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Montréal (QC) CANADA H3C 3P8,
genevieve.paquin@gmail.com

Abstract. In a recent paper, Brlek et al. showed that some extremal infinite smooth
words are also infinite Lyndon words. This result raises a natural question: what are
the infinite smooth words that are also infinite Lyndon words? In this paper, we give
the answer: the only infinite smooth Lyndon words are m{a<b}, with a, b even, and
m{1<b}, with b odd, where mA is the minimal infinite smooth word with respect to
lexicographic order over the numerical alphabet A.
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1 Introduction

Lyndon words were introduced by Lyndon in [9] for constructing bases of the lower
central series for free groups. The authors proved that any finite word can be expressed
as a unique non-increasing product of Lyndon words. Later, Lyndon words were
studied by Duval [11,12]. He gave an algorithm that generates Lyndon words of
bounded length for a finite alphabet and another one that computes the Lyndon
factorization in linear time. Siromoney et al [26] defined infinite Lyndon words in
order to introduce Lyndon factorization of infinite words. Lyndon words also appeared
in [18,20,22]. This factorization gives nice properties about the structure of words.
Since a few years, a wide literature is devoted to Lyndon words: [2,13,23,24,25]. For
instance, Melançon [19] studied Lyndon factorization of Sturmian infinite words.

Smooth infinite words over A = {1, 2} form an infinite class K of infinite words
containing the well-known Kolakoski word K [17] defined as one of the two fixed
points of the run-length encoding function ∆, that is

∆(K) = K = 2211212212211211221211212211211212212211212212 · · · .

They are characterized by the property that the orbit obtained by iterating ∆ is
contained in {1, 2}∗. In the early work of Dekking [10], there are some challenging
conjectures on the structure of K that still remain unsolved despite the efforts devoted
to the study of patterns in K. For instance, we know from Carpi [8] that K and
more generally, any word in the infinite class K of smooth words over A = {1, 2},
contain only a finite number of squares, implying by direct inspection that K and
any w ∈ K are cube-free. Weakley [17] showed that the number of factors of length
n of K is polynomially bounded. In [6], a connection was established between the
palindromic complexity and the recurrence of K. Then, Berthé et al. [3] studied
smooth words over arbitrary alphabets and obtained a new characterization of the
infinite Fibonacci word F . Relevant work may also be found in [1] and in [3,16],
where generalized Kolakoski words are studied for arbitrary alphabets. The authors
investigated in [7] the extremal infinite smooth words, that is the minimal and the
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maximal ones w.r.t. the lexicographic order, over {1, 2} and {1, 3}: a surprising link
is established between F and the minimal infinite smooth word over {1, 3}.

More recently, Brlek et al. [5] studied the extremal smooth words for any 2-letter
alphabet and they showed the existence of infinite smooth words that are also Lyndon
words: the minimal smooth word over an even alphabet and the one over the alphabet
{1, b}, with b odd, are Lyndon words. Then a natural question arises: are there other
infinite smooth words that are infinite Lyndon words?

In this paper, we show that the minimal smooth words that are also Lyndon words
given in [5] are the only smooth Lyndon words. In order to prove it, we study the
words over a 2-letter alphabet depending on the parity of the letters. The paper is
organized as follow. In Section 2, we recall the basic definitions in combinatorics on
words, we state the notation we will use next and we recall useful known results.
Section 3 is devoted to the characterization of infinite smooth Lyndon words. It is
divided in 4 subsections. In Section 3.1, we study the case of an alphabet A = {a < b},
with a even and b odd. We show that there is no infinite Lyndon words that is also
smooth. In Section 3.2, we are interested in even alphabets. We show that only the
minimal smooth word is a Lyndon word. Section 3.3 is devoted to odd alphabet. We
prove that only m{1,b} is a Lyndon word. Finally, Section 3.4 studies the words over
an alphabet {a < b} with a odd and b even. In this last case, we show that there is
no infinite Lyndon words that are also smooth.

Notice that some proofs are omitted for lack of space and will appear in a full
paper.

2 Preliminaries

Throughout this paper, A is a finite alphabet of letters equipped with a total order
<. A finite word w is a finite sequence of letters w = w[0]w[1] · · ·w[n − 1], where
w[i] ∈ A denotes its (i + 1)-th letter. Its length is n and we write |w| = n. The set of
n-length words over A is denoted by An. By convention the empty word is denoted
by ε and its length is 0. The free monoid generated by A is defined by A∗ =

⋃
n≥0 A

n

and A∗ \ε is denoted A+. The set of right infinite words, also called infinite words for
short, is denoted by Aω and A∞ = A∗∪Aω. Adopting a consistent notation for finite
words over the infinite alphabet N, N∗ =

⋃
n≥0 Nn is the set of finite sequences and

Nω is that of infinite ones. Given a word w ∈ A∗, a factor f of w is a word f ∈ A∗

satisfying
∃x, y ∈ A∗, w = xfy.

If x = ε (resp. y = ε ) then f is called a prefix (resp. suffix). Note that by convention,
the empty word is suffix and prefix of any word. A block of length k is a maximal factor
of the particular form f = αk, with α ∈ A. The set of all factors of w, also called the
language of w, is denoted by F (w), and those of length n is Fn(w) = F (w)∩An. We
denote by Pref(w) (resp. Suff(w)) the set of all prefixes (resp. suffixes) of w.

Over an arbitrary 2-letter alphabet A = {a, b}, there is a usual length preserv-
ing morphism, the complementation, defined by a = b , b = a, which extends to
words as follows. The complement of u = u[0]u[1] · · · u[n − 1] ∈ An is the word

u = u[0] u[1] · · ·u[n − 1]. The reversal of u is the word ũ = u[n − 1] · · · u[1]u[0].
For u, v ∈ A∗, we write u < v if and only if u is a proper prefix of v or if there

exists an integer k such that u[i] = v[i] for 0 ≤ i ≤ k−1 and u[k] < v[k]. The relation
≤ defined by u ≤ v if and only if u = v or u < v, is called the lexicographic order.



128 Proceedings of the Prague Stringology Conference 2008

That definition holds for A∞. Note that in general the complementation does not
preserve the lexicographic order. Indeed, when u is not a proper prefix of v then

u > v ⇐ : u < v. (1)

A word u ∈ A∗ is a Lyndon word if u < v for all proper non-empty suffixes v of u.
For instance, the word 11212 is a Lyndon word while 12112 is not since 112 < 12112.
A word of length 1 is clearly a Lyndon word. The set of Lyndon words is denoted by
L.

From Lothaire [18], we have the following theorem.

Theorem 1. [9] Any non empty finite word w is uniquely expressed as a non increas-

ing product of Lyndon words

w = ℓ0ℓ1 · · · ℓn =
n⊙

i=0

ℓi, with ℓi ∈ L, and ℓ0 ≥ ℓ1 ≥ · · · ≥ ℓn. (2)

Siromoney et al. [26] extended Theorem 1 to infinite words. The set L∞ of infinite

Lyndon words consists of infinite words smaller than any of their suffixes.

Theorem 2. [26] Any infinite word w is uniquely expressed as a non increasing prod-

uct of Lyndon words, finite or infinite, in one of the two following forms:

i) either there exists an infinite sequence (ℓk)k≥0 of elements in L such that

w = ℓ0ℓ1ℓ2 · · · and for all k, ℓk ≥ ℓk+1.
ii) there exist a finite sequence ℓ0, . . . , ℓm (m ≥ 0) of elements in L and ℓm+1 ∈

L∞ such that

w = ℓ0ℓ1 · · · ℓmℓm+1 and ℓ0 ≥ · · · ≥ ℓm > ℓm+1.

Let us recall from ([18] Chapter 5.1) a useful property concerning Lyndon words.

Lemma 3. Let u, v ∈ L. We have uv ∈ L if and only if u < v.

A direct corollary of this lemma is:

Corollary 4. Let u, v ∈ L, with u < v. Then uvn, unv ∈ L, for all n ≥ 0.

The widely known run-length encoding is used in many applications as a method
for compressing data. For instance, the first step in the algorithm used for compressing
the data transmitted by Fax machines consists of a run-length encoding of each line
of pixels. Let A = {a < b} be an ordered alphabet. Then every word w ∈ A∗ can be
uniquely written as a product of factors as follows:

w = ai0bi1ai2 · · · or w = bi0ai1bi2 · · ·

with ik ≥ 1 for k ≥ 0. The operator giving the size of the blocks appearing in the
coding is a function ∆ : A∗ −→ N∗, defined by ∆(w) = i0, i1, i2, · · · which is easily
extended to infinite words as ∆ : Aω −→ Nω.

For instance, let A = {1, 3} and w = 13333133111. Then

w = 1134113213 and ∆(w) = [1, 4, 1, 2, 3] .

When ∆(w) ⊆ {1, 2, · · · , 9}∗, the punctuation and the parentheses are often omitted
in order to manipulate the more compact notation ∆(w) = 14123. This example is a



Geneviève Paquin: Infinite Smooth Lyndon Words 129

special case where the coding integers do not coincide with the alphabet on which is
encoded w, so that ∆ can be viewed as a partial function ∆ : {1, 3}∗ −→ {1, 2, 3, 4}∗ .

From now on, we only consider 2-letter alphabets A = {a < b}, with a, b ∈ N\{0}.

Recall from [6] that ∆ is not bijective since ∆(w) = ∆(w), but commutes with
the reversal (˜), is stable under complementation ( ) and preserves palindromicity.
Since ∆ is not bijective, pseudo-inverse functions

∆−1
a , ∆−1

b : A∗ −→ A∗

are defined for 2-letter alphabets by

∆−1
α (u) = αu[1]αu[2]αu[3]αu[4] · · · , for α ∈ {a, b}.

Note that the pseudo-inverse function ∆−1 also commutes with the mirror image,
that is,

∆̃−1
α (w) = ∆−1

β (w̃), (3)

where β = α if |w| odd and β = α if |w| is even.
The operator ∆ may be iterated, provided the process is stopped when the coding

alphabet changes or when the resulting word has length 1.

Example 5. Let w = 1333111333133311133313133311133313331113331. The succes-
sive application of ∆ gives :

∆0(w) = 1333111333133311133313133311133313331113331;
∆1(w) = 1333133311133313331;
∆2(w) = 131333131;
∆3(w) = 1113111;
∆4(w) = 313;
∆5(w) = 111;
∆6(w) = 3.

The set of finite smooth words over the alphabet A is defined by

∆+
A = {w ∈ A∗ | ∃n ∈ N, ∆n(w) = αi, α ∈ A, i ≤ β and ∀k ≤ n,∆k(w) ∈ A∗},

with β the greatest letter of the alphabet.
The operator ∆ extends to infinite words (see [6]). Define the set of infinite smooth

words over A = {a, b} by

KA = {w ∈ Aω | ∀k ∈ N, ∆k(w) ∈ Aω}.

The well-known [17] Kolakoski word denoted K is defined as the fix-point starting
with the letter 2 of the operator ∆ over the alphabet {1, 2}:

K = 2211212212211211221211212211211212212211 · · ·

More generally, the operator ∆ has two fix-points in KA, namely

∆(K(a,b)) = K(a,b) and ∆(K(b,a)) = K(b,a),

where K(a,b) is the generalized Kolakoski word [16] over the alphabet {a, b} starting
with the letter a.
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Example 6. The Kolakoski word over A={1, 2} starting with the letter 2 is K= K(2,1).
We also have K(2,3) = 22332223332233223332 · · · and K(3,1) = 33311133313133311133 · · · .

A bijection Φ : KA −→ Aω is defined by

Φ(w) = ∆0(w)[0]∆1(w)[0]∆2(w)[0] · · · =
∏

i≥0

∆i(w)[0]

and its inverse is defined as follows. Let u ∈ Ak, then Φ−1(u) = wk, where

wn =

{
u[k − 1], if n = 1;
∆−1

u[k−n](wn−1), if 2 ≤ n ≤ k.

Then for k = ∞, Φ−1(u) = limk→∞ wk = limk→∞ Φ−1(u[0..k − 1]).

Remark 7. With respect to the usual topology defined by

d((un)n≥0, (vn)n≥0) := 2−min{j∈N,uj 6=vj},

the limit exists because each iteration is a prefix of the next one.

Example 8. For the word w = 1333111333133311133313133311133313331113331 of
Example 5, Φ(w) = 1111313.

Note that since Φ is a bijection, the set of infinite smooth words is infinite. More-
over, given a prefix of Φ(w), for w a smooth word, we can construct a prefix of w as
in the following example.

Example 9. Let p = 1221 be a prefix of Φ(w), with w ∈ {1, 2}ω an infinite smooth
word. Then we compute from bottom to top, using the operator ∆−1:

∆0(w) = 11221221 · · ·
∆1(w) = 2212 · · ·
∆2(w) = 21 · · ·
∆3(w) = 1 · · ·

Note that in ∆2(w), the letter 1 is obtained by deduction, since ∆3(w) indicates that
the first block of letters of ∆2(w) has length 1. The last written letter of every line is
deduced by the same argument.

We recall from [7] the useful right derivative Dr : A∗ → N∗ defined by

Dr(w) =





ε if ∆(w) = α, α < b or w = ε,
∆(w) if ∆(w) = xb,
x if ∆(w) = xα, α < b,

where α ∈ N and x ∈ A∗. A word w is r-smooth (also said smooth prefix) if ∀k ≥
0, Dk

r (w) ∈ A∗. In other words, if a word w is r-smooth, then it is a prefix of at least
one infinite smooth word (see [4] for more details).

Example 10. Let w = 112112212. Then ∆(w) = 212211, ∆2(w) = 1122, ∆3(w) = 22
and Dr(w) = 21221, D2

r(w) = 112, D3
r(w) = 2.



Geneviève Paquin: Infinite Smooth Lyndon Words 131

Similarly, the operator D is defined over the alphabet {a < b} by

D(w) =





ε if ∆(w) < b or w = ε,
∆(w) if ∆(w) = bxb or ∆(w) = b,
bx if ∆(w) = bxu,
xb if ∆(w) = uxb,
x if ∆(w) = uxv,

where u and v are blocks of length < b. A finite word is called a smooth factor (also
called a C∞-word in [8,14,15,27]) if there exists k ∈ N such that Dk(w) = ε and
∀j < k, Dj(w) ∈ A∗.

The minimal (resp. the maximal) infinite smooth word over the alphabet A is the
smallest (resp. biggest) infinite smooth word, with respect to the lexicographic order.
It is denoted by mA (resp. MA).

An alphabet A = {a < b} is called an odd alphabet (resp. even alphabet) if both a

and b are odd (resp. even). The extremal smooth words satisfy the following properties
established in a previous paper.

Proposition 11. [5] Let A = {a, b} be a 2-letter alphabet with a < b. Then the

following properties hold:

i) If a and b are both even we have :

Φ(M{a,b}) = bω; Φ(m{a,b}) = abω; and m{a,b} ∈ L∞.

ii) If a and b are both odd we have :

Φ(M{a,b}) = (ba)ω; Φ(m{a,b}) = (ab)ω; and m{a,b} ∈ L∞ ⇐ : a = 1.

Let us recall some known results about smooth words.

Lemma 12. [3] Let u, v be finite smooth words. If there exists an index m such that,

for all i, 0 ≤ i ≤ m, the last letter of ∆i(u) differs from the first letter of ∆i(v), and

∆i(u) 6= 1, ∆i(v) 6= 1, then

i) Φ(uv) = Φ(u)[0..m] · Φ ◦ ∆m+1(uv);
ii) ∆i(uv) = ∆i(u)∆i(v).

The following properties follow immediately from the definitions. For more details,
the reader is referred to [21].

Recall from [4] that in the case of the alphabet A = {1, 2}, every finite word
w ∈ ∆+

A can be easily extended to the right in a smooth word by means of the
function Φ as follows:

∀u ∈ A∞, w ∈ Pref(Φ−1(Φ(w) · u)).

Its generalization to arbitrary alphabets is immediate (see [21]).

Proposition 13. Let A = {a < b}. Then the following properties hold.

i) Any smooth prefix can be arbitrarily right extended to an infinite smooth word.

ii) Let u = Φ(w), with w ∈ Aω an infinite smooth word. If u = u′u′′, then Φ−1(u′) is

prefix of w.
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3 Characterization of infinite smooth Lyndon words

In this section, we prove our main result: the only infinite smooth words that are also
infinite Lyndon words are m{2a<2b} and m{1<2b+1}, for a, b ∈ N. In order to prove it,
we study the four possible combinations of the parity of the letters.

Let us consider all the possible words p of a fixed length ≤ n such that Φ−1(p) is
prefix of an infinite smooth word w. We suppose that w is also an infinite Lyndon
word. In the following, for each word p, either we show that Φ−1(p) can not be a
prefix of a Lyndon word by showing the existence of a smaller suffix, or we describe
an infinite smooth Lyndon word having Φ−1(p) as prefix.

Lemma 14. p[0] = a.

Proof. Follows from the equality p[0] = w[0] and since a Lyndon word w must start
by the smallest letter. ⊓⊔

Lemma 14 will be used in this section to exclude the cases numbered (0) in the proofs.

3.1 Over A with a even and b odd

In this section, we prove the following result.

Theorem 15. Over the alphabet {a < b}, with a even and b odd, there is no infinite

smooth word that is also a Lyndon word.

Proof. Figure 1 illustrates the 5 possible cases to consider, using a tree. The leaves
correspond to the first letter of Φ(w) that leads to a contradiction: the prefix Φ−1(p)
obtained can not be the prefix of an infinite Lyndon word. We will prove it by showing
that there exists a factor f of w not prefix of Φ−1(p) such that f < w. For clarity
issues, the first letter of f is underlined.

(0)b

ba

a

a

a b

ba(1) (2)

(3) (4)

(5)

b

Figure 1. Possible cases for an even-odd alphabet

Case (1) If p = aaa, then
∆0(w) = (aaba)

a
2 (abbb)

a
2 · · ·

∆1(w) = aaba · · ·
∆2(w) = aa · · ·
Since w has the prefix aaba and the factor f = ab, it can not be a Lyndon word.
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Remark 16. Since the smallest letter a of the alphabet is even, p[3] ≥ a ≥ 2. That
allows us to assume that ∆2(w) starts with a block of length at least 2. This
argument holds for ∆i(w), i ≥ 0, and will be used for almost all cases considered
in this paper.

Remark 17. In the previous case, we construct ∆0(w) from ∆2(w), applying ∆−1

twice. We will always proceed this way.

Case (2) If p = aab, then

∆0(w) = (aaba)
b−1

2 aa(bbab)
b−1

2 bb · · ·
∆1(w) = abbb · · ·
∆2(w) = bb · · ·
w has the factor f = ab smaller than its prefix aaba.

Case (3) If p = abaa, then

∆0(w) = ((abbb)
a
2 (aaba)

a
2 )

a
2 ((abbb)

b−1

2 ab(baaa)
b−1

2 ba)
a
2 · · ·

∆1(w) = (baaa)
a
2 (bbab)

a
2 · · ·

∆2(w) = aaba · · ·
∆3(w) = aa · · ·

w has the factor f = (abbb)
b−1

2 ab.
Case (4) If p = abab, then

∆0(w) = ((abbb)
a
2 )(aaba)

a
2 )

b−1

2 (abbb)
a
2 ((aaba)

b−1

2 aa(bbab)
b−1

2 bb)
b−1

2 (aaba)
b−1

2 aa · · ·

∆1(w) = (baaa)
b−1

2 ba(abbb)
b−1

2 ab · · ·
∆2(w) = abbb · · ·
∆3(w) = bb · · ·

w has the prefix (abbb)
a
2 aaba and the smaller factor f = (abbb)

b−1

2 contained in

(bbab)
b−1

2 bb.

Remark 18. Since b > a and a is even, b > a ≥ 2. Thus, b ≥ 3 and b−1
2

≥ 1. This

insures that the factor (bbab)
b−1

2 bb occurs at least once.

Case (5) If p = abb, then

∆0(w) = (abbb)
b−1

2 ab(baaa)
b−1

2 ba · · ·
∆1(w) = bbab · · ·
∆2(w) = bb · · ·
w has the factor f = abbaaa.

Using Proposition 13, we conclude. ⊓⊔

3.2 Over an even alphabet

Let us now consider the case of an alphabet A with even letters.

Theorem 19. Over the alphabet {a < b}, with a and b even, the only smooth word

that is also an infinite Lyndon word is m{a<b}.

Proof. We proceed similarly as in the previous section. The 4 possibilities are illus-
trated in Figure 2.

Case (1) If p = aax, with x ∈ A, then
∆0(w) = (aaba)

x
2 (abbb)

x
2 · · ·

∆1(w) = axbx · · ·
∆2(w) = xx · · ·
w has the factor f = ab.
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(0)a b

a

a b(1)

(2) (3)

b

Figure 2. Possible cases for an even alphabet

Case (2) If p = abax, with x ∈ A, then

∆0(w) = ((abbb)
a
2 (aaba)

a
2 )

x
2 ((abbb)

b
2 (aaba)

b
2 )

x
2 · · ·

∆1(w) = (baaa)
x
2 (bbab)

x
2 · · ·

∆2(w) = axbx · · ·
∆3(w) = xx · · ·

w has the factor f = (abbb)
b
2 .

Case (3) Recall that the minimal smooth word Φ−1(abω) is a Lyndon word. Let us show
that this is the only smooth word that is also a Lyndon word. In order to prove
it, let us suppose that we can write p = abkay, with k ≥ 2 maximal (since Case
(2) has already excluded the possibility k = 1) and y ∈ A∗. Let us compute
u = Φ−1(bbax), with x ∈ A. We get

∆0(u) = ((bbab)
a
2 (baaa)

a
2 )

x
2 ((bbab)

b
2 (baaa)

b
2 )

x
2

∆1(u) = (baaa)
x
2 (bbab)

x
2

∆2(u) = axbx

∆3(u) = xx

Since a and b are even and using Lemma 12, Φ−1(bkay) can be written as

(w
a
2

1 w
a
2

2 )
y

2 (w
b
2

1 w
b
2

2 )
y

2 s,

with w1 = ∆
−(k−2)
b (bbab), w2 = ∆

−(k−2)
b (baaa) and s ∈ A∗.

Moreover, since Φ−1(bω) is the maximal smooth word, Φ−1(bk) (resp. Φ−1(bk−1a))
is prefix of w1 (resp. w2), we have that w1 > w2 and w1 is not prefix of w2.
Furthermore for k ≥ 2, using Equation (1) we get

∆−1
b (w1) > ∆−1

b (w2) ⇐ : ∆−1
a (w1) < ∆−1

a (w2),

that implies

∆−1
a (w

b
2

1 ) < ∆−1
a (w

a
2

1 w
a
2

2 ).

Thus Φ−1(abkay) is not a Lyndon word.

The only Lyndon smooth word over an even 2-letter alphabet is the minimal smooth
word mA with Φ(mA) = abω. ⊓⊔

3.3 Over an odd alphabet

In this section, we prove the following result.

Theorem 20. Over the alphabet {a < b}, with a and b odd, there exists an infinite

smooth Lyndon word if and only if a = 1. More precisely, the smooth Lyndon word is

the minimal smooth word m{1<b}, with b ∈ 2N+1.
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Before proving Theorem 20, some results are required.

Lemma 21. Let A = {a < b} be an odd alphabet. Let w,w′ be two factors of a

smooth word such that w < w′ and w = xay, w′ = xby′, with x, y, y′ ∈ A∗. Then, if

|x| is even,

∆−1
α (w) < ∆−1

α (w′) ⇐ : α < α,

with α ∈ A and α its complement. If |x| is odd, then

∆−1
α (w) < ∆−1

α (w′) ⇐ : α < α.

Proof. Assume |x| even. By direct computation, we have the following equations:

∆−1
α (w) = ∆−1

α (xay) = ∆−1
α (x)∆−1

α (a)∆−1
α (y) = ∆−1

α (x)αa∆−1
α (y)

and

∆−1
α (w′) = ∆−1

α (xby′) = ∆−1
α (x)∆−1

α (b)∆−1
α (y′) = ∆−1

α (x)αb∆−1
α (y′).

Then ∆−1
α (w) < ∆−1

α (w′) if and only if ∆−1
α (y)[0] < α. We conclude using

∆−1
α (y)[0] = α. A similar argument holds for |x| odd. ⊓⊔

Let us now prove 2 sub-cases of Theorem 20: a 6= 1 (Theorem 22) and a = 1
(Theorem 25).

Theorem 22. Over the alphabet {a < b}, with a, b odd and a 6= 1, there is no infinite

smooth word that is also a Lyndon word.

Proof. As in Sections 3.1 and 3.2, we proceed by inspection of the different possible
prefixes of Φ(w) (see Figure 3) for an infinite smooth word w.

(0)

(1) (2)

a

a b

b

Figure 3. Possible cases for an odd alphabet, with a 6= 1

Case (1) If p = aax, then

∆0(w) = (aaba)
x−1

2 aa(bbab)
x−1

2 bb(aaba)
x−1

2 aa · · ·
∆1(w) = axbxax · · ·
∆2(w) = xxx · · ·
Since x ≥ a > 1 and x is odd, x−1

2
≥ 1. Thus, w has the factor f = ab.

Remark 23. In the same way as in Remark 16, we can suppose that ∆i(w) starts
by a block of length at least 3.

Case (2) If p = abx, then

∆0(w) = (abbb)
x−1

2 ab(baaa)
x−1

2 ba(abbb)
x−1

2 ab · · ·
∆1(w) = bxaxbx · · ·
∆2(w) = xxx · · ·
w has the factor f = abbaaa.
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Since in the 3 cases, it is possible to find a factor smaller than the prefix, we
conclude that there is no smooth Lyndon word over an odd alphabet A, with a 6= 1.

⊓⊔

Proposition 24. Let w ∈ {1 < b}ω be an infinite smooth word that is also a Lyndon

word. Then 1b ∈ Pref(Φ(w)).

We know from [5] that the minimal smooth word over an odd 2-letter alphabet
{1 < b} is a Lyndon word. The next theorem shows that this is the only infinite
Lyndon word over the alphabet {1 < b}.

Theorem 25. Over the alphabet {1 < b}, with b odd, the only infinite smooth word

that is also a Lyndon word is m{1<b}.

Proof. Recall that Φ(m{1,b}) = (1b)ω. Let us show that for an infinite smooth word
w, any prefix p of Φ(w) that is not prefix of (1b)ω can not be such that Φ−1(p) is
prefix of an infinite Lyndon word. By Proposition 24, p starts by 1b. We proceed by
inspection of the different possibilities (see Figure 4).

(2)

b

b1

1 (6)

(5)

(1)

1 b

b

(4)

1

1 b

(3)

(1b)k

Figure 4. Possible prefixes of p starting by (1b)k, k ≥ 1

Case (1): p = (1b)k111. Let us consider the prefix Φ−1(1b111) of u:

∆0(u) = 1b((b1)
b−1

2 b(1bbb)
b−1

2 1b)
b−1

2 (b1)
b−1

2 b1bb1 · · ·

∆1(u) = b(1bbb)
b−1

2 1bb1 · · ·
∆2(u) = 1bb1 · · ·
∆3(u) = 1b · · ·
∆4(u) = 1 · · ·

u has the factor f = 1b(b1)
b−1

2 b1bb1. Using Lemma 21 2(k − 1) times, we conclude
that the prefix p does not describe a smooth Lyndon word. In Cases (2), (3), (4) and
(6), we get the same conclusion with a similar argument. Thus the only prefix leading
to a smooth Lyndon word is the one considered in Case (5): (1b)ω. ⊓⊔

Proof. (of Theorem 20) Follows from Theorems 22 and 25. ⊓⊔
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3.4 Over A with a odd and b even

In this section, we consider infinite smooth words over an alphabet {a < b}, with a

odd and b even. We prove that over this alphabet, there is no infinite smooth word
that is also a Lyndon word. In order to prove it, we consider 2 cases, a 6= 1 and a = 1,
that have to be analysed separately.

Theorem 26. Over the alphabet {a < b}, with a 6= 1 odd and b even, there is no

smooth infinite word that is a Lyndon word.

Proof. There are 5 possibilities to consider, illustrated in Figure 5 (a).

(0)b

ba

a

a

a b

(1) (3)(2)

(4) (5)

a b

b

(a) for an odd-even alpha-
bet {a < b}, with a 6= 1.

(0)

1

b

b1

1 b

1 b 1

b1

1 b

1 b

1 b

1

b

b

b1

1 b

b1

1 b

1 b

b1(1) (2)

(3) (4)

(5)

(6) (7)

(8)

(9) (10)

(11)

(12)

(13) (14)

(15)

(16)

b

(b) for the alphabet {a < b}, with
a = 1 and b = 4n.

Figure 5. Possible cases...

In each case, it is possible to find a factor f smaller than the smooth word. Thus,
there is no smooth Lyndon word. ⊓⊔

Theorem 27. Over the alphabet {a < b}, with a = 1 and b = 4n, there is no infinite

smooth word that is a Lyndon word.

Proof. Figure 5 (b) shows the different cases to consider. For each of the 16 cases, it
is again possible to find a factor of Φ−1(p) in order to prove that it is not a prefix of
an infinite Lyndon word. ⊓⊔

Theorem 28. Over the alphabet {a < b}, with a = 1 and b = 2(2n + 1), there is no

infinite smooth word that is a Lyndon word.

Proposition 24 can be generalized to an alphabet {1, b}, with b even. This result
will be used in the following proof.

Proof. Figure 6 shows the different cases to consider. Cases numbered less or equal to
16 are the same as in Theorem 27. For the other cases, it is possible to find a factor
in Φ−1(p) smaller than its prefix, following that the word is not a Lyndon word. ⊓⊔
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(0)

1

1 b

b1

b1

b1

b

1

b

1

b1

b1

b1

1 b

b1

1 b

1

1

1

1

1

b

b b

b

b

b

(1)

(17) (18)

(3)

(19) (20)

(21) (22) (23)

(24)

(25) (26)

(8)

(27) (13) (28)

(29)

(16)

b

Figure 6. Different cases for the alphabet {a < b}, with a = 1 and b = 2(2n + 1)

4 Summary and concluding remarks

The next theorem summarizes the results of Section 3.

Theorem 29. Over any 2-letter alphabet, the only infinite smooth words that are also

infinite Lyndon words are m{2a<2b} and m{1<2b+1}, for a, b ∈ N \ {0}.

Recall that for the alphabet {1, 2}, it is conjectured [4] that in any infinite smooth
word, any smooth factor appears. From this conjecture follows that no infinite smooth
word is a Lyndon word. This is exactly what we have proved for the alphabet {1, 2}.
Moreover, the existence of infinite smooth Lyndon words over the alphabets {2a < 2b}
and {1 < 2b + 1} leads to the following corollary.

Corollary 30. Let A be a 2-letter alphabet such that A = {2a < 2b} or A = {1 <

2b + 1}. Then, any infinite smooth words w ∈ Aω does not contain every smooth

factors.

Otherwise, no infinite Lyndon word would exist: a factor smaller than the prefix
necessarily occurs. It is also interesting to notice that our main result completely
characterized the trivial finite Lyndon factorization of infinite smooth words: the
only infinite smooth words that have a finite Lyndon factorization composed of only
one factor are m{2a<2b} and m{1<2b+1}. It is still an open problem to characterized
infinite smooth words that have a non trivial finite Lyndon factorization. Giving
an explicit computation of the Lyndon factorization, finite or infinite, of any infinite
smooth words, as Melançon did for standard Sturmian words [19] is still a challenging
problem.
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