
A Concurrent Specification of an Incremental DFA

Minimisation Algorithm

Tinus Strauss, Derrick G. Kourie, and Bruce W. Watson

FASTAR, University of Pretoria
Pretoria, South Africa

{tstrauss,dkourie,bwatson}@cs.up.ac.za
http://www.fastar.org

Abstract. In this paper a concurrent version of a published sequential incremental
deterministic finite automaton minimisation algorithm is developed. Hoare’s Commu-
nicating Sequential Processes (CSP) is used as the vehicle to specify the concurrent
processes.
The specification that is proposed is in terms of the composition of a number of con-
current processes, each corresponding to a pair of nodes for which equivalence needs
to be determined. Each of these processes are again composed of several other possibly
concurrent processes.
To facilitate the specification, a new CSP concurrency operator is defined which, in
contrast to the conventional CSP concurrency operator, does not require all processes
to synchronise on common events. Instead, it is sufficient for any two (or more) processes
to synchronise on such events.

Keywords: DFA minimisation, concurrency, CSP, automata

1 Introduction

As pointed out in [10], two contemporary trends drive the need for the development
of concurrent implementations of automata algorithms. On the one hand, finite au-
tomaton technology is being applied to ever-larger applications. On the other hand,
hardware is tending towards ever-increasing support for concurrent processing. Chip
multiprocessors [7], for example, implement multiple CPU cores on a single die. Ad-
ditionally, scale-out systems [1] – collections of interconnected low-cost computers
working as a single entity – also provide parallel processing facilities. These hardware
developments present the challenging task of producing quality concurrent software
[6,11,12].

The problem of minimising a finite state automaton has been studied quite ex-
tensively over the years and many algorithms have been proposed to address this
problem. See [14, Chap. 7] for a comprehensive coverage of the area.

Previous parallel algorithms that have been proposed include [5,8,13]. These al-
gorithms typically depend on a specific parallel computational models. In the present
case, we abstract away from these considerations and model the algorithm as a process
in the Communicating Sequential Processes (CSP) process algebra. Our purpose is to
expose maximally the possibilities for concurrency inherent in the problem itself—at
least to the extent that these possibilities may be latent in the sequential algorithm.
As a consequence, we are not concerned with issues such as allocation of processes to
processors, determination of which processes could be coalesced into a single process
to limit context switching, etc. These are regarded as implementation issues for later
consideration.

Tinus Strauss, Derrick G. Kourie, Bruce W. Watson: A Concurrent Specification of an Incremental DFA Minimisation Algorithm, pp. 218–226.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

T. Strauss et al.: A Concurrent Specification of an Incremental DFA Minimisation Algorithm 219

The article is structured as follows. Section 2 gives the preliminaries of the problem
domain under consideration, and the sequential algorithmic solution to the problem is
given in section 3. A very brief account is given in section 4 of CSP. We also introduce
a so-called optional-parallel operator that will be used. Section 5 then provides a
concurrent specification to the problem, before a brief conclusion in the final section.

2 Preliminaries

Throughout this paper, we will consider a specific DFA (Q,Σ, δ, q0, F) where Q is
the finite set of states, Σ is the input alphabet, δ : Q × Σ → Q is the transition
function, q0 ∈ Q is the start state, and F ⊆ Q is the set of final states. We further
assume that all states in the automaton are reachable from q0. The size of a DFA,
|(Q,Σ, δ, q0, F)|, is defined as the number of states, |Q|.

To make some definitions simpler, we will use the shorthand Σq to refer to the set
of all alphabet symbols which appear as out-transition labels from state q. Sometimes
when it is the case that Σp = Σq we will write Σpq instead of Σp or Σq to emphasise
their equality.

We take δ∗ : Q×Σ∗ → Q to be the transitive closure of δ defined inductively (for
state q) as δ(q, ε) = q and (for a ∈ Σq, w ∈ Σ∗) δ∗(q, aw) = δ∗(δ(q, a), w).

The right language of a state q, written
−→
L (q), is the set of all words spelled out

on paths from q to a final state. Formally,
−→
L (q) = {w | δ∗(q, w) ∈ F }. With the

inductive definition of δ∗, we can give an inductive definition of
−→
L :

−→
L (q) =

⋃

a∈Σq

{a}
−→
L (δ(q, a))

 ∪

{

{ε} if q ∈ F
∅ if q /∈ F

We define predicate Equiv to be ‘equivalence’ of states:

Equiv(p, q) ≡
−→
L (p) =

−→
L (q)

With the inductive definition of
−→
L , we can rewrite Equiv as follows:

Equiv(p, q) ≡ (p ∈ F ≡ q ∈ F) ∧ Σp = Σq ∧

〈∀ a ∈ Σp ∩ Σq :: Equiv(δ(p, a), δ(q, a))〉
(1)

The primary definition of minimality of a DFA M is:

〈∀ M ′ : M ′ is equivalent to M : |M | ≤ |M ′|〉

where equivalence of DFAs means that they accept the same language. Using right
languages, minimality can also be written as the following predicate:

〈∀ p, q ∈ Q : p 6= q : ¬Equiv(p, q)〉

Equiv indicates whether two states are interchangeable. If they are, then one can be
eliminated in favour of the other. (Of course, in-transitions to the eliminated state
are redirected to the equivalent remaining one.) This reduction step is not addressed
here.

220 Proceedings of the Prague Stringology Conference 2008

3 The Sequential Algorithm

This section briefly details the sequential algorithm [15] for which we intend to pro-
vide a CSP model in the forthcoming sections. The algorithm is different from other
minimisation algorithms in the sense that it is incremental, i.e. it may be halted at
any time, yielding a partially minimised automaton.

From the problem of deciding the structural equivalence of two types, it is known
that equivalence of two states can be computed recursively by turning the mutually
recursive set of equivalences Equiv into a functional program. If the definition were to
be used directly as a functional program, there is the possibility of non-termination
in cyclic automata. In order for the functional program to work, it takes a third
parameter along with the two states. An invocation equiv(p, q, ∅) returns via the
local variable eq the truth value of Equiv(p, q). During the recursion, it assumes that
two states are equivalent (by placing the pair of states in S, the third parameter)
until shown otherwise.

Since it is known that the depth of recursion can be bounded by the larger of |Q|−2
and 0 (expressed as (|Q| − 2)max 0) without affecting the result [14, §7.3.3], we add
a parameter k to function equiv such that an invocation equiv(p, q, ∅, (|Q|−2)max 0)
returns Equiv(p, q).

Purely for efficiency, the third parameter S is made a global variable. We assume
that S is initialized to ∅. When S = ∅, an invocation equiv(p, q, (|Q| − 2)max 0)
returns Equiv(p, q); after such an invocation S = ∅.

Algorithm 3.1 (Pointwise computation of Equiv(p, q)):

func equiv(p, q, k) →
if k = 0 → eq := (p ∈ F ≡ q ∈ F)
[] k 6= 0 ∧ {p, q} ∈ S → eq := true

[] k 6= 0 ∧ {p, q} 6∈ S →
eq := (p ∈ F ≡ q ∈ F) ∧ (Σp = Σq);
S := S ∪ {{p, q}};
for a : a ∈ Σp ∩ Σq →

eq := eq ∧ equiv(δ(p, a), δ(q, a), k − 1)
rof ;
S := S \ {{p, q}}

f i;
return eq

cnuf

The function equiv can be used to compute the relation (i.e. set of pairs) Equiv . In
variable G, we maintain a set consisting of the pairs of states known to be inequivalent
(distinguished), while in H, we accumulate pairs of states belonging to the set Equiv .
To initialize G and H, we note that final states are never equivalent to nonfinal ones,
and that a state is always equivalent to itself. Since Equiv is an equivalence relation,
we ensure that H is transitive at each step. Finally, we have global variable S used
in Algorithm 3.1:

T. Strauss et al.: A Concurrent Specification of an Incremental DFA Minimisation Algorithm 221

Algorithm 3.2 (Computing Equiv):

S,G,H := ∅, ((Q \ F) × F) ∪ (F × (Q \ F)), { (q, q) | q ∈ Q };
{ invariant: G ⊆ ¬Equiv ∧ H ⊆ Equiv }
do (G ∪ H) 6= Q × Q →

let p, q : (p, q) ∈ ((Q × Q) \ (G ∪ H));
if equiv(p, q, (|Q| − 2)max 0) →

H := H ∪ {(p, q), (q, p)};
H := H+

[] ¬equiv(p, q, (|Q| − 2)max 0) →
G := G ∪ {(p, q), (q, p)}

f i
od; { H = Equiv }
merge states according to H
{ (Q,Σ, δ, q0, F) is minimal }

The repetition in this algorithm can be interrupted and the partially computed H
can be safely used to merge states.

4 CSP

Of the many process algebras that have been developed to concisely and accurately
model concurrent systems, we have selected CSP [4,3,9] as a fairly simple and easy
to use notation. It is arguably better known and more widely used than most other
process algebras. Below, we first briefly introduce the conventional CSP operators that
are used in the article. Thereafter we also introduce the so-called optional parallel
operator—a new proposed CSP operator [2].

4.1 Introductory Remarks

CSP is concerned with specifying a system of concurrent sequential processes (hence
the CSP acronym) in terms of sequences of atomic events, called traces. In fact, the
semantics of a concurrent system is seen as being precisely described by the set of all
possible traces that characterise such as system. A fundamental assumption is that
events are instantaneous and atomic, i.e. they cannot occur concurrently. Various
operators are available to describe the sequence in which events may occur, as well
as to connect processes. Table 1 briefly outlines the operators used in this article.

Full details of the operator semantics and laws for their manipulation are available
in [4,3,9]. Note that SKIP designates a special process that engages in no further
event, but that simply terminates successfully. Parallel synchronization of processes
means that if A ∩ B 6= ∅, then process (x?A → P (x)) || (y?B → Q(y)) engages in
some nondeterministically chosen event z ∈ A ∩ B and then behaves as the process
P (z) || Q(z). However, if A ∩ B = ∅ then deadlock results. A special case of such

parallel synchronization is the process (b!e → P)
||
α(b) (b?x → Q(x)), where α(b)

denotes the alphabet on channel b. This should be viewed as a process that engages

in the event b.e and thereafter behaves as the process P
||
α(b) Q(e). Note that parallel

composition that involves more than two processes, requires that all processes always
synchronise on common events. If they do not, then deadlock occurs. However, in
the present context, it was considered desirable to introduce an alternative operator,
called the optional parallel operator, that relaxes this requirement.

222 Proceedings of the Prague Stringology Conference 2008

a → P event a then process P

a → P |b → Q a then P choice b then Q

x?A → P (x) choice of x from set A then P (x)

P
||
X

Q P in parallel with Q

Synchronize on events in set X

b!e on channel b output event e

b?x from channel b input to variable x

P ;Q process P followed by process Q

P |||Q process P interleave process Q

P
a

Q process P interrupted by process Q

P ⊓ Q external choice between processes P and Q

P ⊓ Q internal choice between processes P and Q

Table 1. Selected CSP Notation

4.2 Optional parallel operator

To position the new optional parallel operator, consider first the definition of the
generalised parallel operator. The definition is expressed in terms of a so-called step
law. The step law describes the initial actions in which the process may engage and
then, for each possible initial action, it defines the behaviour of the process following
that action. Suppose R1 =?x : A1 → R′

1 and R2 =?x : A2 → R′
2. Referring to Figure 1

the
||
X -step law, provided by Roscoe [9, §2.4] can be expressed as the external choice

between four different processes:

X

A1\(A2 ∪ X)

X ∩ A1 ∩ A2

A2\(A1 ∪ X)

X\(A1 ∪ A2)

(A1 ∩ A2)\X

A2 A1

(X ∩ A1)\A2

(X ∩ A2)\A1

Figure 1. Venn diagram for sets of first actions.

R1
||
X R2 = (?x : X ∩ A1 ∩ A2 → (R′

1
||
X R′

2))

⊓ (?x : (A1 ∩ A2)\X → (R′
1

||
X R2) ⊓ (R1

||
X R′

2))

⊓ (?x : A1\(X ∪ A2) → (R′
1

||
X R2))

⊓ (?x : A2\(X ∪ A1) → (R1
||
X R′

2))

T. Strauss et al.: A Concurrent Specification of an Incremental DFA Minimisation Algorithm 223

Note that the
||
X -step law does not allow for any progress when the environment

offers only some x in the shaded areas of Figure 1, i.e. when x ∈ ((X ∩ A1)\A2) ∪
((X ∩ A2)\A1).

Suppose, however, that those restrictions were to be lifted. The resulting operator
is then our optional (or partial) parallel operator, denoted by ⇑

X. The optional parallel
operator’s step law needs to indicate what is to happen when the environment offers
x ∈ ((X ∩ A1)\A2) or x ∈ ((X ∩ A2)\A1). Evidently, in the first case an interaction
between the environment and R1 should occur, and in the second case, an interaction
between the environment and R2. The ⇑

X -step law is therefore:

R1
⇑
X R2 = (?x : X ∩ A1 ∩ A2 → (R′

1
⇑
X R′

2))

⊓ (?x : (A1 ∩ A2)\X → (R′
1

⇑
X R2) ⊓ (R1

⇑
X R′

2))

⊓ (?x : A1\(X ∪ A2) → (R′
1

⇑
X R2))

⊓ (?x : A2\(X ∪ A1) → (R1
⇑
X R′

2))

⊓ (?x : (X ∩ A1)\A2 → (R′
1

⇑
X R2))

⊓ (?x : (X ∩ A2)\A1 → (R1
⇑
X R′

2))

This can be simplified to:

R1
⇑
X R2 = (?x : X ∩ A1 ∩ A2 → (R′

1
⇑
X R′

2))

⊓ (?x : (A1 ∩ A2)\X → (R′
1

⇑
X R2) ⊓ (R1

⇑
X R′

2))

⊓ (?x : A1\A2 → (R′
1

⇑
X R2))

⊓ (?x : A2\A1 → (R1
⇑
X R′

2))

Now, for P = (x → P ′), the process P
||
X (R1

⇑
X R2) will lead to the desired behaviour:

the process evolves into P ′ ||
X (R′

1
⇑
X R2) or P ′ ||

X (R1
⇑
X R′

2), depending on whether
x ∈ (X∩A1)\A2 or x ∈ (X∩A2)\A1 respectively, as depicted in the Venn diagram of

Figure 1. Of course, if x ∈ (X∩A1∩A2) then the process evolves into P ′ ||
X (R′

1
⇑
X R′

2).
Of course, of itself the step law does not fully define the operator’s semantics.

This has been provided elsewhere [2], giving the denotational, trace, divergence and
failures sematics, as well as the firing rules that specify the operational semantics.

It should be noted that the inspiration for this operator derives specifically from
our earlier attempts to specify the present problem. The existing CSP operators were
found to be deficient for our purposes. Once the semantics of the operator had been
worked out, it became apparent that it can be usefully employed to specify a range of
announcer/listener or reader/write-type problems. It will be seen that the operator
neatly expresses the interaction between the fine-grained abstract processes that we
have defined to solve the DFA minimisation problem.

5 Concurrent Specification

The principle concern in translating Algorithm 3.2 into a concurrent specification,
is to translate its outer do-loop into a set of equivalent concurrent processes. To
simplify the discussion, assume that P is the set of state pairs for which that loop
would execute, i.e. P = (Q × Q)\(G ∪ H), where G and H are as initialised in
Algorithm 3.2.

224 Proceedings of the Prague Stringology Conference 2008

The overall system of interacting processes, called Sys , is conceived of as two
processes that run in parallel with each other, and communicate via an alphabet, α.
The two processes are called Global and PairEquiv respectively:

Sys = Global ||
α PairEquiv (2)

Global is a process that, for each state pair to be investigated, (p, q), receives infor-
mation about the equivalence status of these states on a frompq channel (whose alpha-
bet is therefore {frompq.true, frompq.false}) and announces the equivalence status
of state-pairs on a topq channel (whose alphabet is therefore {topq.true, topq.false}).
It is defined as follows:

Global = |||(p,q)∈P Inpq

Inpq = frompq?e → Announcepq(e)

Announcepq(e) = (topq!e → Announcepq(e) (3)

| frompq?e → Announcepq(e))

The Global process is thus the interleaving of Inpq processes—one for each (p, q)
pair in the system. Each Inpq process receives the equivalence status of its asso-
ciated (p, q) pair on the frompq channel and then repeatedly announces this sta-
tus on the topq channel. Each Inpq engages in events from the alphabet: α(pq) =
{frompq.true, frompq.false, topq.true, topq.false}. The Global process communicates
with the PairEquiv process via the alphabet given by

α =
⋃

(p,q)∈P

α(pq)

The PairEquiv process not only passes on the equivalence status of each state pair
to Global ; it also acts as the “audience” to whom Global announces the equivalence
status of pairs. It is the optional parallel composition, synchronising on events in α,
of a set of processes called Equiv pq, there being one such process for each (p, q) pair.
PairEquiv is thus defined as:

PairEquiv = ⇑
α (p,q)∈P Equiv pq(∅, (|Q| − 2)max 0)

Note that, in general, each Equiv pq process has a parameter indicating the set S of
pairs inspected by it to date, as well as the “recursion level”, k, apparent in the
sequential algorithm. In the initial Equiv pq processes as encountered in PairEquiv ,
S = ∅ and k = (|Q| − 2)max 0)).

Also note that the fact that these subprocesses of PairEquiv , namely Equiv pq,
mutually interact under optional parallelism with one another through α, while
PairEquiv interacts with Global under generalised parallelism, also through α, means
that whenever one or more of these subprocesses are ready to interact with Global

on some arbitrary to or from channel, that interaction will take place as soon as the
corresponding Global subprocess is ready to engage in it.

T. Strauss et al.: A Concurrent Specification of an Incremental DFA Minimisation Algorithm 225

The generalised definition of Equiv pq is given by:

Equiv pq(S, k) =

if (p = q) then frompq!true → SKIP

else if (k = 0) then frompq!(p ∈ F ≡ q ∈ F) → SKIP

else (EqSet := ∅

; FanOutpq(S, k)

; (eq :=∧e∈EqSet e)

; (frompq!eq → SKIP))

The mapping from the above process to its sequential counterpart is direct, except
that the test of circularity in paths visited to date is shifted to just before the recursive
invocation of Equiv , as shown below, in the expansion of the FanOut process:

FanOutpq(S, k) = |||a∈Σpq

(if ({δ(p, a), δ(q, a)} /∈ S) then

(Equiv δ(p,a),δ(q,a)(S ∪ {(p, q)}, k − 1)
i

(4)

(toδ(p,a),δ(q,a)?eqa → (EqSet := EqSet ∪ {eqa}))

else (EqSet := EqSet ∪ {true})) (5)

The interrupt operator
a

in (4) requires justification. In the first place, it has been
used there to ensure that the equivalence status of a pair is not needlessly sought by
virtue of recursive calls to Equiv subprocesses, when that status had already been
established and announced on the from channel to Global by some prior instance of
an Equiv subprocess1.

In the second place, the interrupt operartor’s use here is justified, even though the
CSP definition of the operator requires that if it is used in say (P

a
(a → Q)), then

a may not be in the alphabet of P . This is in order to ensure that non-determinism
cannot arise, such as in a situation where, say, P = a → R. In such an case, the
determination of the evolved process description after the occurrence of a would have
to be non-deterministically chosen between Q and P . In the case of (4) above, such
a non-deterministic choice will never be offered.

To realise that this is indeed the case, note the general form of the line, namely:
Equiv pq(S, k)

a
(topq?eq → · · ·)

Now the only point at which an event on the channel topq can occur in Equiv pq(S, k)
is when the chain of subprocesses spawned by Equiv pq(S, k) has cycled back to a
new instance of itself. However, this is explicitly prevented by the condition of the
if-statement preceding the process Equiv pq(S, k)

a
(topq?eq → · · ·). In such an case

the process defined in (5) is executed. Thus, in the present context, the relaxation
of the rule governing the use of the interrupt operator is justified—non-deterministic
confusion cannot arise.

Note also that when the if-statement’s condition is false—i.e. when a cycle has
been detected on the fan-out branch from (p, q) for symbol a, then (as in the sequential

1 Note that the semantics of the interrupt operator is such that when its first event occurs, all
further activity of the initial process ceases, and the overall process behaves henceforth as the
interrupting process. Furthermore, if the main process runs to completion, then the interrupting
process plays no further role.

226 Proceedings of the Prague Stringology Conference 2008

algorithm) this branch plays no role in the determination of (p, q)’s equivalence status.
This is expressed by adding true into the EqSet set. It could equally well have been
expressed by executing the SKIP process instead.

6 Conclusions

Just as in the case of the sequential algorithm, the foregoing specification has many
optimisation possibilities. For example, the transitivity of the equivalence relation
could be used to bring some of the Equiv processes more rapidly to an end. Also, as
already mentioned, symmetry allows us to remove Equivqp if Equivpq is to be run.

This is the second well-known FA algorithm for which we have provided a con-
current CSP specification, the first one having been in [10]. The next phase of this
ongoing project will be to experiment with implementations of these specifications.
This will require reflection on ways in which the fine-grained processes that have been
defined here can be coalesced with one another, and/or allocated to limited numbers
of processors.

References

1. T. Agerwala and M. Gupta: Systems research challenges: A scale-out perspective. IBM
Journal of Research and Development, 50(2/3) March/May 2006, pp. 173–180.

2. S. Gruner, D. G. Kourie, M. Roggenbach, T. Strauss, and B. W. Watson: A new
CSP operator for optional parallelism, 2008, Submitted.

3. C. A. R. Hoare: Communicating sequential processes. Communications of the ACM, 26(1)
1983, pp. 100–106.

4. C. A. R. Hoare: Communicating sequential processes (electronic version), 2004, http://www.
usingcsp.com/cspbook.pdf.

5. J. F. Jájá and K. W. Ryu: An efficient parallel algorithm for the single function coarsest
partition problem, in SPAA ’93: Proceedings of the fifth annual ACM symposium on Parallel
algorithms and architectures, New York, NY, USA, 1993, ACM Press, pp. 230–239.

6. R. McDougall: Extreme software scaling. ACM Queue, 3(7) September 2005, pp. 36–46.
7. K. Olukoton and L. Hammond: The future of microprocessors. ACM Queue, 3(7) Septem-

ber 2005, pp. 26–29.
8. B. Ravikumar and X. Xiong: A parallel algorithm for minimization of finite automata, in

IPPS: 10th International Parallel Processing Symposium, IEEE Computer Society Press, 1996.
9. A. W. Roscoe: The theory and practice of concurrency, Prentice Hall, 1997.

10. T. Strauss, D. G. Kourie, and B. W. Watson: A concurrent specification of Brzozowski’s
DFA construction algorithm, in Proceedings of Prague Stringology Conference ’06, 2006, pp. 90–
99.

11. H. Sutter: A fundamental turn toward concurrency in software. Dr. Dobb’s Journal, 30(3)
March 2005, pp. 16–20,22.

12. H. Sutter and J. Larus: Software and the concurrency revolution. ACM Queue, 3(7) Septem-
ber 2005, pp. 54–62.

13. A. Tewari, U. Srivastava, and P. Gupta: A parallel DFA minimization algorithm, in
Proceedings of HiPC2002, Lecture Notes in Computer Science 2552, Springer, 2002, pp. 34–40.

14. B. W. Watson: Taxonomies and Toolkits of Regular Language Algorithms, PhD thesis, Eind-
hoven University of Technology, September 1995.

15. B. W. Watson and J. Daciuk: An efficient incremental DFA minimization algorithm. Journal
of Natural Language Engineering, 9(1) March 2003, pp. 49–64.

