
New Efficient Bit-Parallel Algorithms for the

δ-Matching Problem with α-Bounded Gaps in

Musical Sequences

Domenico Cantone, Salvatore Cristofaro, and Simone Faro

Università degli Studi di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125, Catania, Italy

{cantone, cristofaro, faro}@dmi.unict.it

Abstract. We present new efficient variants of the (δ, α)-Sequential-Sampling algo-
rithm, recently introduced by the authors, for the δ-approximate string matching
problem with α-bounded gaps. These algorithms, which have practical applications
in music information retrieval and analysis, make use of the well-known technique of
bit-parallelism. An extensive comparison with the most efficient algorithms present in
the literature for the same search problem shows that our newly proposed solutions
achieve very good results in practice, in terms of both space and time complexity, and,
in most cases, they outperform existing algorithms.

Keywords: approximate string matching with gaps, bit-parallel algorithms, music
information retrieval

1 Introduction

The δ-approximate string matching problem with α-bounded gaps [5,4,2] is a general-
ization of the δ-approximate string matching problem [1] and arise in many questions
in music information retrieval and music analysis. This is particularly true in the con-
text of monophonic music, where one wants to retrieve occurrences of a given melody
from a complex musical score.

We recall that two (monophonic) musical sequences have a δ-approximate match-
ing if they have the same length (i.e., they contain the same number of notes) and
notes at the same positions differ by at most δ semitones. Then, we say that a melody
(or pattern) P has a δ-approximate occurrence with α-bounded gaps within a mu-
sical score (or text) T (or, more shortly, a (δ, α)-occurrence), if the melody has a
δ-approximate matching with a subsequence of the musical score in which it is al-
lowed to skip up to a fixed number α of notes (the gap) between any two consecutive
positions. Thus, δ-approximate matching with α-bounded gaps turns out to be very ef-
fective for finding closely related but not necessarily identical occurrences of melodies
(δ-approximation), when small values of δ are allowed. In addition, the gaps allow
to skip over various kinds of musical ornamentations (e.g., arpeggios) which are of
common use, especially in classical music. See Figure 1 for a pictorial illustration.

We mention also that many variants and generalizations of the δ-approximate
string matching problem with α-bounded gaps have been considered for applications
in other fields other than music, such as, for instance, molecular biology [9,10].

The paper is organized as follows. In the next section we introduce some basic
notations and give a formal definition of the δ-approximate string matching problem
with α-bounded gaps. In Section 3 we review some of the most efficient algorithms
for this problem. Then, in Section 4, we describe our newly proposed algorithms.

Domenico Cantone, Salvatore Cristofaro, Simone Faro: New Efficient Bit-Parallel Algorithms for the δ-Matching Problem with α-Bounded Gaps in Musical

Sequences, pp. 170–184.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

D.Cantone et al.: New Efficient Bit-Parallel Algorithms for the δ-Matching Problem. . . 171

G2222 4
4

T ˇ

–flflflflfl–

gap

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

–flflflflfl–

gap

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

–flflflflfl–

gap

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
–flflflflfl–

gap

ˇ

ˇ

ˇ

ˇ

ä̇z

ˇ

G2222 4
4

P ˇ ˇ ˇ ˇ

Figure 1. An excerpt from study Op. 25 Nr. 1 for Piano Solo by F. Chopin (first
score). Melody P has a δ-approximate occurrence with α-bounded gaps in T , for
δ ≥ 2 and α ≥ 5, indicated by the circled notes. Tiny notes represent arpeggios and
form the gaps. Notice that in this case the gaps are all of the same size 5. Observe
also that the first and the third note of P differ from the corresponding matchings in
T (circled notes) by 2 semitones; the second note differ by 1 semitone, while the last
note equals its matching. In any case, the difference between a note and its matching
does not exceed 2 semitones, so that we have a (δ, α)-occurrence of P in T , for any
δ ≥ 2 and α ≥ 5.

In Section 5, we report the experimental results of an extensive comparison of our
algorithms with some of the most efficient ones present in the literature. Finally, in
Section 6 we draw our conclusions.

2 Basic Definitions and Properties

Before entering into details, we review a bit of notations and terminology. We repre-
sent a string P as a finite array P [0 ..m− 1], with m ≥ 0. In such a case we say that
P has length m and write |P | = m. In particular, for m = 0 we obtain the empty

string. By P [i] we denote the (i + 1)-st symbol of P , with 0 ≤ i < |P |, provided
that |P | > 0. Likewise, by P [i .. j] we denote the substring of P contained between
the (i+1)-st and the (j +1)-st symbols of P (both inclusive), where 0 ≤ i ≤ j < |P |.
The substrings of the form P [0 .. j], also denoted by Pj, with 0 ≤ j < |P |, are the
nonempty prefixes of P .

Let Σ be a finite alphabet of integer numbers and let δ and α be nonnegative
integers. Two symbols a and b of Σ are said to be δ-approximate, in which case
we write a =δ b, if |a − b| ≤ δ. Given a pattern P of length m and a text T of
length n over the alphabet Σ, by a δ-approximate occurrence with α bounded

gaps of P in T , or simply a (δ, α)-occurrence of P in T , we mean a sequence
(i0, i1, . . . , im−1) of indices such that

(1) 0 ≤ i0 < i1 < · · · < im−1 < n,
(2) T [ij] =δ P [j], for 0 ≤ j < m, and
(3) ih − ih−1 ≤ α + 1, for 0 < h < m, provided that m > 1.

Given an index i, with 0 ≤ i < n, a (δ, α)-occurrence of P at position i in T is
a (δ, α)-occurrence (i0, i1, . . . , im−1) of P in T such that im−1 = i. We write P ✂i

δ,α T
to mean that there is a (δ, α)-occurrence of P at position i in T (in fact, when the
bounds δ and α are well understood from the context, one can simply write P ✂i T).

172 Proceedings of the Prague Stringology Conference 2008

The δ-approximate string matching problem with α-bounded gaps, or
(δ, α)-matching problem, is the problem of finding the (δ, α)-occurrences of a given
pattern P in a given text T . More precisely, the following variants may be considered
[2]: (a) find all (δ, α)-occurrences of P in T ; (b) find all positions i in T such that
P ✂i

δ,α T ; (c) for each position i in T , find the number of all distinct (δ, α)-occurrences
of P at position i in T . In this paper we will concentrate only on variant (b).

The following property is an immediate consequence of the above definitions:

Lemma 1. Let P and T be respectively a pattern of length m and a text of length n
over an alphabet Σ of integer numbers. Moreover, let δ and α be nonnegative integers.
Then,

(a) P0 ✂i
δ,α T ⇔ T [i] =δ P [0];

(b) Pj ✂i
δ,α T ⇔ T [i] =δ P [j] and (∃k ∈ {1, . . . , α + 1} : i− k ≥ 0 and Pj−1 ✂

i−k
δ,α T),

for 0 ≤ i < n and 0 < j < m.

The following notations and terminology will be used in connection with the bit-
parallelism technique. A bit mask (or binary string) is a string whose symbols
are the two bits 0 and 1. In writing bit masks, we will use exponentiation to denote
the concatenation of multiple copies of single bits or of bit masks as well. Thus, for
instance, 10130 denotes the bit mask 101110 and 1(01)30 denotes 10101010.

We will employ the following standard operations on bit masks: the bit-wise and

and bit-wise or operations, denoted respectively by & and |, and the right-shift and left-

shift operations, denoted respectively by ≫ and ≪. We will also use the arithmetic
operations of addition “+” and subtraction “−” between bit masks to calculate,
respectively, the binary representations of the sum and of the difference between the
nonnegative integers represented by the bit masks. It turns out that in all expressions
of the form X − Y which we will encounter in the rest of the paper, the nonnegative
integer represented by the bit mask X is always no less than the integer represented
by Y . Likewise, in all expressions of the form X & Y , X |Y , X + Y , and X − Y , the
two bit masks X and Y will have the same length, so that we will not need to deal
with special cases. Notice that if X and Y are bit masks of the same length ℓ, then
the length of the bit masks X & Y , X |Y , and X−Y is ℓ, whereas the length of X +Y
might be ℓ + 1, due to the carry bit.

Concerning the unitary left-shift operation, we will assume that the string X ≪ 1
has the same length as X, if the leading bit of X is 0 (which corresponds to dropping
from X its leading bit 0), otherwise its length is one more than that of X. The k-ary
left-shift operation is then defined as k iterations of the unitary left-shift. Instead,
the right-shift is defined in such a way that X ≫ k has always the same length of
X. Thus, for instance, if X = 00110 we have: X ≪ 1 = 01100, X ≪ 2 = 11000,
X ≪ 3 = 110000, X ≫ 1 = 00011, X ≫ 2 = 00001, X ≫ 3 = X ≫ 4 = · · · = 00000.

As far as concerns complexity issues, we will assume the computational model in
which each of the above operations can be executed in O(⌈L/w⌉)-space and time,
where L is the length of the result and w is the computer word length. In fact, a bit
mask B whose length exceeds the computer word length w can be readily represented
by ⌈|B|/w⌉ computer words.

The following additional notations will also be used. Given a matrix M of dimen-
sions h× k, we denote by (M)i,j the element of M located in the intersection of the
(i + 1)-st row and (j + 1)-st column of M, for 0 ≤ i < h and 0 ≤ j < k. A bit-matrix
is a matrix whose entries belong to {0, 1}. Given two integers h and k, with h ≤ k,
we denote by [h .. k] the set (interval) of all integers x such that h ≤ x ≤ k.

D.Cantone et al.: New Efficient Bit-Parallel Algorithms for the δ-Matching Problem. . . 173

In the sequel, we will assume that all patterns and texts in the paper are strings
over an alphabet Σ of size σ > 0, having the form {0, 1, . . . , σ − 1}.

3 Efficient algorithms for (δ, α)-matching

The δ-approximate string matching problem with α-bounded gaps has been first for-
mally defined in [5], where the δ-Bounded-Gaps algorithm has been proposed (see also
[4,2]). The δ-Bounded-Gaps algorithm, whose time and space complexity is O(nm),
with n and m the lengths of the text T and of the pattern P respectively, is presented
as an incremental procedure, based on the dynamic programming approach. Scanning
the pattern P from left to right, the δ-Bounded-Gaps algorithm looks for the (δ, α)-
occurrences of each prefix Pj of the pattern P in the whole text T , for 0 ≤ j < m.
Specifically, the δ-Bounded-Gaps algorithm proceeds by filling in a table D of dimen-
sions m×n such that D[j, i] = max({k ≥ 0 : i−α ≤ k ≤ i and Pj ✂k T}∪{−1}), for
0 ≤ j < m and 0 ≤ i < n. Notice that Pj ✂i T if and only if D[j, i] = i, for 0 ≤ j < m
and 0 ≤ i < n.

An algorithm, slightly more efficient than the δ-Bounded-Gaps, has been presented
by the authors in [2], under the name (δ, α)-Sequential-Sampling. As in the case of the
δ-Bounded-Gaps algorithm, also the (δ, α)-Sequential-Sampling is based on dynamic
programming, but it follows a different computation ordering than the δ-Bounded-

Gaps algorithm does; more precisely, it scans the text T from left to right and for
each position i of T it looks for the (δ, α)-occurrences at position i of all prefixes of
the pattern P . The (δ, α)-Sequential-Sampling algorithm has an O(nm) running time
and requires O(mα)-space. A much more efficient variant of it is the (δ, α)-Tuned-

Sequential-Sampling algorithm, which has an average case running time of O(n), in
the case in which α is assumed constant (cf. [3]).

Another algorithm, named (δ, α)-Shift-And, has also been described in [3]. The
(δ, α)-Shift-And algorithm is a very simple variant of a forward search algorithm pre-
sented in [9] for a pattern matching problem with gaps and character classes, partic-
ularly suited for applications to protein searching. It uses bit-parallelism to simulate
the behavior of a nondeterministic finite automaton with ε-transitions. The automa-
ton has ℓ = (α+1)(m−1)+2 states, and the simulation is carried out by representing
it as a bit mask B of length ℓ − 1 (the initial state of the automaton need not be
represented in the bit mask since it is always active during the computation). When
ℓ < w (the computer word length), the entire bit mask B fits in a single computer
word. In this case the (δ, α)-Shift-And algorithm becomes extremely fast in practice.

Other efficient algorithms for the (δ, α)-matching problem have been presented
more recently in [6] and [7]. In particular, [6] presents two algorithms, called DA-bpdb

and DA-mloga-bits. The first one inherits the basic idea from the dynamic program-
ming algorithm δ-Bounded-Gaps presented in [4]. It uses bit-parallelism to compute
an m×n bit-matrix D such that (D)j, i = 1 if and only if Pj ✂i T , for 0 ≤ j < m and
0 ≤ i < n. Basically, the algorithm DA-bpdb partitions each row of the matrix D as a
sequence of ⌈n/w⌉ consecutive bit masks, each of which represents a group of w bits
on that row. Then, the computation of the j-th bit mask in row i is performed bit-
parallely by using the (j − 1)-st and the j-th bit masks of the (i− 1)-st row. It turns
out that DA-bpdb has an O(nδ + ⌈n/w⌉m) worst-case execution time, which becomes
O(⌈n/w⌉⌈αδ/σ⌉ + n) on the average. The second algorithm, namely DA-mloga-bits,
is based on a compact representation, in the form of a systolic array, of the nonde-
terministic automaton used in the algorithm (δ, α)-Shift-And. The systolic array is

174 Proceedings of the Prague Stringology Conference 2008

composed of m building blocks, called counters in [6], one for each symbol of the pat-
tern, and is represented as a bit mask of length (m− 1)(⌈log2(α+1)⌉+1)+1. Notice
that this improves the representations used in [9,3] in which (α + 1)(m − 1) + 1 bits
are needed to represent the automaton. It turns out that the DA-mloga-bits algorithm
has an O(n⌈(m log2 α)/w⌉) worst-case searching time.

The algorithms presented in [7], called SDP-rows, SDP-columns, SDP-simple, and
SDP-simple-compute-L0, use different computation orderings, in combination with
sparse dynamic programming techniques, to implement the calculation of the table
D above. Specifically, in the case of the SDP-rows algorithm, the computation is
performed row-wise, whereas a column-wise computation is used by SDP-columns.
The algorithm SDP-simple, which can be considered as a brute force variant of SDP-

rows, performs very well in practice, especially for small values of δ and α; SDP-

simple-compute-L0 improves the average case running time of SDP-simple by using a
Boyer-Moore-Horspool-like shifting strategy [8], suitably adapted to handle gaps. In
particular, the latter two algorithms turn out to be among the most efficient ones,
in terms of running time, in many practical cases, especially for small values of α,
as shown in [7]. However, although these algorithms are very fast in practice, they
require additional O(n)-space, plus O(σ)-space in the case of SDP-simple-compute-L0.

4 New efficient variants of the (δ, α)-Sequential-Sampling

algorithm

In this section we present four efficient variants of the algorithm (δ, α)-Sequential-

Sampling, all based on bit-parallelism. In particular, one of these variants, the (δ, α)-
Tuned-Sequential-Sampling-HBP algorithm, is extremely efficient in most practical
cases and outperforms both algorithms SDP-simple and SDP-simple-compute-L0. Also,
the variant (δ, α)-Sequential-Sampling-BP+ turns out to be faster than existing algo-
rithms (e.g., (δ, α)-Shift-And) in the case of short patterns and very small values of
the gap α.

We begin by describing the general approach.
Given a text T of length n and a pattern P of length m, let Mi be the bit-matrix

of dimensions (α + 1) × m such that

(Mi)k,j =

{

1, if i − α + k ≥ 0 and Pj ✂i−α+k T
0, otherwise ,

for −1 ≤ i < n, 0 ≤ j < m and 0 ≤ k ≤ α. Notice that, for 0 ≤ i < n and 0 ≤ j < m,
we have Pj ✂i T if and only if (Mi)α,j = 1. Thus, the problem of determining the
positions i of T at which P ✂i T holds, translates into the problem of determining all
values i such that (Mi)α,m−1 = 1, which in turn reduces to the problem of effectively
computing the matrices M−1,M0, . . . ,Mn−1. This can be done as follows. To begin
with, notice that, by the very definition of the matrices M−1,M0, . . . ,Mn−1, we have

(Mi)k,j = (Mi−1)k+1,j , (1)

for 0 ≤ i < n, 0 ≤ j < m and 0 ≤ k < α; i.e., the first α rows of Mi coincide with
the last α rows of Mi−1. In addition, by Lemma 1, we have also that

(Mi)α,j =







1, if T [i] =δ P [j] and

(j = 0 or (∃k ∈ {0, . . . , α} : (Mi−1)k,j−1 = 1))
0, otherwise ,

(2)

D.Cantone et al.: New Efficient Bit-Parallel Algorithms for the δ-Matching Problem. . . 175

for 0 ≤ i < n and 0 ≤ j < m, which expresses the (j + 1)-st item in the last row of
matrix Mi in terms of the j-th column of matrix Mi−1. These recursive relations,
coupled with the initial condition M−1 = 0(α+1)×m, allow one to compute the matrices
M0,M1, . . . ,Mn−1 in an iterative fashion, starting from the initial matrix M−1.

For instance, in the case of the (δ, α)-Sequential-Sampling algorithm, the compu-
tation is carried out by calculating in sequence the matrices M−1,M0, . . . ,Mn−1,
which are maintained in a circular fashion in a bit table M of dimensions (α+1)×m.
More specifically, initially the table M is filled in with all 0’s (which corresponds to
the initial matrix M−1). Then, n iterations are performed, for i = 0, 1, . . . , n − 1.
At iteration i, the last row of Mi is computed, by calculating in turn the ele-
ments (Mi)α,m−1, (Mi)α,m−2, . . . , (Mi)α,0 according to recurrence (2), and stored at
the row of index i mod (α + 1) of table M; thus, just after step i, we have that
M[(i + k + 1) mod (α + 1), j] = (Mi)k,j, for 0 ≤ k ≤ α and 0 ≤ j < m. In performing
such step, the (δ, α)-Sequential-Sampling algorithm makes use of an additional array
C, of length m, whose (j + 1)-st entry C[j] is used to count the number of 1’s in
the (j + 1)-st column of M, for 0 ≤ j < m. This allows to perform each step of the
computation in O(m)-time, yielding an overall running time of O(nm).1

The computation of the matrices M0,M1, . . . ,Mn−1 can be carried out in various
ways using the bit-parallelism technique, as we show next.

The basic idea is to represent each column of the matrices Mi as a bit mask of
length α + 1 (which is very natural, since the columns of Mi are nothing but vectors
of bits). Consequently, the whole matrix Mi can be represented as an array of m
bit masks, each of which corresponds to a column of Mi, and each of which fits in a
single computer word in the case that α < w, where w is the computer word length
(see below for a brief discussion on the condition α < w).2

To be more precise, let us denote with C
(j)
i the bit mask of length α + 1 such that

C
(j)
i [k] = (Mi)k,j, for −1 ≤ i < n, 0 ≤ j < m, and 0 ≤ k ≤ α.3 Then, by (1), we have

that C
(j)
i [0 .. α − 1] = C

(j)
i−1[1 .. α], i.e., the first α bits of C

(j)
i coincide with the last α

bits of C
(j)
i−1. Moreover, by (2), we have that the last bit of C

(j)
i is 1, if T [i] =δ P [j]

and C
(j−1)
i−1 6= 0α+1; otherwise it is 0, provided that j > 0. If j = 0, the last bit of C

(0)
i

is 1 if and only if T [i] =δ P [0] holds. Therefore, if we put I = 01α, we obtain

C
(j)
i =

{

((C
(j)
i−1 & I) ≪ 1) | 0α1, if T [i] =δ P [j] and (j = 0 or C

(j−1)
i−1 6= 0α+1)

(C
(j)
i−1 & I) ≪ 1, otherwise ,

(3)

for 0 ≤ i < n and 0 ≤ j < m. Such relations suggest the simple algorithm reported in
Figure 2, named (δ, α)-Sequential-Sampling-HBP, which uses an array C of length m to

maintain the bit masks C
(0)
i , C

(1)
i , . . . , C

(m−1)
i .4 This algorithm is very close in spirit to

1 We mention here that the (δ, α)-Sequential-Sampling algorithm in its original form presented in [2]
allows one to count the number of all distinct (δ, α)-approximate occurrences of each prefix Pj of
the pattern P at any position i of the text T , and not only to check whether Pj ✂i T .

2 Notice that a similar idea of packing the columns of a bit-matrix into computer words has been
already introduced by the authors in [3], in connection with the algorithm (δ, α)-Tuned-Sequential-

Sampling. Here, we have further refined it.
3 Notice that P ✂i T holds if and only if the the last bit of C

(m−1)
i (i.e., C

(m−1)
i [α]) is a 1, which

corresponds to the condition that C
(m−1)
i & 0α1 6= 0α+1.

4 In the pseudo-code of Figure 2 it is plainly assumed that the bit masks 0α+1 and 0α1 are supplied
as constants. Concerning, instead, the bit mask I, notice that it can be computed, e.g., as I =

176 Proceedings of the Prague Stringology Conference 2008

(δ, α)-Sequential-Sampling-HBP(P , m, T , n, δ, α)

1. for i := 0 to m − 1 do

2. C[i] := 0α+1

3. I := 01α

4. for i := 0 to n − 1 do

5. for j := m − 1 downto 1 do

6. C[j] := (C[j] & I) ≪ 1
7. if T [i] =δ P [j] and C[j − 1] 6= 0α+1

8. then C[j] := C[j] | 0α1

9. C[0] := (C[0]& I) ≪ 1
10. if T [i] =δ P [0] then

11. C[0] := C[0] | 0α1

12. if (C[m − 1] & 0α1) 6= 0α+1 then

13. print(i)

(δ, α)-Tuned-Sequential-Sampling-HBP(P , m, T , n, δ, α)

1. for i := 0 to m − 1 do C[i] := 0α+1

2. next[0] := next[m] := m

3. I := 01α

4. for i := 0 to n − 1 do

5. p := m

6. j := next[p]
7. while j < m do

8. if j < m − 1 and T [i] =δ P [j + 1] then

9. C[j + 1] := C[j + 1] | 0α1
10. if p > j + 1 then

11. next[p] := j + 1
12. next[j + 1] := j

13. p := j + 1
14. C[j] := (C[j] & I) ≪ 1
15. if C[j] = 0α+1 then next[p] := next[j]
16. else p := j

17. j := next[p]
18. if T [i] =δ P [0] then

19. C[0] := C[0] | 0α1

20. if p > 0 then next[p] := 0
21. if (C[m − 1] & 0α1) 6= 0α+1 then print(i)

Figure 2. The (δ, α)-Sequential-Sampling-HBP algorithm (on the left) and the (δ, α)-
Tuned-Sequential-Sampling-HBP algorithm (on the right) for the δ-approximate string
matching problem with α-bounded gaps.

the (δ, α)-Sequential-Sampling, improving the space complexity of the latter algorithm
to O(m⌈α/w⌉), though its running time, which is O(nm⌈α/w⌉), is worse than that
of the (δ, α)-Sequential-Sampling algorithm. The reason is that, in general, we need
⌈(α + 1)/w⌉ computer words to represent a bit mask of length α + 1. Consequently,
any update of the entry C[j] costs O(⌈α/w⌉)-time, for j = 0, 1, . . . ,m − 1. However,
we notice that in almost all practical applications in music information retrieval the
value of the gap bound α is at most 10 (or less), therefore smaller than the size w of a
computer word (which is 32 or 64). Thus, in practice, a bit mask of length α + 1 can
be maintained in a single computer word and in this case it turns out that the (δ, α)-
Sequential-Sampling-HBP algorithm is faster than the (δ, α)-Sequential-Sampling.

Now, by using a trick similar to the one employed in the (δ, α)-Tuned-Sequential-

Sampling algorithm, we obtain a variant of the (δ, α)-Sequential-Sampling-HBP which
performs extremely well in practice, as will be shown by extensive experimentation
in the next section.

As in the case of the (δ, α)-Tuned-Sequential-Sampling algorithm, we observe that,
during each step of the computation of the (δ, α)-Sequential-Sampling-HBP algorithm,
an iteration of the for-loop at line 5 relative to a value of j > 0 has no effect if the
items C[j] and C[j − 1] are both null, i.e., if C[j] = C[j − 1] = 0α+1. In fact, the only
items of the array C which need to be updated are the C[j]’s such that C[j] 6= 0α+1

or (if j > 0) C[j − 1] 6= 0α+1. Therefore, it is enough to scan only those positions j
of the array C such that C[j] 6= 0α+1. Thus, for each such j, we first check whether
T [i] =δ P [j +1], provided that j < m−1, and, if this is the case, we update the entry
C[j + 1] by assigning to it the bit mask C[j + 1] | 0α1. After that, C[j] is updated as
in line 6 of the (δ, α)-Sequential-Sampling-HBP algorithm. To perform such process,
the positions j of the nonnull items of C (i.e., the j’s such that C[j] 6= 0α+1) are

(0α1 ≪ α)− 0α1. Similar considerations will hold for the remaining algorithms to be presented in
this section.

D.Cantone et al.: New Efficient Bit-Parallel Algorithms for the δ-Matching Problem. . . 177

maintained into an ordered, linked list L, which is scanned from the highest value
of j up to the lowest one. The resulting algorithm, named (δ, α)-Tuned-Sequential-

Sampling-HBP, is reported in Figure 2. Notice that the list L is implemented as a
circular array, next, of length m + 1, whose last entry, next[m], is used as a pointer
to the location which contains the first (i.e., highest) element of L (or next[m] = m,
in the case the list L is empty).

By a simple inspection, it is immediate to verify that the (δ, α)-Tuned-Sequential-

Sampling-HBP algorithm has an O(nm⌈α/w⌉) worst-case running time and requires
O(m⌈α/w⌉)-space. Moreover, by arguing as in [3], it can be shown that the running
time of the (δ, α)-Tuned-Sequential-Sampling-HBP algorithm is O(n) on the average
(for a fixed α).

Notice that a slightly simpler variant of the (δ, α)-Tuned-Sequential-Sampling-HBP

algorithm could be obtained if we maintained into the array C the reverses of the

bit masks C
(0)
i , C

(1)
i , . . . , C

(m−1)
i , rather than the bit masks themselves. In essence, this

would involve replacing each left-shift by a right-shift. More precisely, we would have
to replace the instruction of line 14 by the assignment C[j] := C[j] ≫ 1 (thus avoiding
to perform any operation prior to the shift) and the instructions of lines 9 and 19 by
the assignments C[j+1] := C[j+1] | 10α and C[0] := C[0] | 10α, respectively. Also, the
condition in the if -statement of line 21 would need to be replaced by the condition
“(C[m− 1] & 10α) 6= 0α+1”. The above modifications would have the effect to slightly
reduce the number of operations performed during each step of the computation.

Observe also that the last entry C[m−1] of the array C is used by the (δ, α)-Tuned-

Sequential-Sampling-HBP algorithm only in the conditional test of line 21. Therefore
we do not need to maintain it, since such a test could be implicitly performed during
the execution of the while-loop of lines 7-17 as follows. If during the execution of the
while-loop the variable j assumes the value m−2 (which means that position m−2
is in the list L, i.e., C[m − 2] is nonnull), then we check whether T [i] =δ P [m − 1]
and, if this is the case, the value i can be directly reported as the position of a (δ, α)-
occurrence of the pattern P in the text T . Otherwise, if the variable j does not ever
take the value m−2 during the execution of the while-loop, then the pattern P can
have no (δ, α)-occurrence at position i in the text, and therefore, even in this case,
the test at line 21 does not need to be checked. It turns out that the variation just
outlined slightly improves the overall running time of the algorithm.

In the last variant of the (δ, α)-Sequential-Sampling algorithm, which we are going
to describe (actually a variant of the (δ, α)-Sequential-Sampling-HBP algorithm), each
matrix Mi is represented as a single bit mask of length L = (α + 1)m, obtained by
concatenating the bit masks corresponding to the columns of Mi (i.e., the bit masks

C
(j)
i). More precisely, the following bit mask is used as a representation of the matrix

Mi, for −1 ≤ i < n:5

Bi = C
(m−1)
i C

(m−2)
i · · · C

(0)
i .

Assuming such representation for the matrices Mi as single bit masks, the task
is to find an efficient way to compute bit-parallely the bit mask Bi from the bit mask
Bi−1. (Notice that the initial bit mask B−1 is the null bit mask, i.e., B−1 = 0L.)

5 Notice plainly that, once the bit mask Bi has been computed, we can check in constant time
whether P ✂i T holds by simply checking whether the (α + 1)-st bit of Bi is 1, i.e., if Bi[α] = 1,
which corresponds to the condition that Bi &U 6= 0L where U = 0α10L−α−1.

178 Proceedings of the Prague Stringology Conference 2008

To begin with, let X
(j)
i be the bit mask of length α + 1 defined by

X
(j)
i =

{

0α1, if T [i] =δ P [j] and (j = 0 or C
(j−1)
i−1 6= 0α+1)

0α+1, otherwise ,

for 0 ≤ j < m, and let Xi = X
(m−1)
i X

(m−2)
i · · · X

(0)
i . Then, by (3) we have that

C
(j)
i = ((C

(j)
i−1 & 01α) ≪ 1) | X

(j)
i , for 0 ≤ i < n and 0 ≤ j < m, and therefore

Bi = ((Bi−1 & I) ≪ 1) | Xi , (4)

for 0 ≤ i < n, where I = (01α)m. Thus, we need only to be able to compute effectively
the bit mask Xi from the bit mask Bi−1, which we do as follows.

For each symbol s of the alphabet Σ and each 0 ≤ j < m, let b
(j)
s be the bit value

1, if s =δ P [j] holds, otherwise let b
(j)
s be the bit value 0. Also, let

H(s) = 0α(b(m−1)
s 0α)(b(m−2)

s 0α) · · · (b(1)
s 0α)b(0)

s .

Furthermore, let x
(j)
i be the last bit of the bit mask X

(j)
i (i.e., x

(j)
i = X

(j)
i [α]), for

0 ≤ j < m, so that we have

Xi = 0α(x
(m−1)
i 0α)(x

(m−2)
i 0α) · · · (x

(1)
i 0α)x

(0)
i . (5)

Then, we claim that

x
(0)
i = b

(0)
i , (6)

and
x
(j)
i 0α = (b

(j)
i 0α) &(((C

(j−1)
i−1 & 01α) + 01α) | C

(j−1)
i−1) , (7)

for 0 < j < m, where we have written b
(j)
i in place of b

(j)
T [i] (just to simplify the nota-

tion). We need only to verify (7), since (6) is an immediate consequence of the defini-

tions of b
(0)
i and X

(0
i . To do this, we begin by noting that the operation C

(j−1)
i−1 & 01α

sets the first bit of C
(j−1)
i−1 to 0, leaving unchanged the remaining bits. Thus, by per-

forming the arithmetic addition of C
(j−1)
i−1 & 01α with 01α we obtain a bit mask whose

first bit is 0 if and only if the last α bits of C
(j−1)
i−1 are all 0’s. Therefore, the bit mask

(((C
(j−1)
i−1 & 01α) + 01α) | C

(j−1)
i−1) has its first bit equal to 0 if and only if C

(j−1)
i−1 is null

(i.e., if and only if C
(j−1)
i−1 = 0α+1). At this point (7) is an immediate consequence of

the definitions of b
(j)
i and X

(j)
i , and thus our claim is correct.

By (5), (6), (7), and the definition of the function H, we get

Xi = (((Wi−1 & F) ≪ 1) | 0L−11) &H(T [i]) , (8)

where we have put F = 01L−1 and Wi−1 = ((Bi−1 & I) + I) | Bi−1. Relations (8) and
(4) provide the required recursive formulae for computing the bit mask Bi from the bit
mask Bi−1. The resulting algorithm, named (δ, α)-Sequential-Sampling-BP, is reported
in Figure 3. It uses an array H, indexed by the symbols of the alphabet Σ, which is
computed in such a way that H[s] = H(s), for each s ∈ Σ. Notice also that at the end
of the execution of the for-loop of line 5, we have I = (01α)m and U = 0α10L−α−1,
as required (cf. footnote 5).

It can easily be verified that time and space complexities of the (δ, α)-Sequential-

Sampling-BP algorithm are O((σ + n + mδ)⌈(mα)/w⌉) and O(σ⌈(mα)/w⌉), respec-
tively.

D.Cantone et al.: New Efficient Bit-Parallel Algorithms for the δ-Matching Problem. . . 179

(δ, α)-Sequential-Sampling-BP(P , m, T , n, δ, α)

1. L := (α + 1)m
2. for s ∈ Σ do H[s] := 0L

3. I := 0L−α1α

4. U := 0L−11

5. for j := 0 to m − 1 do

6. for s ∈ Σ ∩ [P [j] − δ .. P [j] + δ] do

7. H[s] := H[s] |U
8. if j < m − 1 then

9. I := (I ≪ (α + 1)) | 0L−α1α

10. U := U ≪ (α + 1)
11. F := 01L−1

12. B := 0L

13. for i := 0 to n − 1 do

14. W := ((B & I) + I) |B
15. X := (((W & F) ≪ 1) | 0L−11) & H[T [i]]
16. B := ((B & I) ≪ 1) |X
17. if (B & U) 6= 0Lthen print(i)

(δ, α)-Sequential-Sampling-BP+(P , m, T , n, δ, α)

1. ℓ := (α + 1)(m − 1) + 1
2. for s ∈ Σ do H[s] := 0ℓ

3. A := 0ℓ

4. U := 0ℓ−11

5. for j := 0 to m − 1 do

6. for s ∈ Σ ∩ [P [j] − δ .. P [j] + δ] do

7. H[s] := H[s] |U
8. if j < m − 1 then

9. A := A |U
10. U := U ≪ (α + 1)
11. J := U − A

12. F := 01ℓ−1

13. B := 0ℓ

14. for i := 0 to n − 1 do

15. B := (B & F) ≪ 1
16. C := B & J

17. B := (((C + J) |B)& H[T [i]]) |C
18. if (B & U) 6= 0ℓthen print(i)

Figure 3. The (δ, α)-Sequential-Sampling-BP algorithm (on the left) and the (δ, α)-
Sequential-Sampling-BP+ algorithm (on the right) for the δ-approximate string match-
ing problem with α-bounded gaps.

Let us make some remarks on the latter algorithm. To begin with, notice that
if we replace the instructions of lines 3 and 11 of the (δ, α)-Sequential-Sampling-BP

algorithm by the assignments I := 0L and F := 0α10L−α−1, respectively, then the
resulting algorithm still does the same work of the original one, except that the first
α bits of the bit mask B (and of all the other bit masks) are always left unset (i.e.,
they remain 0’s) during the course of the computation;6 but, since the conditional
test of line 17 (i.e., the test whether P ✂i T) involves only the (α+1)-st bit of B, the
modified algorithm solves the (δ, α)-matching problem as well. Thus, the first α bits
of the bit masks used by the (δ, α)-Sequential-Sampling-BP algorithm can be dropped,
and therefore the number of bits of these bit masks which need to be actually stored
during the computation is ℓ = L− α = (α + 1)(m− 1) + 1 (and hence, in particular,
if ℓ ≤ w all of these bit masks fit each in a single computer word). Observe also that
for F = 0α10L−α−1 (as above) and I = 0α+1(01α)m−1 (cf. footnote 6), the part of code
of the (δ, α)-Sequential-Sampling-BP algorithm from line 12 up to line 17 turns out to
be equivalent to the following one:

B := 0L

for i := 0 to n − 1 do

B := (B & F) ≪ 1
C := B &J
B := (((C + J) |B)& H[T [i]]) |C
if (B &U) 6= 0Lthen print(i)

where J = 0α(01α)m−11, as can be easily verified by very simple algebraic manipula-
tions, thus reducing the overall number of operations which need to be performed.

Such considerations translate into the variant of the (δ, α)-Sequential-Sampling-

BP algorithm reported in Figure 3, named (δ, α)-Sequential-Sampling-BP+, which

6 In fact, with such modifications, at the end of the for-loop of line 5, we have that I =
0α+1(01α)m−1, as can be easily verified.

180 Proceedings of the Prague Stringology Conference 2008

although characterized by the same asymptotic space and time complexity of the
original algorithm, turns out to be slightly more efficient in practice.7

Notice that at the end of the execution of the for-loop of line 5 of the (δ, α)-
Sequential-Sampling-BP+ algorithm, we have that A = 0(0α1)m−1 and U = 10ℓ−1, so
that U − A = (01α)m−11 (as the J above, except that the first α 0’s are dropped).8

Finally, we observe that it is easy to adapt our algorithms to handle also classes
of characters and patterns with variable sized gaps, which arise in several search
problems in molecular biology, but due to lack of space we will not give any details.

5 Experimental Results

In this section we report experimental data relative to an extensive comparison
of our newly presented algorithms (δ, α)-Tuned-Sequential-Sampling-HBP and (δ, α)-
Sequential-Sampling-BP+, described in Section 4, and the algorithms SDP-simple, DA-

mloga-bits, and (δ, α)-Shift-And, reviewed in Section 3, which are among the most
efficient algorithms for the (δ, α)-matching problem.9

In particular, we have performed two main sets of experimental tests: the first
one, the experimental set Es1, concerns the comparison of the algorithms (δ, α)-
Tuned-Sequential-Sampling-HBP and SDP-simple, whereas the second one, the experi-
mental set Es2, involves the algorithms (δ, α)-Tuned-Sequential-Sampling-HBP, (δ, α)-
Sequential-Sampling-BP+, DA-mloga-bits, and (δ, α)-Shift-And.

All algorithms have been implemented in the C programming language using the
Borland C++ compiler, version 5.5, and were used to search for the same patterns
in large fixed text sequences on a PC with a Pentium IV processor at 2.66 GHz,
with 512 MB of RAM, running Windows XP. In particular, they have been tested
on three Randσ problems, for σ = 50, 90, 130, and on a real music text buffer. Each
Randσ problem consisted in searching for a set of 150 random patterns of length
m = 6, 8, 10, 20, 30, 40, 50, 60, 70, 85, 100 in a random text sequence of length n =
5,242,880, over a common alphabet of size σ. For each Randσ problem, the values
of the approximation bound δ and of the gap bound α have been set to 1, 3, 5
and to 2, 5, 8, respectively. The running times of the algorithms have been averaged
over all patterns. Concerning the tests on the real music text buffer, these have been
performed on a fixed text sequence T of length n = 2, 982, 507 obtained by combining
a set of various classical pieces in MIDI format, with an overall alphabet of 76 distinct
symbols, i.e., the MIDI values of the notes of the pieces. For each m as above, we
have randomly selected a set of 150 substrings of T of length m which subsequently
have been searched for in T .

7 Observe, however, that for 0 ≤ j < m, when iteration j of the for-loop of line 5 starts, we have
U = 0ℓ1 ≪ (j(α + 1)). Therefore, the assignments of lines 7 and 9 could be implemented so as
to take constant time, assuming the model in which a bit mask X is represented as a sequence
of ⌈|X|/w⌉ computer words, thus yielding an overall running time of O((n + σ)⌈(mα)/w⌉ + mδ)
rather than O((σ + n + mδ)⌈(mα)/w⌉).

8 Notice that, in practice, the bit mask (01α)m−11 could also be computed as (∼(A |U)) | 0ℓ−11,
where ∼ denotes the operation of bit complementation, which replaces each 0 in the bit mask by
1 and each 1 by 0.

9 We have also considered in our experimental tests the algorithm SDP-simple-compute-L0, but, due
to lack of space, we omitted to report its timings, since it turned out to be always slower than the
SDP-simple algorithm.

D.Cantone et al.: New Efficient Bit-Parallel Algorithms for the δ-Matching Problem. . . 181

In the case of the experimental set Es2, the tests have been performed just as
described above except that, this time, the algorithms involved in the compari-
son, i.e., (δ, α)-Tuned-Sequential-Sampling-HBP, (δ, α)-Sequential-Sampling-BP+, DA-

mloga-bits, and (δ, α)-Shift-And, have been tested using only short patterns and very
small values of α. More precisely, the following pairs (α,m) have been used, where
(α,m) ∈ {1} × {6, 8, 10, 12, 14, 16} ∪ {2} × {6, 8, 10}. The main reason behind this
choice is that, for such pairs, each of the bit masks used by the last three algorithms
fit in a single computer word, a condition which allows these algorithms to reach their
best performances in practice.10 The algorithm (δ, α)-Tuned-Sequential-Sampling-HBP

has been included in this set of experimental tests mainly for comparing it with the
algorithm DA-mloga-bits.

All running times in the tables are expressed in hundredths of second and, for
each length of the pattern, the best result has been boldfaced. Moreover, the fol-
lowing abbreviations have been used to denote the algorithms: TSS-HBP for (δ, α)-
Tuned-Sequential-Sampling-HBP; SS-BP for (δ, α)-Sequential-Sampling-BP+; DA-NFA

for (δ, α)-Shift-And; DA-CNFA for DA-mloga-bits; SDP-S for SDP-simple.

Experimental results on a Real Music Problem (Es1)
ALGS (δ, α) m = 6 m = 8 m = 10 m = 20 m = 30 m = 40 m = 50 m = 60 m = 70 m = 85 m = 100

TSS-HBP (1, 2) 2.36 2.40 2.44 2.50 2.54 2.30 2.27 2.39 2.42 2.44 2.48

SDP-S (1, 2) 3.50 3.38 3.79 3.75 3.87 3.42 3.76 3.70 3.66 3.81 3.73
TSS-HBP (1, 5) 4.14 4.33 4.95 4.93 5.17 4.35 4.53 4.85 4.72 4.85 4.63

SDP-S (1, 5) 4.93 5.15 5.95 6.03 6.16 5.39 5.55 5.58 5.75 5.83 5.71
TSS-HBP (1, 8) 5.65 6.36 7.69 7.93 8.13 6.67 7.05 7.45 7.31 7.61 7.33

SDP-S (1, 8) 6.15 6.79 8.06 8.76 8.65 7.58 7.83 8.17 8.05 8.52 8.07
TSS-HBP (3, 2) 5.11 4.78 5.27 5.16 5.90 4.87 5.05 5.53 5.41 4.97 5.57

SDP-S (3, 2) 6.60 6.27 7.00 6.81 7.38 6.40 6.77 7.01 7.08 6.77 7.06
TSS-HBP (3, 5) 9.57 10.00 12.40 12.96 14.61 12.68 12.50 13.42 13.17 12.59 13.49

SDP-S (3, 5) 10.59 10.73 12.92 14.52 16.32 14.35 14.11 15.27 14.75 14.12 15.23
TSS-HBP (3, 8) 11.13 12.63 16.59 20.43 24.57 22.56 21.45 24.19 23.53 21.83 23.60

SDP-S (3, 8) 12.73 14.20 18.11 23.41 28.91 27.10 25.09 28.86 28.97 26.04 28.49
TSS-HBP (5, 2) 9.03 9.05 10.54 10.58 15.46 18.78 19.95 18.98 19.32 18.88 21.63

SDP-S (5, 2) 10.39 10.49 11.68 12.44 18.66 22.22 23.59 22.60 22.92 22.83 25.07
TSS-HBP (5, 5) 13.14 15.02 19.46 23.73 24.83 25.06 27.69 51.78 33.51 28.93 37.44

SDP-S (5, 5) 15.85 17.91 22.64 28.41 30.73 31.15 35.34 65.30 41.79 36.76 47.81
TSS-HBP (5, 8) 12.94 15.92 21.29 30.10 36.26 36.67 47.64 48.03 52.02 55.14 52.40

SDP-S (5, 8) 17.59 20.36 26.91 38.40 46.99 48.06 63.97 64.66 70.58 76.90 75.33

10 Notice however, as already remarked, that by allowing only small values of the gap bound α
(e.g., α ≤ 2) is not a real limitation in many practical applications in music. In fact, searching
with small gaps is enough to take into account various kinds of musical ornamentations, such as
mordent, acciaccatura and appoggiatura, as well as many other common musical technicalities
such as pedal notes.

182 Proceedings of the Prague Stringology Conference 2008

Experimental results on a Rand50 problem (Es1)
ALGS (δ, α) m = 6 m = 8 m = 10 m = 20 m = 30 m = 40 m = 50 m = 60 m = 70 m = 85 m = 100

TSS-HBP (1, 2) 3.02 2.92 2.98 2.84 2.94 2.94 3.03 2.90 2.92 2.98 2.96

SDP-S (1, 2) 4.60 4.78 4.58 4.69 4.75 4.73 4.80 4.77 4.63 4.65 4.77
TSS-HBP (1, 5) 4.33 4.17 4.35 4.29 4.35 4.27 4.39 4.32 4.23 4.25 4.35

SDP-S (1, 5) 6.19 6.11 6.25 6.21 6.17 6.19 6.15 6.01 6.19 6.09 6.11
TSS-HBP (1, 8) 5.65 5.59 5.79 5.89 5.89 5.69 5.73 5.73 5.77 5.68 5.79

SDP-S (1, 8) 7.43 7.65 7.79 7.61 7.71 7.67 7.81 7.59 7.63 7.67 7.67
TSS-HBP (3, 2) 5.89 5.81 5.79 5.95 5.94 5.91 5.77 5.84 6.03 5.84 5.71

SDP-S (3, 2) 8.85 8.73 8.85 8.83 8.83 8.62 8.87 8.79 8.88 8.85 8.79
TSS-HBP (3, 5) 12.24 12.96 13.31 13.84 13.75 13.47 13.73 13.71 14.09 13.95 13.58

SDP-S (3, 5) 13.10 14.63 15.56 16.27 16.09 15.80 16.13 16.28 16.57 16.28 16.11
TSS-HBP (3, 8) 17.38 20.48 22.83 26.10 26.29 25.95 26.79 26.46 26.99 51.53 50.98

SDP-S (3, 8) 17.22 19.63 22.61 29.15 29.75 29.28 30.56 30.32 30.64 59.02 58.44
TSS-HBP (5, 2) 11.49 11.79 11.68 11.79 11.99 11.94 17.55 22.87 21.73 22.27 22.07

SDP-S (5, 2) 14.11 14.82 15.28 15.12 15.28 15.51 22.95 29.34 28.47 29.10 28.77
TSS-HBP (5, 5) 22.91 27.01 29.66 35.88 37.35 37.61 68.71 39.97 36.32 64.85 36.72

SDP-S (5, 5) 24.04 27.65 30.35 40.83 44.26 45.15 82.58 47.06 43.83 77.20 43.95
TSS-HBP (5, 8) 26.53 34.68 43.38 121.11 175.83 212.14 231.21 257.04 285.96 329.08 320.51

SDP-S (5, 8) 29.82 37.62 46.58 135.99 205.92 254.88 281.20 318.26 357.93 429.03 422.84

Experimental results on a Rand90 problem (Es1)
ALGS (δ, α) m = 6 m = 8 m = 10 m = 20 m = 30 m = 40 m = 50 m = 60 m = 70 m = 85 m = 100

TSS-HBP (1, 2) 2.27 2.27 2.40 2.42 2.40 2.38 2.38 2.26 2.32 2.30 2.36

SDP-S (1, 2) 3.70 3.78 3.64 3.71 3.71 3.71 3.63 3.77 3.69 3.69 3.67
TSS-HBP (1, 5) 2.94 3.03 3.11 3.00 3.05 2.93 2.96 2.96 2.86 2.94 2.97

SDP-S (1, 5) 4.42 4.31 4.27 4.43 4.25 4.37 4.32 4.39 4.49 4.43 4.36
TSS-HBP (1, 8) 3.57 3.21 3.61 3.36 3.35 3.43 3.36 3.41 3.27 3.57 3.45

SDP-S (1, 8) 4.97 4.81 4.87 5.00 4.97 4.87 4.91 4.93 4.95 4.97 4.87
TSS-HBP (3, 2) 3.41 3.51 3.55 3.39 3.47 3.49 3.50 4.93 6.59 6.53 6.66

SDP-S (3, 2) 5.40 5.37 5.40 5.39 5.42 5.40 5.36 7.47 10.37 10.15 10.17
TSS-HBP (3, 5) 5.59 5.55 5.71 5.57 5.81 5.71 5.59 5.63 5.65 5.61 5.61

SDP-S (3, 5) 7.66 7.63 7.92 7.62 7.74 7.64 7.76 7.68 7.60 7.56 7.66
TSS-HBP (3, 8) 8.06 8.25 8.33 8.32 8.51 8.45 8.24 8.28 8.39 8.29 8.15

SDP-S (3, 8) 9.59 10.17 10.56 10.28 10.30 10.19 10.38 10.24 10.51 10.24 10.31
TSS-HBP (5, 2) 7.11 7.01 9.86 9.66 9.28 9.68 9.76 9.63 9.63 9.72 9.75

SDP-S (5, 2) 9.55 9.57 14.81 14.63 14.36 14.65 14.46 14.60 14.53 14.77 14.68
TSS-HBP (5, 5) 10.04 10.54 10.81 10.79 10.45 10.85 10.75 10.77 10.79 10.93 10.82

SDP-S (5, 5) 11.43 12.43 13.28 13.17 12.77 13.15 13.09 12.99 12.93 13.29 13.39
TSS-HBP (5, 8) 14.48 16.77 17.86 19.45 19.39 19.80 19.46 19.57 19.59 19.85 19.86

SDP-S (5, 8) 14.53 16.72 18.82 21.70 21.55 21.81 21.69 21.71 21.62 21.99 22.06

Experimental results on a Rand130 problem (Es1)
ALGS (δ, α) m = 6 m = 8 m = 10 m = 20 m = 30 m = 40 m = 50 m = 60 m = 70 m = 85 m = 100

TSS-HBP (1, 2) 2.16 2.12 2.14 2.12 2.14 2.10 2.12 2.14 2.24 2.14 2.15

SDP-S (1, 2) 3.37 3.30 3.44 3.53 3.41 3.38 3.34 3.47 3.32 3.33 3.34
TSS-HBP (1, 5) 2.61 2.56 2.52 2.60 2.62 2.44 2.50 2.52 2.53 2.50 2.54

SDP-S (1, 5) 3.72 3.83 3.74 3.66 3.70 3.78 3.70 3.81 3.80 3.83 3.75
TSS-HBP (1, 8) 2.92 2.78 2.96 2.78 2.88 2.80 2.76 2.89 2.85 2.82 2.80

SDP-S (1, 8) 4.15 4.33 4.09 4.12 4.06 4.08 4.15 4.07 4.06 4.11 4.09
TSS-HBP (3, 2) 2.83 2.95 2.83 2.84 2.83 2.84 2.74 2.81 2.89 2.88 2.80

SDP-S (3, 2) 4.42 4.57 4.59 4.52 4.62 4.59 4.59 4.52 4.60 4.39 4.58
TSS-HBP (3, 5) 4.07 4.04 4.15 4.04 3.94 4.05 4.03 4.01 4.10 4.07 7.65

SDP-S (3, 5) 5.66 5.66 5.66 5.68 5.79 5.77 5.68 5.72 5.70 5.78 10.76
TSS-HBP (3, 8) 5.08 4.96 5.23 5.17 5.13 5.11 5.18 5.22 5.20 5.04 5.19

SDP-S (3, 8) 6.87 6.95 7.04 7.01 6.99 6.94 6.99 6.96 6.97 6.89 6.99
TSS-HBP (5, 2) 3.78 3.78 3.84 3.68 3.72 6.14 7.14 7.06 7.09 7.05 6.91

SDP-S (5, 2) 5.79 5.74 5.93 5.71 5.66 9.69 10.89 10.91 10.95 10.96 10.77
TSS-HBP (5, 5) 9.14 9.39 9.78 9.53 9.77 9.56 9.62 9.82 9.86 9.71 9.46

SDP-S (5, 5) 10.39 11.27 11.52 11.48 11.52 11.39 11.53 11.40 11.67 11.50 11.31
TSS-HBP (5, 8) 10.23 10.15 12.34 11.96 11.82 12.00 11.92 11.97 12.14 11.94 11.69

SDP-S (5, 8) 12.20 12.29 16.42 15.68 15.88 15.78 15.88 15.96 15.89 15.94 15.72

D.Cantone et al.: New Efficient Bit-Parallel Algorithms for the δ-Matching Problem. . . 183

Experimental results on a Real Music Problem (Es2)
ALGS (δ, α) m = 6 m = 8 m = 10 m = 12 m = 14 m = 16 ALGS (δ, α) m = 6 m = 8 m = 10

TSS-HBP (1, 1) 2.00 1.88 2.04 2.06 2.00 1.98 TSS-HBP (1, 2) 2.36 2.27 2.42
SS-BP (1, 1) 1.00 0.84 0.96 0.94 0.94 0.88 SS-BP (1, 2) 0.92 0.90 0.82

DA-NFA (1, 1) 1.02 1.00 1.00 1.00 1.04 1.00 DA-NFA (1, 2) 1.02 1.00 1.05
DA-CNFA (1, 1) 9.15 9.14 9.03 9.12 9.13 9.17 DA-CNFA (1, 2) 9.22 9.19 9.09
TSS-HBP (3, 1) 3.26 3.28 3.29 3.41 3.39 3.48 TSS-HBP (3, 2) 5.14 4.58 4.99

SS-BP (3, 1) 0.94 0.94 0.96 0.88 0.94 0.98 SS-BP (3, 2) 0.92 0.94 0.94

DA-NFA (3, 1) 1.06 1.04 1.05 1.02 1.04 1.02 DA-NFA (3, 2) 1.16 1.14 1.06
DA-CNFA (3, 1) 9.34 9.35 9.23 9.49 9.24 9.20 DA-CNFA (3, 2) 9.40 9.25 9.30
TSS-HBP (5, 1) 5.13 5.35 4.93 5.69 6.02 5.28 TSS-HBP (5, 2) 8.70 8.87 9.91

SS-BP (5, 1) 1.08 0.92 0.90 0.88 0.96 0.84 SS-BP (5, 2) 1.18 1.06 1.02

DA-NFA (5, 1) 1.07 1.06 1.04 1.06 1.04 1.06 DA-NFA (5, 2) 1.20 1.08 1.06
DA-CNFA (5, 1) 9.38 9.25 9.26 9.25 9.33 9.29 DA-CNFA (5, 2) 9.54 9.44 9.28

Experimental results on a Rand50 problem (Es2)
ALGS (δ, α) m = 6 m = 8 m = 10 m = 12 m = 14 m = 16 ALGS (δ, α) m = 6 m = 8 m = 10

TSS-HBP (1, 1) 2.68 2.76 2.66 2.82 2.68 2.78 TSS-HBP (1, 2) 3.05 2.98 2.92
SS-BP (1, 1) 1.68 1.68 1.58 1.52 1.64 1.58 SS-BP (1, 2) 1.72 1.68 1.78

DA-NFA (1, 1) 1.94 1.70 1.84 1.92 1.86 1.76 DA-NFA (1, 2) 1.90 1.81 1.70

DA-CNFA (1, 1) 16.07 15.88 15.96 15.95 16.04 15.92 DA-CNFA (1, 2) 16.07 16.06 15.95
TSS-HBP (3, 1) 4.52 4.46 4.46 4.60 4.58 4.56 TSS-HBP (3, 2) 5.95 5.81 5.73

SS-BP (3, 1) 1.74 1.64 1.74 1.67 1.55 1.73 SS-BP (3, 2) 1.79 1.78 1.78

DA-NFA (3, 1) 1.92 1.89 1.84 1.74 1.92 1.72 DA-NFA (3, 2) 1.84 1.80 1.92
DA-CNFA (3, 1) 16.68 16.28 16.30 16.36 16.34 16.34 DA-CNFA (3, 2) 16.53 16.33 16.24
TSS-HBP (5, 1) 10.37 13.13 13.49 13.55 13.49 13.91 TSS-HBP (5, 2) 11.35 11.57 11.57

SS-BP (5, 1) 2.46 3.44 3.30 3.36 3.43 3.22 SS-BP (5, 2) 1.82 1.74 1.68

DA-NFA (5, 1) 2.70 3.56 3.51 3.46 3.54 3.50 DA-NFA (5, 2) 1.94 1.86 1.84
DA-CNFA (5, 1) 23.32 31.23 31.16 31.28 31.05 31.15 DA-CNFA (5, 2) 16.58 16.35 16.31

Experimental results on a Rand90 problem (Es2)
ALGS (δ, α) m = 6 m = 8 m = 10 m = 12 m = 14 m = 16 ALGS (δ, α) m = 6 m = 8 m = 10

TSS-HBP (1, 1) 2.24 2.24 2.21 2.28 2.25 2.30 TSS-HBP (1, 2) 2.38 2.30 2.36
SS-BP (1, 1) 1.68 1.71 1.64 1.68 1.70 1.68 SS-BP (1, 2) 1.68 1.70 1.68

DA-NFA (1, 1) 1.84 1.78 1.86 1.76 1.82 1.80 DA-NFA (1, 2) 2.02 1.78 1.84
DA-CNFA (1, 1) 16.12 15.92 15.98 16.02 15.94 15.96 DA-CNFA (1, 2) 16.14 15.94 15.88
TSS-HBP (3, 1) 3.16 3.03 3.09 3.03 3.05 2.97 TSS-HBP (3, 2) 3.59 3.29 3.48

SS-BP (3, 1) 1.79 1.78 1.70 1.74 1.74 1.84 SS-BP (3, 2) 1.76 1.83 1.72

DA-NFA (3, 1) 1.76 1.84 1.80 1.82 1.82 1.74 DA-NFA (3, 2) 1.89 1.88 1.84
DA-CNFA (3, 1) 16.57 16.22 16.34 16.39 16.28 16.30 DA-CNFA (3, 2) 16.56 16.33 16.38
TSS-HBP (5, 1) 3.99 4.09 4.07 4.00 4.05 3.97 TSS-HBP (5, 2) 5.26 4.97 4.96

SS-BP (5, 1) 1.86 1.68 1.74 1.77 1.60 1.68 SS-BP (5, 2) 1.72 1.76 1.76

DA-NFA (5, 1) 1.86 1.88 1.78 1.76 1.94 1.88 DA-NFA (5, 2) 1.84 1.78 1.92
DA-CNFA (5, 1) 16.51 16.31 16.39 16.30 16.35 16.34 DA-CNFA (5, 2) 16.47 16.27 16.31

Experimental results on a Rand130 problem (Es2)
ALGS (δ, α) m = 6 m = 8 m = 10 m = 12 m = 14 m = 16 ALGS (δ, α) m = 6 m = 8 m = 10

TSS-HBP (1, 1) 2.30 2.07 2.00 2.20 2.10 2.02 TSS-HBP (1, 2) 2.26 2.16 2.14
SS-BP (1, 1) 1.58 1.72 1.72 1.62 1.68 1.62 SS-BP (1, 2) 1.52 1.70 1.66

DA-NFA (1, 1) 1.82 1.72 1.82 1.88 1.84 1.88 DA-NFA (1, 2) 1.98 1.70 1.82
DA-CNFA (1, 1) 16.12 15.98 15.95 16.00 15.92 15.96 DA-CNFA (1, 2) 16.12 16.02 16.00
TSS-HBP (3, 1) 2.73 2.85 2.62 2.61 2.60 2.62 TSS-HBP (3, 2) 2.97 2.89 2.85

SS-BP (3, 1) 1.71 1.42 1.86 1.57 1.76 1.74 SS-BP (3, 2) 1.65 1.73 1.70

DA-NFA (3, 1) 1.88 1.92 1.80 1.98 1.80 1.94 DA-NFA (3, 2) 1.98 1.84 1.84
DA-CNFA (3, 1) 16.44 16.32 16.16 16.32 16.32 16.49 DA-CNFA (3, 2) 16.45 16.30 16.34
TSS-HBP (5, 1) 3.15 3.20 3.11 5.51 6.20 6.14 TSS-HBP (5, 2) 3.76 3.72 3.80

SS-BP (5, 1) 1.75 1.75 1.78 2.97 3.38 3.30 SS-BP (5, 2) 1.79 1.69 1.49

DA-NFA (5, 1) 1.86 1.82 1.86 3.09 3.48 3.62 DA-NFA (5, 2) 1.84 1.78 1.82
DA-CNFA (5, 1) 16.48 16.29 16.37 27.50 31.51 31.15 DA-CNFA (5, 2) 16.52 16.30 16.34

From the experimental results it turns out that our algorithms (δ, α)-Tuned-

Sequential-Sampling-HBP and (δ, α)-Sequential-Sampling-BP+ are very efficient in
practice. In the case of very short patterns and very small values of α (cf. the
experimental set Es2), the algorithm (δ, α)-Sequential-Sampling-BP+ is in general the
fastest one, and beats also the automaton based algorithm (δ, α)-Shift-And. More-
over, it is about 8-9 times faster than DA-mloga-bits. Notice also that the algorithm
(δ, α)-Tuned-Sequential-Sampling-HBP is always faster than DA-mloga-bits.

184 Proceedings of the Prague Stringology Conference 2008

In the more general case of patterns of very varied lengths (cf. the experimen-
tal set Es1), the algorithm (δ, α)-Tuned-Sequential-Sampling-HBP outperforms almost
always the very efficient SDP-simple; very rarely SDP-simple wins against (δ, α)-
Tuned-Sequential-Sampling-HBP (just in the 0.9 per cent of the cases, with very short
patterns). However, we recall that, in the worst case, the (δ, α)-Tuned-Sequential-

Sampling-HBP algorithm requires only O(m⌈α/w⌉) extra space, whereas the SDP-

simple algorithm uses O(n) extra space.

6 Conclusions

We have presented some efficient practical algorithms for the δ-approximate string
matching problem with α-bounded gaps, which have important applications in music
information retrieval. Despite their non-optimal asymptotic behavior, our algorithms
perform very well in practice and, in particular, one of them wins against the fastest
existing algorithms in most practical cases.

Acknowledgments

We thank K. Fredriksson and S. Grabowski for having provided us with the C
source code of their algorithms SDP-simple, DA-mloga-bits, and SDP-simple-compute-

L0, which we have used in our tests.
We also thank the anonymous referees for helpful comments.

References

1. E. Cambouropoulos, M. Crochemore, C. S. Iliopoulos, L. Mouchard, and Y. J.

Pinzon: Algorithms for computing approximate repetitions in musical sequences. International
Journal of Computer Mathematics, 79(11) 2002, pp. 1135–1148.

2. D. Cantone, S. Cristofaro, and S. Faro: An efficient algorithm for δ-approximate match-

ing with α-bounded gaps in musical sequences, in Proceedings of 4-th International Workshop on
Experimental and Efficient Algorithms (WEA’05), S. E. Nikoletseas, ed., vol. 3503 of Lecture
Notes in Computer Science, Springer-Verlag, 2005, pp. 428–439.

3. D. Cantone, S. Cristofaro, and S. Faro: On tuning the (δ, α)-sequential-sampling algo-

rithm for δ-approximate matching with α-bounded gaps in musical sequences, in Proceedings of
6-th International Conference on Music Information Retrieval (ISMIR’05), S. D. Reiss and G. A.
Wiggins, eds., 2005, pp. 454–459.

4. M. Crochemore, C. Iliopoulos, C. Makris, W. Rytter, A. Tsakalidis, and K. Tsich-

las: Approximate string matching with gaps. Nordic J. of Computing, 9(1) 2002, pp. 54–65.
5. M. Crochemore, C. S. Iliopoulos, Y. J. Pinzon, and W. Rytter: Finding motifs

with gaps, in Proceedings of the International Symposium on Music Information Retrieval (IS-
MIR’00), Plymouth, USA, 2000, pp. 306–317, poster paper.

6. K. Fredriksson and S. Grabowski: Efficient bit-parallel algorithms for (δ, α)-matching,
in Proceedings of 5-th Workshop on Efficient and Experimental Algorithms (WEA’06), LNCS
4007, Springer–Verlag, 2006, pp. 170–181.

7. K. Fredriksson and S. Grabowski: Efficient algorithms for pattern matching with general

gaps, character classes, and transposition invariance. Information Retrieval, March 2008, to
appear (currently available only online).

8. R. N. Horspool: Practical fast searching in strings. Software, Practice & Experience, 10(6)
1980, pp. 501–506.

9. G.NavarroandM.Raffinot: Fast and simple character classes and bounded gaps pattern

matching, with application to protein searching, in RECOMB’01: Proceedings of the fifth annual
international conference on Computational biology, New York, NY, USA, 2001, ACM, pp. 231–
240.

10. Y. J. Pinzon and S. Wang: Simple algorithm for pattern-matching with bounded gaps in

genomic sequences, in Proceedings of the International Conference on Numerical Analysis and
Applied Mathematics (ICNAAM’05), 2005, pp. 827–831.

