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Abstract. We consider the suffix array for parameterized binary strings that consist
of only two types of parameter symbols. We show that the parameterized suffix array,
as well as its longest common prefix (LCP) array of such strings can be constructed in
linear time. The construction is direct, in that it does not require the construction of a
parameterized suffix tree. Although parameterized pattern matching of binary strings
can be done by either searching for a pattern and its inverse on a standard suffix array,
or constructing two independent standard suffix arrays for the text and its inverse, our
approach only needs a single p-suffix array and a single search.

1 Introduction

1.1 Parameterized Pattern Matching

Consider strings over Π ∪ Σ, where Π is the set of parameter symbols and Σ is the
set of constant symbols. These strings are called parameterized strings (p-strings).
Baker [7] introduced the notion of parameterized pattern matching, where two p-
strings of the same length are said to parameterized match (p-match) if one string
can be transformed into the other by using a bijection on Σ∪Π. The bijection should
be the identity on the constant symbols of Σ, namely, it maps any a ∈ Σ to a itself,
while symbols of Π can be interchanged. Examples of applications of parameterized
pattern matching are software maintenance [7,8], plagiarism detection [12], and RNA
structural matching [25].

Similar to standard string matching, preprocessing for the text strings is efficient
for p-string matching. In [8], Baker proposed the parameterized suffix tree (p-suffix
tree) structure to locate all positions of the text string where a given pattern string
p-matches. She presented an O(n(π + log(π + σ))) time algorithm to construct the
p-suffix tree for a given text string of length n. The algorithm uses O(n) space,
where π = |Π| and σ = |Σ|. Kosaraju [22] proposed an improved algorithm for
constructing p-suffix trees in O(n(log π + log σ)) time. Both algorithms are based on
McCreight’s algorithm that builds standard suffix trees [24]. Shibuya [25] developed
an on-line construction algorithm working in O(n(log π +log σ)) time, which is based
on Ukkonen’s construction algorithm for standard suffix trees [26]. Given a pattern p

of length m, we can compute the set Pocc of all positions of t where the corresponding
substring of t p-matches pattern p in O(m log(π + σ) + |Pocc|) time, by using the
p-suffix tree of a text string t.

In this paper, we consider parameterized suffix arrays (p-suffix arrays), whose
relation to p-suffix trees is analogous to the relation between standard suffix arrays [23]
and standard suffix trees [27]. As is the case with suffix trees and suffix arrays, the
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array representation is superior in terms of memory usage and memory access locality.
Also, most operations on a p-suffix tree can be efficiently simulated with the p-suffix
array and an array containing the lengths of longest common prefixes of the p-suffixes,
which we shall call the PLCP array. For instance, using p-suffix and PLCP arrays, the
parameterized pattern matching problem can be solved in O(m log n + |Pocc|) time
with a simple binary search, or O(m + log n + |Pocc|)) with a binary search utilizing
PLCP information, or O(m log(π + σ) + |Pocc|) time if we consider an enhanced
p-suffix array [1,18].

P-suffix arrays and PLCP arrays can be obtained from a simple linear time traver-
sal of the corresponding p-suffix trees. However, unlike the case of standard suffix ar-
rays [16,19,21], linear time algorithms for direct construction of parameterized suffix
arrays are not known so far.

In this paper, we take a first step in this problem, and show that for any text
p-string t over binary parameter alphabet Π, p-suffix arrays and PLCP arrays can
be constructed directly in O(n) time. Our construction algorithm does not need the
p-suffix tree of t as an intermediate structure.

There is a näıve solution to the p-matching problem for a binary alphabet using
two standard suffix arrays. Given a text t and pattern p over Π = {a, b}, compute
another text t′ by exchanging a and b in t. Then, compute two suffix arrays for t and
t′, and search the arrays for pattern p. Or alternatively, compute another pattern p′ by
exchanging a and b in p, and search for the array of t for p and p′. On the other hand,
our approach only needs a single p-suffix array and a single search for p-matching,
and thus is both space- and time-efficient. We also performed some experiments to
show the efficiency of our p-suffix arrays.

Parameterized strings on binary parameter alphabet were investigated in liter-
ature. Apostolico and Giancarlo [6] pointed out that parameterized strings over a
binary parameter alphabet behave in a similar way to standard strings with respect
to periodicity and repetitions, but the case with larger parameter alphabet remains
open. Our result on the direct linear-time construction of p-suffix arrays for a bi-
nary alphabet is yet another one showing the similarity of parameterized strings on
a binary alphabet to standard strings.

1.2 Related Work

Another approach for solving the parameterized pattern matching is to preprocess
patterns. Idury and Schäffer [15] proposed a variation of the Aho-Corasick automa-
ton [2], which can be constructed in O(m log(π + σ)) time for a single pattern, and
scanning the text takes O(n log(π + σ)) time. Amir et al. [4] presented a KMP
algorithm [20] based approach with O(m log(min{m,π})) preprocessing time and
O(n log(min{m,π})) scanning time. They also stated that it suffices to consider
strings over Π rather than Π ∪ Σ for the p-matching problem, showing that the
problem with Π ∪ Σ can be reduced in linear time to that with Π.

Parameterized pattern matching has been extended to two dimensional parameter-
ized pattern matching [3,14] and approximate parameterized pattern matching [13,5].
Parameterized edit distance was considered in [9].

2 Preliminaries

Let Σ and Π be two disjoint finite sets of constant symbols and parameter symbols,
respectively. An element of (Σ ∪ Π)∗ is called a p-string. The length of any p-string
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s is the total number of constant and parameter symbols in s and is denoted by |s|.
For any p-string s of length n, the i-th symbol is denoted by s[i] for each 1 ≤ i ≤ n,
and the substring starting at position i and ending at position j is denoted by s[i : j]
for 1 ≤ i ≤ j ≤ n. In particular, s[1 : j] and s[i : n] denote the prefix of length j and
the suffix of length n− i+ 1 of s, respectively. For any two p-strings s and t, lcp(s, t)
denotes the length of the longest common prefix of s and t.

Definition 1 (Parameterized Matching). Any two p-strings s and t of the same
length m are said to parameterized match (p-match) iff one of the following condi-
tions hold for every 1 ≤ i ≤ m:

1. s[i] = t[i] ∈ Σ,
2. s[i], t[i] ∈ Π, s[i] 6= s[j] and t[i] 6= t[j] for any 1 ≤ j < i,
3. s[i], t[i] ∈ Π, s[i] = s[i − k] for any 1 ≤ k < i iff t[i] = t[i − k].

We write s ≃ t when s and t p-match.
For example, let Π = {a, b, c}, Σ = {X, Y}, s = abaXabY and t = bcbXbcY.

Observe that s ≃ t.
Let N be the set of non-negative integers. For any non-negative integers i ≤ j ∈

N , let [i, j] = {i, i + 1, . . . , j} ⊂ N .

Definition 2. We define pv : (Σ ∪Π)∗ → (Σ ∪N )∗ to be the function such that for
any p-string s of length n, pv(s) = u where, for 1 ≤ i ≤ n,

u[i] =











s[i] if s[i] ∈ Σ,

0 if s[i] ∈ Π and s[i] 6= s[j] for any 1 ≤ j < i,

i − k if s[i] ∈ Π and k = max{j | s[i] = s[j], 1 ≤ j < i}.

In the running example, pv(s) = 002X24Y with s = abaXabY.
The following proposition is clear from Definition 2.

Proposition 3. For any p-string s of length n, it holds for any 1 ≤ i ≤ j ≤ n that

pv(s[i : j]) = v[1 : j − i + 1],

where v = pv(s[i : n]).

The pv function is useful for p-matching, because:

Proposition 4 ([8]). For any two p-strings s and t of the same length, s ≃ t iff
pv(s) = pv(t).

In the running example, we then have s ≃ t and pv(s) = pv(t) = 002X24Y.
We also define the dual of the pv function, as follows:

Definition 5. We define fw : (Σ ∪ Π)∗ → (Σ ∪ N ∪ {∞})∗ to be the function such
that for any p-string s of length n, fw(s) = w where, for 1 ≤ i ≤ n,

w[i] =











s[i] if s[i] ∈ Σ,

∞ if s[i] ∈ Π and s[i] 6= s[j] for any i < j ≤ n,

k − i if s[i] ∈ Π and k = min{j | s[i] = s[j], i < j ≤ n}.

Here, ∞ denotes a value for which i < ∞ for any i ∈ N . 1

1 In practice, n can be used in place of ∞ as long as we are considering a single p-string of length
n, and its substrings.
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In the running example, fw(s) = 242X∞∞Y with s = abaXabY.
The following proposition is clear from Definition 5.

Proposition 6. For any p-string s of length n, it holds for any 1 ≤ i ≤ n that

fw(s[i : n]) = w[i : n],

where w = fw(s).

For any p-string s of length n, pv(s) and fw(s) can be computed in O(n) time
with extra O(π) space, using a table of size π recording the last position of each
parameter symbol in the left-to-right (resp. right-to-left) scanning of s [8].

3 P-matching Problem and P-suffix Arrays

In this section we introduce a new data structure p-suffix arrays that are useful to
solve the p-matching problem given below.

3.1 Problem

The problem considered in this paper is the following:

Problem 7 (P-matching problem). Given any two p-strings t and p of length n and m

respectively, n ≥ m, compute Pocc(t, p) = {i | t[i : i + m − 1] ≃ p}.

It directly follows from Proposition 4 that

Pocc(t, p) = {i | pv(p) = pv(t[i : i + m − 1])}.

Therefore, from Proposition 3, we are able to compute Pocc(t, p) efficiently, by in-
dexing all elements of the set {pv(t[i : n]) | 1 ≤ i ≤ n}. The corresponding indexing
structure is introduced in the next subsection.

Amir et al. [4] showed that actually we have only to consider p-strings from Π to
solve Problem 7, as follows.

Lemma 8 ([4]). Problem 7 on alphabet Σ∪Π is reducible in linear time to Problem 7
on alphabet Π.

Hence, in the remainder of the paper, we consider only p-strings in Π∗. Then, note
that for any p-string s of length n, pv(s) ∈ {[0, n−1]}n and fw(s) ∈ {[1, n−1]∪{∞}}n.
We also see that if pv(s)[i] > 0 then fw(s)[i − pv(s)[i]] = pv(s)[i]. Similarly, if
fw(s)[i] < n then pv(s)[i + fw(s)[i]] = fw(s)[i].

3.2 P-suffix Arrays

In this section we introduce our data structure p-suffix arrays. Let us begin with
normal suffix arrays [23] that have widely been used for standard pattern matching.

Let �+ and �− denote the total order and its reverse on integers, i.e., for integers
x, y ∈ N ∪ {∞}, x �+ y ⇐ : x ≤ y and x �− y ⇐ : x ≥ y. The lexicographic
ordering on strings of an integer alphabet [i, j] ∪ {∞} with respect to a total order
� on integers can be defined as follows. For x, y ∈ ([i, j] ∪ {∞})∗,

x � y ⇐ :











x is a prefix of y, or

∃α, u, v ∈ ([i, j] ∪ {∞})∗, a, b ∈ [i, j] ∪ {∞},

such that a ≺ b, x = αau, y = αbv.
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We define a variation of suffix arrays on the integer alphabet [1, n− 1]∪{∞} and
the lexicographical ordering of suffixes w.r.t. �−.

Definition 9 (Suffix Arrays). For any string w ∈ ([1, n − 1] ∪ {∞})n of length n,
its suffix array SAw is an array of length n such that SAw[i] = j, where w[j : n] is
the lexicographically i-th suffix of w w.r.t. �−.

We abbreviate SAw as SA when clear from the context.

Definition 10 (LCP Arrays). For any string w ∈ ([1, n − 1] ∪ {∞})n of length n,
its LCP array LCPw is an array of length n such that

LCPw[i] =

{

−1 if i = 1,

lcp(w[SA[i − 1] : n], w[SA[i] : n]) if 2 ≤ i ≤ n.

We abbreviate LCPw as LCP when clear from the context.

Remark 11. We emphasize that suffix array SAfw(t) of p-string text t ∈ Π∗ does not
solve Problem 7 directly. Let p ∈ Π∗ be a p-string pattern. A careful consideration
reveals that an ordinary binary search on SAfw(t) for fw(p) does not work, in that we
may miss some occurrences of fw(p) in fw(t). The suffix tree for fw(t) is not useful
either, since a node of the tree can have O(n) children and searching the tree for fw(p)
requires O(nm) time, where n = |t| and m = |p|. Thus the combination of SAfw(t) and
LCP fw(t) does not efficiently solve Problem 7, either. Interestingly, however, SAfw(t)

and LCP fw(t) are very helpful to construct the following data structures which provide
us with efficient solutions to the problem, to be shown in Section 4.

In order to solve Problem 7 efficiently, we use the two following data structures
corresponding to pv(s).

Definition 12 (P-suffix Arrays). For any p-string s ∈ Πn of length n, its p-suffix
array PSAs is an array of length n such that PSAs[i] = j, where pv(s[j : n]) is the
lexicographically i-th element of {pv(s[i : n]) | 1 ≤ i ≤ n} w.r.t. �+.

We abbreviate PSAs as PSA when clear from the context. Note that PSAs is not
necessarily equal to SAs, since pv(s[i : n]) may not always be a suffix of pv(s).

The following function is useful for p-matching with PSA.

Definition 13. We define short : N ∗ → N ∗ to be the function such that for any
string x ∈ N n of length n, short(x) = y where, for 1 ≤ i ≤ n,

y[i] =

{

x[i] if x[i] < i,

0 if x[i] ≥ i.

Lemma 14 ([15]). For any p-string s ∈ Πn of length n, let v = pv(s)[i : n] for any
1 ≤ i ≤ n. Then, short(v) = pv(s[i : n]).

Lemma 14 implies that, when using PSAs, we do not have to store pv(s[i : n]) for
all 1 ≤ i ≤ n; only pv(s) is sufficient.

Theorem 15. Problem 7 can be solved in O(m log n + |Pocc(t, p)|) time by using
PSAt and pv(t).
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Proof. By Proposition 3 and Lemma 14, we can compute Pocc(t, p) by a binary search
on PSAt and pv(t), which takes O(m log n + |Pocc(t, p)|) time in total. ⊓⊔

The following auxiliary array enables us to solve Problem 7 more efficiently.

Definition 16 (PLCP Arrays). For any p-string s ∈ Πn of length n, its PLCP
array PLCP s is an array of length n such that

PLCP s[i] =

{

−1 if i = 1,

lcp(pv(s[PSA[i − 1] : n]), pv([s[PSA[i] : n])) if 2 ≤ i ≤ n.

We abbreviate PLCP s as PLCP when clear from the context.
Using PLCP , we can achieve an improved solution, as follows:

Theorem 17. Problem 7 can be solved in O(m + log n + |Pocc(t, p)|) time by using
PSAt, PLCP t and pv(t).

Proof. The time complexity can be improved to O(m+log n+|Pocc(t, p)|) by a similar
manner to [23] for standard suffix and LCP arrays. ⊓⊔

Considering the enhanced [1] p-suffix array, we obtain the following bound:

Theorem 18. Problem 7 can be solved in O(m log π + |Pocc(t, p)|) time.

Proof. For any p-string t ∈ Π∗, the number of children of any internal node of the
p-suffix tree for pv(t) is at most π [8]. Hence the enhanced p-suffix array enables us
to solve Problem 7 in O(m + log π + |Pocc(t, p)|) time (see [18] for more details). ⊓⊔

In the next section, we present our algorithm to construct PSA and PLCP arrays
for binary strings, that is, for the case where π = 2. Our algorithm runs in linear
time, and uses SA and LCP arrays.

4 P-Suffix and PLCP Arrays of Binary P-strings

In this section, we will show that for any binary p-string s, its p-suffix array PSAs

and PLCP array PLCP s can be computed in linear time, directly from s without the
use of p-suffix trees.

We first show that the p-suffix array PSAs of a binary p-string s is equivalent to
the suffix array SAfw(s) of fw(s). Then, we show the relationship between PLCP s and
LCP fw(s), so that PLCP s can be calculated from fw(s) and LCP fw(s).

Figure 1 shows PSAs, PLCP s for s = abaabaaaabba and corresponding suffixes
of fw(s) and LCP fw(s).

Lemma 19. For any p-string s and 1 ≤ i ≤ n, |{j | i = j − pv(s)[j]}| ≤ 1 and
|{j | i = j + fw(s)[j]}| ≤ 1.

Proof. Let i = x − pv(s)[x] = y − pv(s)[y] for some i < x < y. Then, by definition,
s[i] = s[x] = s[y] and y − i = pv(s)[y] = y −max{j | s[y] = s[j], 1 ≤ j ≤ y} ≤ y − x,
which is a contradiction. Similar arguments hold for fw(s).

Lemma 20. For any p-strings s, t ∈ Π∗ with π = 2, pv(s) �+ pv(t) if and only if
fw(s) �− fw(t).
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i PSA[i] s[PSA[i] : n] pv(s[PSA[i] : n]) PLCPs[i] fw(s[PSA[i] : n]) LCP fw(s)[i]
1 12 a 0 -1 ∞ -1
2 11 ba 0 0 1 ∞∞ 1
3 5 baaaabba 0 0 1 1 1 5 1 3 2 5 1 1 1 3 1 ∞∞ 0
4 9 abba 0 0 1 3 3 3 1 ∞∞ 0
5 2 baabaaaabba 0 0 1 3 2 1 1 1 5 1 3 4 3 1 2 5 1 1 1 3 1 ∞∞ 2
6 4 abaaaabba 0 0 2 1 1 1 5 1 3 2 2 5 1 1 1 3 1 ∞∞ 0
7 1 abaabaaaabba 0 0 2 1 3 2 1 1 1 5 1 3 4 2 3 1 2 5 1 1 1 3 1 ∞∞ 1
8 10 bba 0 1 0 1 1 ∞∞ 0
9 8 aabba 0 1 0 1 3 3 1 3 1 ∞∞ 1

10 3 aabaaaabba 0 1 0 2 1 1 1 5 1 3 3 1 2 5 1 1 1 3 1 ∞∞ 1
11 7 aaabba 0 1 1 0 1 3 2 1 1 3 1 ∞∞ 1
12 6 aaaabba 0 1 1 1 0 1 3 3 1 1 1 3 1 ∞∞ 2

Figure 1. The p-suffix array PSA of s = abaabaaaabba and corresponding suffixes
of fw(s), as well as the PLCP and LCP values. Here, n = 12.

Proof. It is clear that pv(s) = pv(t) iff fw(s) = fw(t). Let us now consider the other
case.
(=:) Assume pv(s) ≺+ pv(t). If pv(s) is a prefix of pv(t), then fw(s) ≺− fw(t) since

fw(s)[i] = fw(t[1 : |s|])[i] =

{

fw(t)[i] i + fw(t)[i] ≤ |s|

∞ otherwise,

for all 1 ≤ i ≤ |s|. Next, assume that pv(s) is not a prefix of pv(t), and let i = min{j |
pv(s)[j] ≺+ pv(t)[j]}, ℓ = pv(t)[i] and r = pv(s)[i]. Then, we have t[i−ℓ] = t[i] 6= t[k]
for any i − ℓ < k < i. Therefore, we get fw(t)[i − ℓ] = ℓ. On the other hand, we have
s[i − ℓ] 6= s[i] = s[k] for any i − ℓ < k < i, since π = 2. Hence fw(s)[i − ℓ] > ℓ, which
implies that fw(s)[i− ℓ] > fw(t)[i− ℓ]. Thus if i− ℓ = 1, then clearly fw(s) ≺− fw(t).
Now we consider the case where i − ℓ > 1. For any 1 ≤ h < i − ℓ, we have

fw(s)[h] ≤

{

i − ℓ − h if fw(s)[h] = fw(s)[i − ℓ] or r = 0,

i − ℓ + 1 − h otherwise,

where the second case comes from the fact that π = 2. Note that the same inequality
stands for t. This implies that there exists 1 ≤ p, q ≤ i−1 such that h = p−pv(s)[p] =
q−pv(t)[q]. From the assumption, pv(s)[1 : i−1] = pv(t)[1 : i−1] and Lemma 19, we
have p = q and hence, fw(s)[h] = fw(t)[h]. Therefore, fw(s)[1 : i − ℓ − 1] = fw(t)[1 :
i − ℓ − 1], and consequently fw(s) ≺− fw(t).
(⇐=) Assume fw(s) ≺− fw(t). If fw(s) is a prefix of fw(t), fw(s) = fw(t)[1 : |s|] =
fw(t[1 : |s|). Then pv(s) = pv(t[1 : |s|]) = pv(t)[1 : |s|], and therefore pv(s) ≺+

pv(t). Next, assume fw(s) is not a prefix of fw(t), and let l = lcp(fw(s), fw(t)) <

min{|s|, |t|}. Then, since fw(s)[1 : l] = fw(t)[1 : l], we have fw(s[1 : l]) = fw(t[1 : l]),
and pv(s[1 : l]) = pv(t[1 : l]), and finally pv(s)[1 : l] = pv(t)[1 : l]. Furthermore,
pv(s)[l + 1] = pv(t)[l + 1] holds, since either there exists 1 ≤ j ≤ l such that
j + fw(s)[j] = j + fw(t)[j] = l + 1 in which case pv(s)[l + 1] = pv(t)[l + 1], or there
doesn’t, in which case pv(s)[l + 1] = pv(t)[l + 1] = 0. Therefore, assume |s| ≥ l + 2
since otherwise the proof is finished.

Let p = fw(s)[l + 1] and q = fw(t)[l + 1]. From the assumption, ∞ ≥ p > q ≥ 1.
Since π = 2, t[l+1] = t[l+1+q] 6= t[k] for any l+1 < k < l+1+q, and s[l+1] 6= s[k] for
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any l+1 < k ≤ min{|s|, l+1+q}. If q = 1, then pv(s)[l+2] = 0 since by Lemma 19,
there cannot exist 1 ≤ j ≤ l such that j + fw(s)[j] = j + fw(t)[j] = l + 1. If q ≥ 2,
this gives us pv(s)[l + 2] = pv(t)[l + 2], pv(t)[k] = 1 for any l + 2 < k < l + 1 + q,
and pv(s)[k] = 1 for any l + 2 < k ≤ min{|s|, l + 1 + q}, while pv(t)[l + 1 + q] =
fw(t)[l + 1] = q ≥ 2. Either way, we have pv(s) ≺+ pv(t). ⊓⊔

The next lemma is a direct consequence of Lemma 20.

Lemma 21. For any p-string s ∈ Π∗ with π = 2, PSAs = SAfw(s).

It is well known that the suffix array can be constructed directly from the string
in linear time.

Theorem 22 ([16,19,21]). For any string w ∈ ([1, n])n of length n, SAw can be di-
rectly constructed in O(n) time.

The next theorem follows from Lemma 21 and Theorem 22:

Theorem 23. For any p-string s ∈ Πn of length n with π = 2, PSAs can be con-
structed directly in O(n) time by constructing SAfw(s).

From now on let us consider construction of PLCP s.

Lemma 24. For any p-strings s, t ∈ Π∗ with π = 2,

lcp(pv(s), pv(t)) =

{

l l = k,

min{k, l + min{fw(s)[l + 1], fw(t)[l + 1]}} otherwise,

where l = lcp(fw(s), fw(t)), and k = min{|s|, |t|}.

Proof. By similar arguments as in (⇐=) of Lemma 20. ⊓⊔

It is well known that the LCP array for strings can be constructed efficiently from
its corresponding suffix array.

Theorem 25 ([17]). For any string s of length n, LCP s can be constructed in O(n)
time, given s and its suffix array SAs.

Due to Lemma 24 and Theorem 25, we have:

Theorem 26. For any p-string s ∈ Πn of length n with π = 2, PLCP s can be
constructed in O(n) time from PSAs = SAfw(s) and fw(s).

5 Computational Experiments

Here, we consider parameterized pattern matching on binary strings. We compare
the method using parameterized suffix arrays and two näıve methods that either uses
two patterns or two suffix arrays. We run our algorithm for various pattern and text
lengths for random binary strings.

Figure 2 shows the time for p-matching not including the p-suffix array construc-
tion for random texts of length 100 and 1000. The average of 1000 p-matchings for
the same text and pattern strings is further averaged by 100 runs for different random
strings. We can see that our approach is the fastest for short patterns. However, the
overhead for creating pv(p) for pattern p seems to take over, when p becomes longer.
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Figure 2. Comparison of running times for p-matching on random binary strings.
The length of the text is 100 (upper) and 1000 (lower). The increase in time for short
patterns is due to the increase of |Pocc|.
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6 Conclusion and Future Work

We showed that p-suffix arrays and PLCP arrays for binary strings can be constructed
in linear time. It is an open problem whether or not the parameterized suffix array
and PLCP array for larger alphabets can be constructed directly in linear time. It
is difficult to apply standard suffix array algorithms or LCP calculation algorithms,
since an important property does not hold for p-strings. Namely, a suffix pv(s)[i : n] of
pv(s) is not necessarily equal to the pv(s[i : n]) of the suffix s[i : n]. As an important
consequence, for any p-strings s, t with lcp(pv(s), pv(t)) > 0, pv(s) �+ pv(t) does
not necessarily imply pv(s[2 : |s|]) �+ pv(t[2 : |t|]) which is essential in the standard
case.

For similar reasons, the reverse problem of finding a p-string whose p-suffix array
is equal to a given array of integers also does not seem to be as simple as in the case
for standard suffix arrays [11,10], and is another open problem.
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