised by the automaton Ak
X

is L(Ak
X) = {x0, . . . , xk}.

In order to prove it we make use of the following lemma:

Lemma 2. Let k ∈ {0, . . . ,m}. For each state i of Ak
X with Deg−(i) > 1, there exists

a unique path starting from i and ending at the final state qfin.

3 Construction algorithm

Let X = (x0, . . . , xm) be a list of words in A∗ ordered by right-to-left lexicographic
order and let

∑

i=0,m |xi| = n. Let us call AX the automaton Am
X recognising X. In

order to build it on-line we have to go through all the automata Ak
X , 0 ≤ k ≤ m.

For the construction of AX we consider a matrix of n lines and 3 columns where
we will memorize the values of the three functions H, Deg−1 and PF for each state
of the automaton. In the outline, when we write A, we will consider the automaton
A together with this matrix. The outline of the algorithm for computing AX is the
following:

Construction-AX(X)

1. (A, R) ← Construction-A0

X (X[0])
⊳ denote by qfin the final state of A, define PF [qfin] = 1

2. for k ← 1 to |X| − 1 do

3. (A, R) ← Add-word(A,X[k],X[k − 1], R)
4. Return A

Let us consider now the function Construction-AX . In line 1 we have the
function Construction-A0 that computes the automaton A recognising X[0].
The automaton A is constructed using lists of adjacency. Its states are the inte-
ger {0, . . . , |X[0]|}, 0 is the initial state and |X[0]| is the final state. Moreover the

M. Crochemore, L. Giambruno: On-line construction of a small automaton for a finite. . . 21

function Construction-A0 returns a list R containing the sequence of states of A
taken in the order of the construction.

In lines 2-3, for each k from 1 to |X|, we add to the automaton A the word X[k]
using the procedure Add-word below.

Add-word(A, x, y,R)
1. compute s the suffix in common between x and y

2. (A, j, p) ← Indegree-Control (A, x)
3. if |x| = j then

4. p ← final(A)
5. redefine PF for the states in the path from 0 with label x

6. define R as the list of states in the path from 0 with label x

7. else

8. if |x| − |s| ≤ j then s ← s[j + 1 . . |s| − 1]
9. q ← R[|R| − |s|]
10. (A, q, h) ← PF-Control(A, q, s)
11. if PF [q] 6= 1 then qfin ← q

12. else

13. s ← s[h . . |s| − 1]
14. (A, q, h) ← Height-Control(A, p, q, s)
15. if x[0 . . j − 1] ∈ X then

16. delete the last edge of the path c starting at 0 with label x[0 . . j − 1]
17. add an edge from p1 , ending state of c , to a new state p2

18. p2 ← final(A)
19. (A, R) ← Add path(A, x[0 . . j − 1], x[j . . h − 1], q)
20.Return (A, R)

Let us now see more in detail how the procedure Add-word works. It has as input
an automaton A and two words x and y and it returns the automaton obtained from
A, by adding the word x, and R, the sequence of states along the path corresponding
to the added word x. In line 1 it computes s the suffix in common x and y. In line 2
it calls the Indegree-Control function on (A, x).

Indegree-Control(A, x)

1. p ← 0, j ← 0, InDegControl ← 0
2. while δ(p, x[j]) 6= NIL and j 6= |x|
3. p1 ← p

4. p ← δ(p, x[j])
5. if InDegControl = 0 then

6. if Deg−[p] 6= 1 then

7. create an edge from p1 to a new state p2 with label x[j]
8. define Deg− for p2 and for p

9. InDegControl ← 1
10. else

11. create an edge from p2 to a new state q with label x[j]
12. Deg−[q] ← 1
13. p2 ← q

14. j ← j + 1
15.if InDegControl = 1 then

16. for each edge starting at p, with label a and ending state q

17. create an edge from p2 to q with label a

18. Deg−[δ(p2, a)] ← Deg−[δ(p2, a)] + 1
19. H[p2] ← H[p]
20. p ← p2

21.Return (A, j, p)

22 Proceedings of the Prague Stringology Conference 2009

Such a function reads the word x in A until it is possible. Let us call u the longest
prefix of x that is the label of an accessible path in A, let p be the ending state of this
path. If, in such a path, there is an edge r1

a
−→ r such that r has indegree greater

than 1 then the function creates a path from r1 labelled by the remaining part of u,
let p2 be its ending state. It redefines also the function Deg− for the states in the new
path.

In this case, for each edge starting at p with label a and ending at a state p′, it
creates an edge starting at p2 with label a and ending at p′. It calls p the state p2

and it defines the height of p.

The Indegree-Control function returns A, j and p, where j is the length of
the longest prefix of x which is the label of an accessible path in A and p is the ending
state of this path.

Let us come back to Add-word. In line 3 it controls if x[0 . . j − 1] = x, that is
if x is the prefix of an already seen word. In this case in lines 4-6 it puts p in final
states, it redefines PF for the states on the path labelled x and it defines R as the
list of states in the path from 0 with label x.

If x[0 . . j − 1] 6= x, that is x is not the prefix of an already seen word, then we go
to line 8. If |x| − |s| ≤ j then we redefine s. In line 9 we use R in order to find the
state q such that there is a path from q to the final state qfin with label s.

In line 10 the PF-Control function is called. It takes as argument the automaton
A, q and s. The function reads from q the word s until either it finds a state q′ with
PF [q′] = 1 or it ends reading s. If s′ is the label of the path from q to q′ then it
returns the length of such a path h. In line 11 if PF [q] is greater than 1 then we
define q as qfin. Otherwise we go to line 13 where we redefine s as s[h . . |s|].

In line 14 we have a call to the Height-control function. It takes as argument
the automaton A, p, q and the word s. Such a function reads in A, starting at q, the
word s until it finds a state q′ with H[p] > H[q′]. If s′ is the label of the path from q

to q′ then it returns the length of such a path h.
PF-Control (A, q, s)

1. h ← 0
2. while PF [q] 6= 1 and h 6= |s|
3. q ← δ(q, s[h])
4. h ← h + 1
5. Return (A, q, h)

Height-Control (A, p, q, s)

1. h ← 0
2. while H[p] ≤ H[q] and h 6= |s|
3. q ← δ(q, s[h])
4. h ← h + 1
5. Return (A, q, h)

In line 15 it controls if x[0 . . j−1] is in X. In such a case it does the transformation
as written in lines 16, 17 and 18. In line 19 we call the function Add-path on
(A, x[0 . . j − 1], x[j . . h − 1], q).

The function Add-path takes as argument (A, u, w, q) with u and w words and
q state of A. It returns the automaton A obtained by adding a path with label w

from p, final state of the path in A from 0 with label u, to q. The function creates
the path from p to q with label w and defines H, PF and Deg− for the new states. It
redefines H, PF and Deg− for the states of the path from 0 with label u. Finally it

M. Crochemore, L. Giambruno: On-line construction of a small automaton for a finite. . . 23

puts all the states on the path from 0 to qfin with label x in a list R. Then it returns
the automaton A and the list R.

Time complexity

We define A0
X using the list of adjacency. So we compute A0

X with the associated
matrix and R in O(|X[0]|). Let us analyze the time complexity of the other functions.

For each k, let us call u the longest prefix common to X[k] and {X[0], . . . , X[k −
1]}. The Indegree-Control function has time complexity O(|u|). Let us call x

the word X[k] and s the suffix in common between x and X[k − 1]. The Height-

Control function works in O(h). The PF-Control function works in O(h) also.
Since O(h) are O(|s|) then the functions work in time O(|s|). The Add path function
works in time O(|x|).

Since the other instructions in Add-word work in O(1) we get that the running
time for executing Add-word is O(|x|). And we get that the time complexity of
Construction-AX is O(|X|).

3.1 Non minimality of the automaton: example

Given X a finite language, the automaton AX is not necessarily minimal. This can
follow, for example, from the not necessary indegree control done while building an
automaton.

In the example in Figure 1 we see the construction of A0
X and A1

X for X =
(aaa,ba,aab,bb). In order to construct A2

X we have to do the indegree control as in
Figure 3. In Figure 8 we have A3

X that is not minimal since the states 2 and 4 are
equivalent.

The non minimality follows here from the indegree control. In fact, in this case
the indegree control would not be necessary since bb is also in X (see Figure 2). So
the algorithm creates unnecessary states and the automaton A3

X results to be non
minimal.

0 1 2

4

3
a

b

a a
b

a

b

Figure 8. Non minimal automaton A3
X for X = (aaa,ba,aab,bb).

4 The algorithm for the set of suffixes of a given word

Let y in A∗ and let us consider S(y) sorted by decreasing order on the lengths of the
elements in S(y). For each y ∈ A∗, let us denote by Ay the automaton AS(y) and by
My the minimal automaton of S(y). Given an automaton A, let us denote by ♯A the
number of states of A. For each y in A∗, in order to estimate the distance of Ay to

its minimal automaton we consider the ratio D(y) = ♯Ay

♯My

.

We have done some experiments by generating all the words of a fixed length n.
For each fixed length n we have considered Dmax

n the greatest of D(y) with y of length
n.

24 Proceedings of the Prague Stringology Conference 2009

n Dmax
n

10 1.83
15 2.41
20 3.04

In general the experimental results are good since Dmax
n is not greater than 4

for words y with |y| ≤ 20. Moreover the experiments done show that bad cases are
linked with words that are powers of a short one with great exponent. So we thought
that such words brought to automata far from being minimal (with great D(y)), or
equivalently, that words with small entropy would have a great ratio D(y).

Thus we have done experiments by generating 2000 words of a fixed length n with
some constraints. For each of this experiment we have considered Dn, the greatest
ratio among the D(y). We report the results for different values of n in the following
table. In the first column we have generated words such that either are not powers
of the same word or that are powers of a word with an exponent less than a fixed
number.

n exp < 3 exp < 2 exp < 1
10 1.75 1.66 1.54
20 2.22 2.16 2.42
30 2.16 2.22 2.24
50 1.96 1.85 2.60
100 1.60 1.71 1.79

The experimental results are good in general even if they do not show clearly our
conjecture. In the following we propose another approach.

4.1 Modified construction

Let y in A∗ and S(y) = [y0 = y, . . . , ym] sorted by decreasing order on the lengths of
the elements in S(y). Let us denote by Ak

y the automaton Ak
S(y).

In case yk is not a prefix of an already seen word, we consider the construction of
the automaton Ak

y taking q in the path from 0 with label y and not in that one with
label yk−1. Let us note that in case of suffixes of a word we have that yk = uas with
a in A and u, s defined as in Section 2. Moreover let us note that if there are two
edges ending at p, state of Ak

y, then they have the same label.

In this section we will propose a modification on the indegree control in order to
avoid equivalent states as in the example in Figure 8. Before doing it we will note,
with the following two propositions, that, in case of suffixes of a word, we do not
have to execute the PF control and the Height control. In particular we prove that
PF (q) = 1 and that H(p) > H(q), with p and q as defined in Section 2.

Proposition 3. Let y in A∗ and yk in S(y) such that yk is not a prefix of a word in

{y0, . . . , yk−1}. Then we have that PF (q) = 1.

Proposition 4. Let y in A∗ and yk in S(y) such that yk is not a prefix of a word in

{y0, . . . , yk−1}. Then we have that H(p) > H(q).

Let us consider the construction of Ak
y. We have the following proposition:

M. Crochemore, L. Giambruno: On-line construction of a small automaton for a finite. . . 25

Proposition 5. Let y in A∗ and yk in S(y). Let yk = uz, with u such that there

exists a path starting at 0 with label u in Ak−1
y , let p its final state. If there exists

a path from 0 to p with label v in Ak−1
y then, if |v| < |u| then vz ∈ {yk+1, . . . , ym},

otherwise vz ∈ {y0, . . . , yk−1}.

Let us associate with each state p of Ak−1
y the list L(p) of the states q such that

there exists an edge from q to p. We construct such list iteratively adding each time
an element to the tail of the list.

With each state q in L(p) we associate V (q) the set of words such that there exists
a path from 0 to q. Let us denote by ph the state L(p)[h].

Proposition 6. Let y in A∗ and let p be a state of Ak
y with Deg−(p) > 1. Let i <

j < |L(p)|. Then, for each u in V (pi) and for each v in V (pj), we have that |u| > |v|.

We propose a new construction of Ak
y with the definition of L(p), for each state

p, and a different indegree control. Let u be the longest prefix in common between yk

and {y0, . . . , yk−1} and p′ the ending state of the path starting at 0 with label u.
The function reads the word yk in Ak−1

y until it is possible. While the function
reads yk, the visiting state is called p and the state visited in the step before is called
p1. In particular we have that p1 is in L(p).

If the function finds a state p with Indegree greater than 1 and if p1 is not equal
to L(p)[0] then, if a is the label of the edge from p1 to p,

– it deletes all the edges starting at states in L(p) that have a position in L(p)
greater or equal to that one of p1.

– it creates a new state p2 and it creates, for each state r in L(p) that has a position
greater or equal to that one of p1, an edge from r to p2 with label a

– it creates a path from p2 with label the resting part of u. Let p be the end state
of this path.

– it creates, for each edge, starting at p′ an edge starting at p with the same ending
state .

Time complexity

For each Ak
y, for each state p in Ak

y we have that Deg−(p) ≤ (k + 1). In the indegree
control, in the worst case, we have to visit completely the list for the state p with
Deg−(p) > 1 and such that p1 6= L(p)[0]. So for each k, in the worst case, the indegree
control takes time O(|u| + k).

In total the contributions of the visit of the lists L(p) for indegree controls take
time O(

∑

k=0,m k) = O(|S(y)|), so we have that in the worst case the algorithm works

in O(|S(y)|).

5 Conclusion

The algorithm presented in the article builds a small automaton accepting a finite set
of words. It has several advantages. It allows an extremely fast compiling of the set
of words. With little modification, the method can handle efficiently updates of the
automaton, and especially addition of new words. The condition imposed on the list
of words is not a restriction because words can always be maintained sorted according
to lexicographic order.

26 Proceedings of the Prague Stringology Conference 2009

One open problem is to find a general upper bound for ratios D (ratio D is the
quotient of the number of states of Ay and of the number of states of its minimal
automaton).

Experiments leads us to conjecture that the ratios are bounded by a fixed number,
after possibly a small change in the algorithm.

For the suffixes of a word y, we expect that an improved version of the algorithm
actually builds the (minimal) suffix automaton of y.

The main open question is whether there exists an on-line construction for the
minimal automaton accepting a finite set of words that runs in linear time on each
word being inserted in the automaton.

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman: The design and analysis of computer

algorithms, Addison-Wesley Publishing Company, 1974.
2. S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman: Basic local alignment

search tool. J. Mol. Biol., 215 1990, pp. 403–410.
3. J. Berstel and D. Perrin: Theory of Codes, Academic Press, 1985.
4. J. Clément, J.-P. Duval, G. Guaiana, D. Perrin, and G. Rindone: Parsing with a finite

dictionary. Theoretical Computer Science, 340 2005, pp. 432–442.
5. C.Martin-Vide and V. Mitrana: Grammars and Automata for String Processing: From

Mathematics and Computer Science to Biology, and Back, Taylor and Francis, 2003.
6. M. Crochemore, C. Hancart, and T. Lecroq: Algorithms on Strings, Cambridge Univer-

sity Press, Cambridge, UK,, 2007.
7. J. Daciuk: Comparison of construction algorithms for minimal, acyclic, deterministic, finite-

state automata from sets of strings, in Proceedings of CIAA 2002, vol. 2608 of LNCS, 2003,
pp. 255–261.

8. J. Daciuk, S. Mihov, B. W. Watson, and R. E. Watson: Incremental construction of

minimal acyclic finite state automata. Computational linguistics, 26(1) 2000, pp. 3–16.
9. J. E. Hopcroft and J. D. Ullman: Introduction to Automata Theory, Languages and

Computation, Addison-Wesley Publishing Company, 1979.
10. N. D. F. K. N. Sgarbas and G. K. Kokkinakis: Optimal insertion in deterministic DAWGs.

Theoretical Computer Science, 301 2003, pp. 103–117.
11. D. Revuz: Dictionnaires et lexiques: mthodes et algorithmes, PhD thesis, Institut Blaise Pascal,

Paris, France, LITP 91.44, 1991.
12. D. Revuz: Minimization of acyclic deterministic automata in linear time. Theoretical Computer

Science, 92, number 1 1992, pp. 181–189.
13. B. W. Watson: A taxonomy of algorithms for constructing minimal acyclic deterministic finite

automata. South African Computer Journal, 27 2001, pp. 12–17.
14. B. W. Watson: A fast and simple algorithm for constructing minimal acyclic deterministic

finite automata. Journal of Universal Computer Science, 8, number 2 2002, pp. 363–367.
15. B. W. Watson: A new algorithm for the construction of minimal acyclic DFAs. Science of

Computer Programming, 48 2003, pp. 81–97.

M. Crochemore, L. Giambruno: On-line construction of a small automaton for a finite. . . 27

6 Appendix

Proof of Lemma 2

We will prove the lemma by induction on k. For k = 0 it is easily true.
Let us suppose that it is true for k − 1 and let us prove it for k. If i is a state of

Ak
X with Deg−(i) > 1 then i is not contained in the path from 0 to p relative to xk,

by construction. So by the inductive hypothesis there is a unique path from i to qfin.

Proof of Theorem 1

We will prove the theorem by induction on k. For k = 0 it is easily true.
Let us suppose that it is true for k− 1 and let us prove it for k. Let us prove that

the automaton Bk−1
X , obtained after the indegree control, recognises {x0, . . . , xk−1},

that is L(Bk−1
X) = L(Ak−1

X). Let us suppose to be in CASE I otherwise it is trivial.
Trivially we have that L(Bk−1

X) ⊆ L(Ak−1
X). For the other inclusion, let d be a

successful path in Ak−1
X . If d does not contain the edge r0

x[ℓ]
−→ r then the path d will

be also in Bk−1
X . If d contains the edge r0

x[ℓ]
−→ r then d contains necessarily as subpath

r0
x[ℓ]
−→ r

u1−→ p, in fact, since Deg−(r0) > 1, by Lemma 2, there exists a unique path
starting at r0 and ending at qfin. So there exists in Bk−1

X a successful path with the
same label as d.

Let us prove now that the automaton Ak recognises {x0, . . . , xk}. If x is the
prefix of a word in {x0, . . . , xk−1} then we add p to the set of final states and since
Deg−(p) = 1 we only add xk to L(Ak−1

X) = {x0, . . . , xk−1}.
Otherwise, if p = qfin then we transform Bk−1

X in an automaton recognising the
same language.

In all cases the automaton Ak is obtained from Bk−1
X by adding a path from p to

q with label w, as defined before.
By the ‘indegree control’, there exists a unique path in Bk−1

X from 0 to p with label
u and, by the ‘paths toward final states control’ there exists a unique path in Bk−1

X

from q to qfin with label s. Moreover, since H(p) > H(q), there are no paths from q

to p, otherwise there would be a path from q to qfin longer than every path from p

to qfin.
Thus we only add to L(Ak−1

X) the word x = uws, that is the thesis.

Proof of Proposition 3

Let yk = uas, with u and s as defined before. By contradiction, if PF (q) > 1 then,
there exists i < k such that yi = u1bs1 and |s| > |s1|. Since yk is a suffix of yi we
have that s = ts1, for some word t 6= ε. Since yk = uats1 is a suffix of yi = u1bs1 then
there exists z 6= ε such that uz is a suffix of u1.

Since yi = u1bs1 then there exists yh with h < i such that u1 is a prefix of
yh. Let yh = u1cs2, then we have that |s2| > |s1| since |yh| > |yi|. Since uz is a
suffix of u1 there exists a suffix yl of yh with yl = uzcs2. Since |s2| > |s1| we get
|yl| = |uzcs2| > |uzbs1| = |yk|. So uz is a prefix in common between yk and yl, l < k,
that is a contradiction since u was the greatest prefix in common between yk and the
words in {y0, . . . , yk−1}.

28 Proceedings of the Prague Stringology Conference 2009

Proof of Proposition 4

Let yk = uas with u and s defined as before. Since p is co-accessible, there exists
a word uz in {y0, . . . , yk−1}. By Prop. 3, there exists only one path from q to qfin

whose label is s.
If H(p) ≤ H(q) then |s| ≥ |z| and so |yk| = |uas| > |uz| that is a contradiction since
uz in in {y0, . . . , yk−1}.

Proof of Proposition 5

The state p is co-accessible and so let z′ be the label of a path from p to a final
state. Then uz′ and vz′ are in {y0, . . . , yk−1}. If |v| < |u| then v is a suffix of u and
so vz is a suffix of uz and vz is in {yk+1, . . . , ym}.

If |v| ≥ |u|, then |vz| ≥ |uz|. Thus uz is a suffix of vz and vz is in {y0, . . . , yk−1}.

Proof of Proposition 6

The list L(p) is iteratively constructed adding each time an element to the tail of
L(p). Then, for each i < j < |L(p)|, and for u in V (pi) and v in V (pj), u is the label
of a path added during the construction of Al

y, v is the label of a path added during

the construction of Ar
y, with l < r. Since p is co-accessible in Al

y, we have that uaz

in S(y) and so vaz in S(y), for some word z and some a in A. Since v is constructed
in Ar

y with r > l we get that |v| < |u|.

