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Abstract. The class of finite Sturmian words consists of words having particularly
simple compressed representation, which is a generalization of the Fibonacci recurrence
for Fibonacci words. The subword graphs of these words (especially their compacted
versions) have a very special regular structure. The regularity of their structure has
been discovered in the context of the counting property of graphs. In this paper we
investigate the structure of these subword graphs in more detail than in the previ-
ous papers. As an application we show how several syntactical properties of Sturmian
words follow their graph properties. Alternative graph-based proofs of several known
facts are presented. Also the neat structure of subword graphs of Sturmian words leads
to algorithms computing several parameters (e.g. number of subwords, critical factor-
ization point, short description of lexicographically maximal suffix, the structure of
occurrences of subwords of a fixed length, right special factors) of standard Sturmian
words in linear time with respect to the length n of the compressed representation:
the directive sequence (though the words themselves can be of exponential size with
respect to n). Some of the computed parameters can be of exponential size, however
they have linear size grammar-based representation. This gives more examples of fast
computations for highly compressed words.

1 Introduction

The standard Sturmian words (standard words, in short) are generalization of Fi-
bonacci words and have a very simple grammar-based representation which has some
algorithmic consequences.

Let S denote the set of all standard Sturmian words. These words are described by
recurrences (or grammar-based representation) corresponding to so called directive

sequences: integer sequences

γ = (γ0, γ1, . . . , γn),

where γ0 ≥ 0, γi > 0 for 0 < i ≤ n. The word xn+1 corresponding to γ, denoted by
Word(γ), is defined by recurrences:

x−1 = b, x0 = a, ∀0≤i<n xi+1 = x
γi

i xi−1 (1)

Fibonacci words are standard Sturmian words given by directive sequences of the
form

γ = (1, 1, . . . , 1).

We consider here standard words starting with the letter a, hence assume γ0 > 0.
The case γ0 = 0 can be considered similarly.
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For even n > 0 a standard word xn has suffix ba, and for odd n > 0 it has suffix
ab. The number N = |xn+1| is the (real) size, while n + 1 can be thought as the
compressed size.

Example 1.
Consider directive sequence γ = (1, 2, 1, 3, 1). We have:

Word(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab

x−1 = b, x0 = a, x1 = x1
0x−1 = ab, x2 = x2

1x0 = ababa,

x3 = x1
2x1 = ababaab, x4 = x3

3x2 = ababaabababaabababaabababa,

x5 = x1
4x3 = ababaabababaabababaabababaababaab

Some of the outputs of our algorithms will be given in the grammar-compressed form
which consists in giving a context-free grammar G generating a single word x. The
size of G is the total length of all productions of G.

In particular each directive sequence of a standard Sturmian word corresponds to such
a compression – the sequence of recurrences corresponding to the directive sequence.
In this case the size of the grammar is proportional to the length of the directive
sequence.

For some lexicographic properties and structure of repetitions of standard Sturmian
words see [3] and [2].

2 The structure of subword graphs of standard Sturmian
words

Let Subwords(x) be the set of all nonempty subwords of x. We distinguish some
subwords as special ones:

– A special prefix of x is a prefix z of x such that za, zb ∈ Subwords(x).
– A basic prefix of x is a proper nonempty prefix of the type x

j
kxk−1, where 0 ≤

k ≤ n and 0 ≤ j ≤ γk.
– A basic subword of x is a reverse of xk, for some k. Denote yk = Reverse(xk).

Denote by BP (x) the set of basic prefixes of x and by SP (x) the set of special prefixes
of x. Denote by x̂ the prefix of x of size 2, assuming |x| ≥ 2. Assume that ŷ0 = ab.

Lemma 1.
Assume x−1, x0, . . . , xn+1 is the sequence of standard Sturmian words given by

(γ0, γ1, . . . , γn).
(a) For i ≥ 1 we can represent standard word xi as

xi = y
γ0

0 y
γ1

1 · · · y
γi−2

i−2 y
γi−1−1
i−1 ŷi−1,

(b) Each special prefix of xn has the form

y
γ0

0 y
γ1

1 · · · yj
i ,

where 0 ≤ j ≤ γi for i < n − 1 and 0 ≤ j ≤ γi − 1 for i = n − 1,
(c) Each special prefix results by cutting off two last symbols from a basic prefix.
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Figure 1. The structure of basic prefixes (BP), special prefixes (SP) and basic sub-
words of Word(1, 2, 1, 3, 1).

Proof.

Point (a)
Notice that ŷi = ŷi+2 and yi+1 = yi−1y

γi

i for i ≥ 0.

First we show by induction that

yi = ŷiy
γ0

0 y
γ1

1 · · · y
γi−1−1
i−1 . (2)

For i = 1 we have
y1 = baγ0 = ŷ1y

γ0−1
0

Assume that for i ≤ n the equation (2) is true. We have

yn+1 = yn−1 · y
γn

n

=
(

ŷn−1y
γ0

0 y
γ1

1 · · · y
γn−2−1
n−2

)

·
(

yn−2y
γn−1

n−1 yγn−1
n

)

= ŷn+1y
γ0

0 y
γ1

1 · · · yγn−1
n

Now we can prove equation from the point (a) using induction. For i = 1 we have:

x1 = x
γ0

0 x−1 = y
γ0−1
0 ŷ0

Assume that for i ≤ n equation from the point (a) is true. We have

xn+1 = xγn

n xn−1

=
(

y
γ0

0 · · · y
γn−2

n−2 y
γn−1−1
n−1 ŷn−1

)γn

· yγ0

0 · · · y
γn−2−1
n−2 ŷn−2

due to (2)
= y

γ0

0 · · · y
γn−1

n−1 yγn−1
n ŷn

Point (b).
Let w denotes here a word w with removed last two letters and assume that w contains
at least two letters.

From point (a) we know that
z = y

γ0

0 y
γ1

1 · · · yj
i

is a prefix of standard word xn generated by directive sequence (γ0, γ1, . . . , γn), where
0 ≤ j ≤ γi for i < n − 1 and 0 ≤ j ≤ γi − 1 for i = n − 1. We can also deduce, that
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prefix xn is a palindrome (see [4] for proof that every standard word x a word x is a
palindrome). Hence, if z is special prefix of standard word x, then z is also suffix of
x.

First assume that i < n − 1 and i is odd, the case for even i is similar.

If 0 ≤ j < γi, then z is prefix of xi+2 and zb is also prefix of xi+2 (first letter of yi is
b). Suffix of xi+2 is ab, hence za, as a suffix of xi+2, is also subword of xi+2.

If j = γi, then z is prefix of xi+3 and za is also prefix of xi+3 (first letter of yi+1 is a).
Suffix of xi+3 is is ba, hence zb, as a suffix of xi+3, is also subword of xi+3.

Now assume that i = n− 1. For 0 ≤ j < γn−1 proof is similar to the case i < n− 1. It
is obvious, due to the deduction above, that for i = n − 1, j must be less than γn−1.

Point (c)
Notice that ŷi = ŷi+2 and yi+1 = yi−1y

γi

i for i ≥ 0.

From (a) for basic prefix x
j
kxk−1 we have:

x
j
kxk−1 =

(

y
γ0

0 · · · y
γk−2

k−2 y
γk−1−1
k−1 ŷk−1

)j

· yγ0

0 · · · y
γk−3

k−3 y
γk−2−1
k−2 ŷk−2

due to (2)
= y

γ0

0 · · · y
γk−1

k−1 y
j−1
k ŷk

From (b) we have that basic prefix x
j
kxk−1 with last two letters removed (ŷk) is special

prefix.

Example 2.
For Word(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab we have:

BP = {x0, x1, x1x0, x2, x3, x3x2, x2
3x2, x4}

SP = {y0, y0y1, y0y
2
1, y0y

2
1y2, y0y

2
1y2y3, y0y

2
1y2y

2
3}

y0 = a y1 = ba y2 = ababa y3 = baababa

Word(1, 2, 1, 3, 1) = a ba ba ababa baababa baababa baababa ab

= y0 y2
1 y2 y3

3 ŷ4

The subword graph is a classical data structure representing all subwords of a given
word in a succinct manner. More precisely: the Directed Acyclic Word Graph (dawg
in short) of the word w is the minimal deterministic automaton (not necessarily
complete) that accepts all suffixes of w. We refer the reader to [6] for the complete
definition and more information of subword graphs.

The compacted subword graph (cdawg, in short) results from the subword graph by
removing all nodes of out-degree one (except the source node and the terminal nodes)
and replacing each chain by a single edge with the label representing the path label
of this chain. Internal nodes of dawg of out-degree greater than one, which are copied
to cdawg, are called fork nodes. In case of standard words the subword graph can be
considerably compressed.

The regularity of the structure of compacted subword graphs has been discovered in
[8]. The following theorem follows from the results of [8], Lemma 1 and our terminol-
ogy.
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Figure 2. The structure of the subword graph (dawg) of Word(1, 2, 1, 3, 1) and its
compacted version (cdawg)

Theorem 2.
Let w = Word(γ0, γ1, . . . , γn) be a standard Sturmian word.

(1) The labels of edges in compacted subword graph of w are basic subwords of w.

(2) The compacted subword graph of w has the structure illustrated on Figure 3.

3 The number of subwords

It is known that the number of distinct subwords in the n-th Fibonacci word is

Subwords(Fibn+1) = |Fibn| · |Fibn−1| + 2 · |Fibn| − 1

Surprisingly essentially the same formula works generally for Sturmian words.

Theorem 3. Let γn = 1, and xn+1 = Word(γ0, γ1, ..., γn), then
∣

∣Subwords(xn+1)
∣

∣ = |xn| · |xn−1| + 2 · |xn| − 1

Proof.

Denote by v0 the source node of the compacted subword graph for xn+1. Let tk = |xk|.

Define the multiplicity mult(v) of a vertex v as the number of paths v0
∗
→ v, and

the weights of edges as lengths of corresponding label-strings of these edges in the
compacted subword graphs. Let edges(v) be the sum of all weight edges outgoing
from v.

Claim. Let w = Word(γ0, γ1, ..., γn). Then

∣

∣Subwords(w)
∣

∣ =
∑

v∈G

mult(v) · edges(v) (3)
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Case 1: γn = 1
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Case 2: γn > 1

y1 y1 y1 y1
y
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y
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Figure 3. Compacted subwords graphs for words: Word(γ0, γ1, γ2, . . . , γn) and
Word(γ0, γ1, γ2, . . . , γn − 1, 1) are isomorphic (in the sense of graph structure).

1 1 2 2 5 7 7

72

2

2
2

7

5

5

7 7 7 25221

Figure 4. The structure of edge-lengths and multiplicities of nodes in the compacted
subword graph of Word(1, 2, 1, 3, 1). According to the Theorem 3 (and to the graph
above) there are |x4| · |x3| + 2 · |x4| − 1 = 26 · 7 + 2 · 26 − 1 = 233 subwords in our
example word.

See Figure 4 for edge-lengths and node-multiplicities structure in the cdawg of exam-
ple word.
We partition the set of edges into chunks, the first chunk consists of the first γ0

consecutive vertices starting from the v0, the second chunk contains the next γ1

vertices, etc. The last chunk slightly differs.

The contribution of k-th internal chunk in the sum in equation (3) is

(

tk−1 + (γk − 1)tk
)

· (tk + tk+1) = t2k+1 − t2k,

where t−1 = 1 (see Figure 5 for details).
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The contribution of the last chunk is (see Figure 6)

(tn−1 + 2)(tn − tn−1) + 2tn−1.

Altogether we have

n−2
∑

k=0

(

t2k+1 − t2k
)

+ (tn−1 + 2)(tn − tn−1) + 2tn−1 = tn · tn−1 + 2 · tn − 1

This completes the proof, since by definition |xk| = tk.

t k−1 t k t k t kt k t k t k+1

t k t k t k t k t k

t k+1t k+1t k+1

t k+1

t k+1

t k+1

u v

Figure 5. The k-th internal chunk Gk of the subword graph, consists of γk nodes
from u to v (excluding u), and their outgoing edges. The multiplicity (number of
path leading from v0) of each node is written within the box corresponding to the
node. The weight of the edges are the lengths of corresponding words in the cdawg.

t n−2

t n−1 t n−1 t n−1 t n−1 t n−1
t n−1t n−1t n−1t n−1t n−1

u v
2

2

2
2

2

2

Figure 6. The final chunk Gn−1 of the subword graph, consists of γn−1 nodes from u

to v, and their outgoing edges.

The case γn > 1 reduces to the previous case.

Theorem 4. Let γn > 1. Then:

∣

∣Subwords
(

Word(γ0, γ1, ..., γn)
)∣

∣ =
∣

∣Subwords
(

Word(γ0, γ1, ..., γn − 1, 1)
)∣

∣.

Proof.

Compacted subword graphs of Word(γ0, γ1, ..., γn) and Word(γ0, γ1, ..., γn − 1, 1) are
isomorphic in the sense of graph structure (see Figure 3 for details). Hence we can
use the result of Theorem 3 to compute

∣

∣Subwords
(

Word(γ0, γ1, ..., γn)
)
∣

∣.
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4 The structure of occurrences of subwords

In this section we are interested in the structure of first occurrences of the subwords
of a given length. One type of these subwords is particularly interesting – a right
special factors.

A right special factor of the word x is any word w such that both wa, wb are
subwords of x. For each k > 0 there is at most one right special factor of length k

of a given standard word. For standard Sturmian word x every right special factor is
either special prefix or suffix of some special prefix.

Theorem 5. Let w = Word(γ) be a standard Sturmian word. Then:

(1) For a given k > 0 the right special factor of w of length k has grammar-

representation of size O
(

|γ|
)

.

(2) The compressed representation of the right special factor of w of length k can be

computed in O
(

|γ|
)

time.

Proof.

Define length of the path in cdawg of w as number of edges in it and value of the
path as word created by concatenation of the labels of edges in it.

Let v be an internal node in compacted subwords graph of w and zπ be a value of
path π in this graph leading from root to v. It is clear that zπ is a subword of w.

Every internal node in compacted subword graph is a fork node, hence v has two
outgoing edges: one with label starting with letter a and the second with label starting
with letter b. This follows that zπ · a and zπ · b are also subwords of w and therefore
zπ is a right special factor of w.

Observe that value of every path from root to v in cdawg of w is suffix of the value
of the longest path from root to v. Moreover value of the longest path from root to v

is a prefix of w, hence it is a special prefix of w. This implies that every right special
factor of w is suffix of some special prefix of w.

Every right special factor of w is concatenation of some basic subwords of w. It follows
easily from Lemma 1 that every right special factor of w has grammar-representation
of size O

(

|γ|
)

which can be computed in time linear to the length of directive se-
quence γ.

Example 3.
Let w = Word(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab.
Recall that:

y0 = a y1 = ba y2 = ababa y3 = baababa

Right special factors of w with their lengths are (special prefixes are bold):

1 y0

2 y1

3 y0y1

4 y2
1

5 y0y
2

1

6 y0y2

7 y1y2

8 y0y1y2

9 y2
1y2

10 y0y
2

1
y2

11 y2
1y3

12 y2y3

13 y0y2y3

14 y1y2y3

15 y0y1y2y3

16 y2
1y2y3

17 y0y
2

1
y2y3

18 y2
1y

2
3

19 y2y
2
3

20 y0y2y
2
3

21 y1y2y
2
3

22 y0y1y2y
2
3

23 y2
1y2y

2
3

24 y0y
2

1
y2y

2

3
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See Figure 2 for the structure of cdawg of the word w.

For a set X of integers and an integer k define

X ⊕ k = { x + k : x ∈ X }

Let occ(u,w) be the set of first positions of occurrences of u in w, we define also the
set of final positions of occurrences of a word u :

fin(u,w) = occ(u,w) ⊕ |u| and first-fin(u,w) = min
(

fin(u,w)
)

.

For k ≥ we investigate also the structure of the set

FIN (k, w) =
{

first-fin(u,w) : u is a subword of w of size k
}

.

k
1

16

17

15

14

13

12

11

10

9

8

7

6

5

4

3

2

a b a b a a b a b a b a a b a b a b a a b a b a b a a b a b a a b

b b

a

a
a

a

a

Figure 7. The subword graph of w and the structure of the sets FIN (k, w) for w =
Word(1, 2, 1, 3, 1).

Theorem 6. Let w = Word(γ0, γ1, . . . , γn) be a standard Sturmian word. Then:

(1) The set FIN (k, w) consists of a single interval or of two disjoint intervals.

(2) For a given k we can compute the intervals representing FIN (k, w) in linear time

with respect to the size of the directive sequence.

Proof.

The structure of the set FIN (k, w) easily follows from the way how paths of length k−
1 in dawg of w are extended into path of length k. Only fork nodes i ∈ FIN (k−1, w)
generate two elements of FIN (k, w), each other node i ∈ FIN (k − 1, w) generates
single element i + 1 in FIN (k, w) (see Figure 7).

It is clear that the set FIN (k + 1, w) results from FIN (k, w) by shifting each position
by one to the right and adding an extra position for the fork node. Hence thesis
follows from the structure of subword graphs of standard Sturmian words.
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5 Relation of subword graphs to the dual Ostrovski
numeration system

The dual Fibonacci numeration system has been introduced in [10], where its relation
to the subword structure of Fibonacci words has been investigated. We extend these
results to Sturmian words. In this case we have Ostrovski numeration system which
is a generalization of Fibonacci system.

In (only) this section we consider infinite directive sequences.

For an infinite directive sequence γ = (γ0, γ1, . . .) we introduce [∗]γ-numeration sys-
tem: a version of Ostrowski’s numeration system from [1] which is a generalization of
the Fibonacci number system. Let us define the base sequence q as a sequence:

q = (q0, q1, . . .) =
(

|x0|, |x1|, ...
)

,

where xi’s are as in equation (1).

The base sequence can be defined without reference to words xi as follows:

q−1 = q0 = 1, qi+1 = qi · γi + qi−1 for i ≥ 0.

Example 4.
If γ = (1, 2, 1, 2, . . .), then the base sequence is:

q = (1, 2, 5, 7, 19, . . .)

If γ = (1, 2, 1, 1, 1, . . .), then the base sequence is:

q = (1, 2, 5, 7, 12, 19, . . .)

Define:
valγ(α0, α1, . . . , αn) = α0 · q0 + α1 · q1 + . . . + αn · qn

For 0 ≤ i < |xn| the representation of i in Ostrovski numeration system is defined as
follows:

[i]γ = (α0, α1, . . . , αn),

where we require:

(1) valγ(α0, α1, . . . , αn) = i

(2) ∀0≤j<n αj ≤ γj

(3) αj+1 = γj+1:αj = 0

In other words in the representation of a number i we take at most γk numbers |xk|,
for each k, and if we take exactly γk numbers |xk| then we take zero numbers |xk−1|.

Example 5.
Let γ = (1, 2, 1, 3, 1, . . .). Then

q =
(

|x0|, |x1|, ...
)

= (1, 2, 5, 7, 26, 33, . . .)

We have [29]γ = (1, 1, 0, 0, 1), because

29 = 1 · 1 + 1 · 2 + 0 · 5 + 0 · 7 + 1 · 26
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We have [58]γ = (0, 2, 0, 3, 0, 1), because

58 = 0 · 1 + 2 · 2 + 0 · 5 + 3 · 7 + 0 · 26 + 1 · 33

For 0 ≤ i < |xn| we define representation of i in the dual Ostrovski numeration
system as:

[̂i]γ = (α0, α1, . . . , αn),

where:

(1) valγ(α0, α1, . . . , αn) = i

(2) ∀0≤j<n αj ≤ γj

(3)
(

αj < γj and ∃ (i > j) αi > 0
)

:αj+1 > 0

In other words in the representation of a number i in numeration system defined
above we take at most γk numbers |xk|, and if we take αk < γk numbers |xk| and αk

is not the last one component of this representation then we must take at least one
number |xk+1|.

Example 6.
Let γ = (1, 2, 1, 3, 1, . . .). Then

q =
(

|x0|, |x1|, ...
)

= (1, 2, 5, 7, 26, 33, . . .)

We have ˆ[29]γ = (1, 1, 1, 3), because

29 = 1 · 1 + 1 · 2 + 1 · 5 + 3 · 7

We have ˆ[58]γ = (0, 2, 0, 3, 0, 1), because

58 = 0 · 1 + 2 · 2 + 0 · 5 + 3 · 7 + 0 · 26 + 1 · 33

Uniqueness of representation in Ostrovski numeration system was proved in [1].
Uniqueness of representation in dual Ostrovski numeration system was proved in [8].

Let G∞ be the infinite compacted subword graph corresponding to a given directive
sequence γ = (γ0, γ1, . . .).

The following fact is an interpretation of the corresponding result in [8] in terms of
the dual Ostrovski numeration system.

Theorem 7.

(1) Let π be a path from the root to another node of G∞. Let rep(π) = (h0, h1, . . .),
where hi is the number of edges of weight qi on the path π. Then rep(π) is the rep-

resentation of the length |π| of this path in the dual Ostrovski numeration system

corresponding to the directive sequence of G∞.

(2) For each k > 1 there is exactly one fork-path of length k in G∞.

Proof.

Point (1)
Let π be a path from root to some node v in G∞ – infinite compacted subwords graph
corresponding to directive sequence (γ0, γ1, γ2, . . .), and let rep(π) = (h0, h1, . . .) be
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q 3 q 3 q 3 q 4q 1 q 2 q 3

q 1 q 3

q 2 q 4

0q 0q 0q 0q 0q q 1 q 1 q 1 q 1 q 1 q 2 q 2 q 2 q 3 q 3

Figure 8. The illustration of the point (1) of Theorem 7. In this case representation
of the length of the path π in dual Ostrovski numeration system is given by: rep(π) =
(1, 4, 3, 2) and |π| = 1 · |q0| + 4 · |q1| + 3 · |q2| + 2 · |q3|.

defined as above. It is sufficient to check if requirements of definition of dual Ostrovski
numeration system are satisfied.

Construction of π implies that

|π| = h0 · q0 + h1 · q1 + h2 · q2 + · · ·

and ∀i 0 ≤ hi ≤ γi. Moreover from G∞ structure (see Figure 8) it is obvious that
if hi < γi (we have taken qi less than γi times) and hi is not the last non zero element
in rep(π) then hi+1 > 0 (we must take at least one qi+1 to continue construction of π).
This concludes the proof of point (1).

Point (2) follows directly from point (1) and uniqueness of representation in dual
Ostrovski numeration system.

Ostrovski automata

For a directive sequence γ = (γ0, γ1, . . . , γn) we define SD(γ) as the set of represen-
tations (i0, i1, . . . , in) in the dual Ostrovski numeration system of all numbers not
exceeding the number written as γ in this representation.

Remark.
Observe that for any symbol a the value of a0 is an empty word.

Denote

L(γ) = {ai0
0 ai1

1 ...ain
n : (i0, i1, . . . , in) ∈ SD(γ)}

for alphabet Σ = {a0, a1, . . . , an}.

The minimal deterministic finite automaton accepting language L(γ) is called the
Ostrovski automaton and denoted by OA(γ).

Theorem 8. The minimal Ostrovski automaton for γ, without the dead state, is iso-

morphic as a graph to the compact directed acyclic subword graph of Word(γ).
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Figure 9. Minimal deterministic automaton (without dead state) OA(1, 2, 1, 3, 1) ac-
cepting the set of strings ai0

0 ai1
1 ai2

2 ai3
3 ai4

4 , where (i0, i1, . . . , i4) is a representation in the
dual Ostrovski numeration system of a natural number.

6 Critical factorization and maximal suffixes

The minimal local period in a word w at position k is a positive integer p such
that w[i − p] = w[i] for every k ≤ i < k + p, where w[i] and w[i − p] are defined.

The critical factorization point in a word w is position k in w for which minimal
local period at k equals the (global) minimal period of w. We refer the reader to [6]
for the more detailed definition of the critical factorization point.

The following nontrivial fact was shown by Crochemore and Perrin [5].

Fact 1
The critical factorization point of w is given as the starting position of a lexicograph-

ically maximal suffix, maximized over all possible orders of the alphabet.

Example 7
Let w = Word(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab.
Minimal local periods of w are as follows:

i

p(i)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 · · · · · ·

a b a b a a b a b a b a a b a b a · · · · · ·

1 2 2 2 5 1 7 2 2 2 2 7 1 7 2 2 2 2 · · · · · ·

i

p(i)

· · · · · · 18 19 20 21 22 23 24 25

∣

∣

∣

∣

26 27 28 29 30 31 32 33

· · · · · · b a a b a b a b

∣

∣

∣

∣

a a b a b a a b

· · · · · · 2 7 1 7 2 2 2 4 33 1 5 2 2 5 1 3 1

where i denotes position in w and p(i) – minimal local period at position i in w.
Hence critical factorization point is at position i = 25.

For a word w define πa(w) as a path in the dawg of w which starts in the root, ends
in the sink, and in which we use the letter a whenever we have a choice (in every fork
node). Similarly define πb(w). Path πa(w) (πb(w) respectively) can be also defined for
cdawg of w: in every fork node we choose the edge with label starting with letter a

(letter b respectively). Length of the path, denoted |π|, is is defined as length of the
word given by π.
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It is easily seen that lexicographically maximal suffix of w with respect to the letter
ordering “a < b” is given by πb(w) and the lexicographically maximal suffix of w with
respect to the letter ordering “a > b” is given by πa(w).

Lemma 9.
Let w = Word(γ0, γ1, . . . , γn) be a standard Sturmian word and πa(w), πb(w) be de-

fined as above. Then:
πa(w) = y

γ0

0 y
γ2

2 · · · yγ2k

2k · ŷn−1

πb(w) = y
γ1

1 y
γ3

3 · · · y
γ2l+1

2l+1 · ŷn−1

where k = ⌊n−1
2
⌋ and l = ⌊n−2

2
⌋.

Proof.

Recall that definition of basic subwords follows that yi starts with letter a for even i

and yi starts with letter b for odd i.

We are constructing path πa(w) in cdawg of w by choosing edge with label starting
with letter a whenever it is possible. From structure of cdawgs of standard Sturmian
words (see Figure 3) we have that every fork node has two outgoing edges: one with
label y2i (starting with letter a) and second with label y2i+1 (starting with letter b).

To construct πa(w) we have to choose γ0 times edge with label y0, then γ2 times edge
with label y2, and so on up to y2k, where k = ⌊n−1

2
⌋. Finally, by Lemma 1, it suffices

to add ŷn−1, the last two letters of w.

The same proof works for path πb(w).

Construction of paths πa(w) and πb(w) implies the following fact.

Theorem 10.
Let w = Word(γ0, γ1, . . . , γn) be a standard Sturmian word. Then:

(1) The critical factorization point of w is at position

k = |w| −min
{

|πa(w)|, |πb(w)|
}

(2) The critical factorization point of w can be computed in linear time with respect

to the size of the directive sequence.

Proof.

The proof is immediate by Fact 1 and recalling that πa(w) and πb(w) corresponds to
lexicographically maximal suffixes of w with respect to letter orderings “a > b” and
“a < b” respectively.

Example 8.
Let w = Word(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab.
See Figure 2 for its subword graph structure.
We have

πa(w) = y0y2ab = a ababa ab

πb(w) = y2
1y

3
3ab = ba ba baababa baababa baababa ab

Hence the position
i = |w| − |y0y2ab| = 33 − 8 = 25

is the critical factorization point of w.

Similar computations were given in [7,9] for Fibonacci words. The paths πa(w) and
πb(w) have regular structure, consequently the words represented by them are well
compressible. This implies the following fact.
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Theorem 11. Let w = Word(γ) be a standard Sturmian word. Then:

(1) The lexicographically maximal suffix of w has grammar-based representation of

size O
(

|γ|
)

.

(2) The compressed representation of the lexicographically maximal suffix of w can

be computed in O
(

|γ|
)

time.

Proof.

The lexicographically maximal suffix of a standard Sturmian word w is given either
by path πa(w) or by path πb(w) (depending on which letter ordering was chosen).
The thesis follows directly from the structure of πa(w), πb(w) and the subword graph
of w (see Lemma 9).
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