
Reachability on Suffix Tree Graphs

Yasuto Higa1, Hideo Bannai1, Shunsuke Inenaga1,2, and Masayuki Takeda1,3

1 Department of Informatics, Kyushu University, Japan
{bannai,y-higa,shunsuke.inenaga,takeda}@i.kyushu-u.ac.jp

2 Japan Society for the Promotion of Science
3 SORST, Japan Science and Technology Agency (JST)

Abstract. We analyze the complexity of graph reachability queries on ST-graphs,
defined as directed acyclic graphs (DAGs) obtained by merging the suffix tree of a given
string and its suffix links. Using a simplified reachability labeling algorithm presented
by Agrawal et al. (1989), we show that for a random string of length n, its ST-graph can
be preprocessed in O(n log n) expected time and space to answer reachability queries in
O(log n) time. Furthermore, we present a series of strings that require Θ(n

√
n) time and

space to answer reachability queries in O(log n) time for the same algorithm. Exhaustive
computational calculations for strings of length n ≤ 33 have revealed that the same
strings are also the worst case instances of the algorithm. We therefore conjecture that
reachability queries can be answered in O(log n) time with a worst case time and space
preprocessing complexity of Θ(n

√
n).

Keywords: algorithms and data structures, suffix trees, graph reachability

1 Introduction

The reachability query for two nodes u, v of a given directed graph is to answer
whether or not there exists a path in the graph that starts from u and ends at v.
For any given graph, the query can be answered in O(n + e) time by conducting a
simple depth-first traversal on the graph, where n is the number of nodes and e is
the number of edges in the graph.

There have been several studies on preprocessing a graph in order to answer reach-
ability queries more efficiently [5, 1, 7, 3, 9]. A simple approach would be to construct
the transitive closure of the graph, achieving O(1) time query at the cost of O(n2)
time and space for the preprocessing. For graphs with specific properties, there ex-
ists methods with smaller complexity bounds. Graph reachability for planar graphs
with a single source node and sink node was considered in [5]. Reachability queries
for such graphs can be answered in O(1) time given O(n + e) time and O(n) space
preprocessing. For partial lattices, a method which achieves O(1) time query with
O(n2) time and O(n

√
n) space preprocessing was shown in [7], where n is the size

of the ground set. When considering arbitrary graphs with n vertices and e edges, it
has been shown in [3] that for any labeling scheme, there exists a graph such that the
reachability labeling has total size of Ω(n

√
e).

In this paper, we consider the graph reachability query problem on ST-graphs,
which are DAGs derived from suffix trees and suffix links. ST-graphs are not planar,
are not partial lattices. A suffix tree of a given string is a data structure that captures
important information concerning the substrings of the string [10]. We present and
analyze a version of the interval labeling algorithm of [1] tailored for ST-graphs. It can
be shown that for a random string, the ST-graph can be preprocessed in O(n log n)

Reachability on Suffix Tree Graphs

expected time and space to answer reachability queries in O(log n) time. Further-
more, we present a series of strings for which their ST-graphs require Θ(n

√
n) time

and space of preprocessing when the algorithm is applied. Exhaustive computational
calculations indicate that the series gives the worst case instances of the algorithm for
the strings of length up to 33, strongly supporting that the worst case complexity of
the preprocessing is Θ(n

√
n) time and space. Assuming this is true, this would break

the O(n2) barrier for total time and space used when conducting O(n) queries.
Reachability on ST-graphs solve the problem of whether or not the string repre-

sented by the path from the root to the given query nodes are substrings of each other.
The algorithm has possible applications in substring pattern set discovery, where the
objective is to find best set of substrings that characterizes a given set (or sets) of
strings: Consider two substring patterns such that one is a substring of the other. The
set of strings which contain the former pattern as a substring is obviously a subset
of the set of strings which have the latter pattern as a substring. This property may
allow us choose the best pattern set more efficiently, for example, by quickly detecting
non-interesting pattern sets.

2 Preliminaries

Let Σ be a finite alphabet. An element of Σ∗ is called a string. Strings x, y, and z are
said to be a prefix, substring, and suffix of string w = xyz, respectively. The length of
a string w is denoted by |w|. The empty string is denoted by ε, that is, |ε| = 0. Unless
otherwise noted, we shall only consider strings of a fixed alphabet. Also, we assume
that all strings end with a unique character $ ∈ Σ that does not occur anywhere else
in the strings.

A suffix tree suftree(s) for a given string s is a rooted tree whose edges are labeled
with non-empty substrings of s, satisfying the following characteristics. For any node
v in the suffix tree, let path(v) denote the string spelled out by concatenating the edge
labels on the path from the root to v. For each leaf node v, path(v) is a distinct suffix
of s, and for each suffix of s, there exists such a leaf v. Furthermore, each internal
node has at least two children, and the first character of the labels on the edges to
its children are distinct. The parent of node v is denoted by parents(v), and the set
of children of node v is denoted by childrens(v). The length of node v is defined to be
|path(v)|. The depth of node v with respect to the suffix tree is the number of edges
on the path from the root to the node, and is always less than or equal to |path(v)|.
The height of a suffix tree is the maximum depth of all nodes with respect to the
suffix tree. Also, let subtrees(v) be the subtree of the suffix tree rooted at node v.

For a node v where path(v) = σx for some σ ∈ Σ and x ∈ Σ∗, we denote the
suffix link of v as parent l(v) = u where path(u) = x. It is easy to see that a unique
parent l(v) exists for each node v in suftree(s), except for the root node. Therefore,
the suffix links also form a tree structure, which we denote by suflinktree(s). Let
children l(v) = {u : parent l(u) = v}. Note that the depth of node v with respect
to the suffix link tree is always equivalent to |path(v)|. Also, let subtree l(v) be the
subtree of the suffix link tree rooted at node v.

2.1 ST-graphs

Let V be the set of nodes of suftree(s). Let us denote the set of (backward) edges of
suftree(s) by Es = {(v, parents(v)) : v ∈ V } and the set of edges of the suflinktree(s)

213

Proceedings of the Prague Stringology Conference ’06

by El = {(v, parent l(v)) : v ∈ V }. We define the ST-graph of a string s as the
directed graph G = (V,E) where E = Es ∪ El. It is well known that the suffix tree
and its suffix links for a string of length n can be constructed and represented in O(n)
time and space [10, 6, 8, 4]. Figure 1 shows an example of an ST-graph for the string
ababbabbba$. It is easy to see that the graph is not planar nor a partial lattice.

8

6

4

5

2

3

1

01

11

9

7

a

b

a
b

b
a

b
b

b
a

$

b

$

$

b

a
b

b
b

a
$

$
a

b

a

$

a

$

$

a

b

$

a

b

b

b

b
b

$
a

b

a
b

b
b

a
$

20

19 16

15 18 14

13

12

17

b

Figure 1. A graph induced from the suffix tree of string ababbabbba$. Solid edges represent edges
of the suffix tree. The dashed edges represent suffix links.

node interval labels node interval labels
1 [1,1] [1,1] 11 [1,11] [1,11]
2 [1,2] [1,2] 12 [12,12] [1,5],[12,12]
3 [1,3] [1,3] 13 [12,13] [1,6],[12,13]
4 [1,4] [1,4] 14 [12,14] [1,8],[12,14]
5 [1,5] [1,5] 15 [15,15] [1,6],[12,13],[15,15]
6 [1,6] [1,6] 16 [12,16] [1,9],[12,16],[17,18]
7 [1,7] [1,7] 17 [17,17] [1,8],[17,17]
8 [1,8] [1,8] 18 [17,18] [1,9],[12,12],[17,18]
9 [1,9] [1,9] 19 [17,19] [1,10],[12,13],[15,15],[17,19]

10 [1,10] [1,10] 20 [1,20] [1,20]

Table 1. Post-order interval and labels assigned to ST-graph of Fig. 1 by Algorithm 1

The problem we shall consider in this paper is as follows:

Problem 1 (ST-graph reachability query). Given the ST-graph G = (V,E) of string
s and an arbitrary pair of node u, v ∈ V , rquery(u, v) returns true if there exists a
path from node u to v in G, and false otherwise.

The query rquery(u, v) is equivalent to the query of whether the string path(v) is a
substring of path(u) or not.

214

Reachability on Suffix Tree Graphs

Lemma 2. Given an ST-graph G = (V,E) of string s and nodes u, v ∈ V ,

rquery(u, v) = true ⇐⇒ path(v) is a substring of path(u)

Proof. (⇒) Suppose v is reachable from u. An edge (p, q) ∈ Es implies that path(q) is
a substring (prefix) of path(p). An edge (p, r) ∈ El implies that path(r) is a substring
(suffix) of path(p). Since any path from u to v consists of edges in Es∪El, this implies
that v is a substring of u.
(⇐) Suppose path(v) is a substring of path(u), i.e. there exists x, z ∈ Σ∗ such that
path(u) = xpath(v)z. If x = ε, then path(v) is a prefix of path(u) which implies
u ∈ subtrees(v), and that v is reachable from u using edges of Es. For x = x1 · · ·xk

(k ≥ 1), the nodes reachable from u using edges in El will have corresponding paths:
x2 · · ·xkpath(v)z, x3 · · ·xkpath(v)z, . . ., path(v)z. Let v′ be the node where path(v′) =
path(v)z. Then, since path(v) is a prefix of path(v′), v is reachable from v′, and
therefore reachable from u. ⊓⊔

Corollary 3. For any two distinct nodes u, v ∈ V in an ST-graph (V,E), if there
exists a path from u to v, then there exists a path: v0 → v1 → . . . → vt where t > 0,
u = v0, vt = v, and for some 0 ≤ i ≤ t, (vj−1, vj) ∈ El for all 1 ≤ j ≤ i and
(vj−1, vj) ∈ Es for all i + 1 ≤ j ≤ t.

Proof. Since there exists a path from u to v, path(v) is a substring of path(u) by
Lemma 2. The Corollary follows from the argument for the (⇐) part of the proof of
Lemma 2. ⊓⊔

3 Interval Labeling Algorithm

In this paper, we analyze the complexity of the interval labeling algorithm for general
DAGs presented in [1], when applied to ST-graphs. The original algorithm works as
follows: First, create a spanning tree of the DAG by examining the nodes in topological
order. The parent of each node is chosen so that the number of ancestors of each node
is the largest. Then, intervals based on a postorder numbering of the spanning tree
are assigned to each node. Further, the intervals of each node are propagated to all its
ancestor nodes of the DAG, and as a result, each node will hold a set of interval labels.
During the propagation, for a given set of interval labels at each node, redundant
intervals which are subsumed by larger intervals in the same set are removed.

The interval labeling algorithm of [1] modified for ST-graphs is given in Algo-
rithm 1, and Algorithm 2 shows how to answer rquery(,) using the labels. Algorithm 1
has been simplified as follows: First, the topological ordering and spanning tree con-
struction is not necessary. This is because each node v will only have at most two
parents, one from the suffix tree, and the other from the suffix link tree. It is easy
to verify that the path from the root to v using the edges of the suffix link tree is
always at least as long as the path using the edges of the suffix tree. Therefore, the
suffix link tree already corresponds to the desired spanning tree, by which intervals
are assigned to each node based on a postorder numbering. Second, although the
original interval labeling algorithm requires labels to be propagated across all edges,
this is not required for ST-graphs, and are propagated only across edges in Es.

The correctness of the algorithm can be proved as follows. Suppose node v is
reachable from node u. Then, node v must hold an interval label which subsumes
the interval of u for Algorithm 2 to correctly answer rquery(u, v). From lines 5-8

215

Proceedings of the Prague Stringology Conference ’06

in Algorithm 1, node v holds all intervals of nodes in subtrees(v), which includes
the interval for node vi that can be reached by traversing suffix links starting from
u as in Corollary 3. Since the interval of vi subsumes the interval of u defined by
the postorder numbering assigned in lines 1-4, v will contain an interval label which
subsumes the interval of u.

4 Complexity

In this section, we will derive estimates on the complexity of Algorithm 1. In particu-
lar, we will consider the expected running time, as well as lower bounds for the worst
case.

Lemma 4. Assuming a constant size alphabet, Algorithm 1 runs in time linear in
the total number of labels assigned to the nodes of the ST-graph.

Proof. The maximum in-degree of each node is bounded by O(|Σ|). This is because
for the suffix tree, all labels on the edges must begin with a different character of
the alphabet. For the suffix link tree, |{v : path(v) = σpath(u), σ ∈ Σ}| ≤ |Σ| for
any node u. Therefore, assuming that |Σ| is constant, merging the sorted labels (and
removing subsumed intervals) from the in-coming nodes can be done in time linear
in the total size of the in-coming labels. ⊓⊔

From Lemma 4, we have only to count the number of labels that will be assigned
to the ST-graph by Algorithm 1 in order to estimate the complexity of the algorithm.

4.1 Expected running time

A simple bound relating the height of the suffix tree and the total number of labels
assigned to the ST-graph is shown in the following lemma.

Lemma 5. For an ST-graph for a string of length n whose suffix tree has height h,
the total number of interval labels assigned by Algorithm 1 is at most O(nh).

Proof. Notice that since the interval labels are only propagated through edges of
the suffix tree, the maximum number of labels at a given node v is bounded by the
number of nodes in subtrees(v). Therefore, at a given depth of the suffix tree, there
can only be a maximum total of O(n) labels, i.e., the total number of nodes in the
suffix tree, since the subtrees of nodes of the same depth cannot intersect. This results
in a maximum total of O(nh) labels for all nodes. ⊓⊔
Theorem 6. The expected running time of Algorithm 1 for a random string of length
n is O(n log n).

Proof. It is known that the expected height of the suffix tree of a random string of
length n is O(log n) [2]. The theorem follows from Lemma 4 and Lemma 5. ⊓⊔

4.2 Worst Case Lower Bounds

In this subsection, we will give a lower bound for the worst case complexity of Al-
gorithm 1. We will present a series of strings of length n whose ST-graphs will have
Θ(n

√
n) labels assigned by the algorithm. Prior to this, we show related properties

of suffix trees and suffix link trees.

216

Reachability on Suffix Tree Graphs

Algorithm 1: Assign labels to each node of the ST-graph.

Input: ST-graph G(V,E) of string s
Output: Labeled ST-graph (v.int and v.labels for all v ∈ V)
foreach node v ∈ V in post-order of suflinktree(s) do1

v.int := [min{post-order number of subtreel(v)},post-order number of v];2

v.labels := {v.int};3

endfch4

foreach node v ∈ V in post-order of suftree(s) do5

v.labels := merge and sort v.labels and {c.labels : c ∈ childrens(v)};6

Remove [i, j] ∈ v.labels if ∃[i′, j′] ∈ v.labels s.t. i′ ≤ i ≤ j ≤ j′;7

endfch8

Algorithm 2: rquery(u, v) on ST-graphs using labels assigned by Algorithm 1.

Input: Labeled ST-graph G(V,E) of string s and nodes u, v ∈ V
Output: rquery(u, v)
[i, j] = u.int;1

if ∃[i′, j′] ∈ v.label such that i′ ≤ i ≤ j ≤ j′ then return true;2

return false;3

Properties of ST-graphs. For |Σ| = 2, there can only be one string of a given
length n, and the structure of the ST-graph is determined uniquely (recall that all
strings terminate with a uniquely occurring character $ ∈ Σ). It is not difficult to
show that the total number of labels is 3(n− 1) = O(n) in such case. In what follows
we therefore consider the case for |Σ| ≥ 3.

Lemma 7. The number of interval labels assigned to each node of the ST-graph for
any string s is bounded by the number of leaves in suflinktree(s). More generally, the
exact number of labels assigned to node v is minW⊆subtrees(v){|W | : subtrees(v) ⊆
∪w∈W subtree l(w)}.

Proof. Let ℓ be the number of leaves in suflinktree(s). In the post-order traversal
on suflinktree(s) (lines 1-4 of Algorithm 1), each node receives exactly one interval
label, and there are exactly ℓ different values for the first element of the intervals.
In post-order traversal on suftree(s) (lines 5-8 of Algorithm 1), we remove subsumed
intervals and therefore each node gets at most ℓ interval labels. The exact number of
labels follows from a similar argument. ⊓⊔

Lemma 8. If and only if |childrens(v)| = 2 for any internal node v 6= root of
suftree(s), the number of internal nodes (excluding the root) is the maximum, which
is n − 3.

Proof. Because of $ there are always n leaves in suftree(s). Since there is always an
edge labeled with $ from the root, |childrens(root)| = |Σ|. ⊓⊔

Lemma 9. Assume suftree(s) satisfies the condition in Lemma 8. For the three fol-
lowing groups of the internal nodes of suftree(s),

n1: internal nodes with two leaf-children;
n2: internal nodes with one leaf-child and one internal-child;
n3: internal nodes with two internal-children;

217

Proceedings of the Prague Stringology Conference ’06

where n1 + n2 + n3 = n − 3, we have

n2 = n − 2n1 − 1, and

n3 = n1 − 2.

Proof. Because of $, suftree(s) always has n leaves. Since there are n1 internal nodes
with two leaf-children, and since the leaf corresponding to suffix $ is a child of the
root, we have n2 = n − 2n1 − 1. Finally n3 = n − 3 − n1 − n2 = n1 − 2. ⊓⊔

Lemma 10. Assume suftree(s) satisfies the condition in Lemma 8. For any node v,
if |children l(v)| ≥ 2, then v is a group n3 node in suftree(s).

Proof. Let x = path(v), and let u,w ∈ children l(v). Since u and w are nodes in the
suffix tree, there exists at least four possible suffixes whose paths must pass node
v. We denote these paths as xσ1y1, xσ2y2, xσ3y2, xσ4y4 where σi ∈ Σ and yi ∈ Σ∗

for 1 ≤ i ≤ 4. It must be that σi1 = σi2 and σi3 = σi4 for some {i1, i2, i3, i4} =
{1, 2, 3, 4}. Since all four paths must be distinct, it follows that there must exist
distinct child nodes of v where xσi1yi1 and xσi2yi2 diverge, and xσi3yi3 and xσi4yi4

diverge respectively. ⊓⊔

Lemma 11. Assume suftree(s) satisfies the condition in Lemma 8. The number ℓ of
leaves in suflinktree(s) is at most n1 + 1.

Proof. Let ℓ be the number of leaves in suflinktree(s). Since all leaves of suftree(s)
are included in one path of suffix links and this path leads to the root, the maximum
number of internal nodes v of suflinktree(s), such that |children l(v)| ≥ 2, is ℓ − 3
excepting the root. From Lemma 10, this leads to ℓ − 3 internal nodes with two
internal-children in suftree(s). Therefore, ℓ ≤ n3 + 3 = n1 + 1 by Lemma 9. ⊓⊔

Lemma 12. Assume suftree(s) satisfies the condition in Lemma 8. If ℓ = n3 + 3,
then the longest internal node in group n3 has at most ℓ − 1 labels.

Proof. It follows from Lemmas 9, 10, and 11. ⊓⊔

Lower Bound. Consider the following series of strings of length n = 3
2
i(i + 3) + 5

where i = 1, 2, 3, . . .:

Xi = ab
i
ab

i+1
ab

i
ab

1
ab

i
ab

i−1
ab

i
ab

2
ab

i
ab

i−2
a · · · abk

ab
i
ab

i−k
a · · · abi

ab
⌈i/2⌉

ab
i
ab

i
a$

In what follows, we analyze Xi in terms of internal nodes of suftree(Xi), shown in
Figure 2. We consider the structure of suftree(Xi) in Lemmas 14, 15, 16, 18, and
the structure of suflinktree(Xi) in Lemmas 19, 20, 21, 22. An important point in the
lemmas is that if a substring p appears only once in the string, then there is no
explicit internal node v such that path(v) = p, and the substring will correspond to
a position on an edge leading to a leaf node (or the leaf node itself). Also, if pσ1 and
pσ2 are both substrings of the string for distinct σ1, σ2 ∈ Σ, then there exists a node
v such that path(v) = p.

Lemma 13. suftree(Xi) satisfies the condition in Lemma 8.

Proof. Any occurrence of a in Xi is followed by either b or $, and any occurrence of
b in Xi is followed by either a or b. Moreover, $ appears only at the end of Xi. Thus,
for any internal node v of suftree(Xi), we have |childrens(v)| = 2. ⊓⊔

218

Reachability on Suffix Tree Graphs

b

b

b

bk

bi

$
a

a

a

a

a

a

a b b b b b b b b

a b

a
…

a b

a b

a
…

a b

a

bi

bk

bi

bk

b

b

b

b

b

b

…

…

b b
…

b b b b
…

b

b b
…

b b b b
…

b b
…

b b

b b
…

b

b b
…

b

…

b b b b b b b b

b b
…

b b b b
…

b b

b b
…

b b b b
…

b b

b b
…

b b b b
…

b b

b b
…

b b b b
…

b b

b b
…

b b b b
…

b b

b b
…

b b b b
…

b b

… …

b b b b b b b b

…
…

b

b

b

b

b

b

b

a

a

a
Lemma11 and 15:

Lemma12 and 16:

Lemma13 and 17:

Lemma14 and 18:

Figure 2. Illustration for suftree(Xi). The four groups of the internal nodes are dealt in Lem-
mas 14, 15, 16, and 18, respectively.

Lemma 14. For any k (0 ≤ k ≤ i), there exists an internal node corresponding to
bi−kabiabk, and this node belongs to group n1 of suftree(Xi).

Proof. We have three cases to consider:

– When k = 0.
Since there are two strings biabiab and biabia$ in Xi, there is an internal node for
biabia. Since there is no other occurrence of biabia, the two children of this node
are both a leaf node and thus it belongs to group n1.

– When 0 < k < i.
Consider a substring Yi of Xi such that

Yi = ab
k−1

ab
i
ab

i−k+1
ab

i
ab

k
ab

i
ab

i−k
ab

i
ab

k+1
ab

i
a.

Then, bi−kabiabk appears twice in this substring, as underlined.
Now we show that each of bi−kabiabka and bi−kabiabkb appears only once in
Xi. For bi−kabiabka, it is clear because abka appears exactly once in Xi. String
bi−kabiabkb = bi−kabiabk+1 appears in Yi (the second underlined part). This is the
only occurrence of bi−kabiabk+1 in Xi, because the prefix bi−ka would appear in
substrings abi−k+xabiabk−xa with x ≥ 0, but then the suffix biabk+1 cannot match.

– When k = i.
By similar discussions to the case that k = 0. ⊓⊔

Lemma 15. For any x (0 ≤ x ≤ i) and y (0 ≤ y ≤ i), there exists an internal node
corresponding to bxaby, and this node belongs to group n2.

Proof. We have three cases to consider:

219

Proceedings of the Prague Stringology Conference ’06

– When y = 0.
Since there are more than one occurrences of biab, there are more than one oc-
currences of bxab. In addition, since there is exactly one occurrence of bia$, there
is exactly one occurrence of bxa$.

– When 0 < y < i.
Since there are more than one occurrences of bxabi, there are more than one
occurrences of bxaby+1. In addition, since there is exactly one occurrence of biabya

for each 0 < y < i, bxabya appears exactly once.
– When y = i.

There is exactly one occurrence of bxabia for each 0 ≤ x ≤ i. Since there is exactly
one occurrence of biabi+1, bxabi+1 appears exactly once for each 0 ≤ x ≤ i.

⊓⊔

Lemma 16. For any y (0 ≤ y < k), where 1 ≤ k ≤ i, there exists an internal node
corresponding to bi−kabiaby, and this node belongs to group n2.

Proof. By similar arguments to Lemmas 14 and 15. ⊓⊔

The next corollary follows Lemmas 15 and 16.

Corollary 17. For any k (0 ≤ k ≤ i), let path(u) = bi−ka and path(v) = bi−kabiabk.
Then, the path from u to v contains i + k + 2 internal nodes (including u and v).

Lemma 18. For any x (0 < x ≤ i), there is an internal node corresponding to bx.
The node for bi belongs to group n2, and the other nodes for bx with 0 < x < i belong
to group n3.

Proof. Since bia and bi+1 appear in Xi, there is an internal node for bx for any 0 <
x ≤ i. Since bia appears more than once and bi+1 appears exactly once, the node for
bi belongs to group n2. All the nodes for bx with 0 < x < i belong to group n3, since
both bxa and bx+1 appear more than once. ⊓⊔

From here on, we consider the suffix links of suftree(Xi).

Lemma 19. For any k (0 ≤ k ≤ i), let v be the internal node such that path(v) =
bi−kabiabk. Then we have |children l(v)| = 0.

Proof. For contrary, assume that |children l(v)| ≥ 1. Then there must exist a node
corresponding to either abi−kabiabk or bi−k+1abiabk. However, we show that these
strings can appear at most once in Xi.

First, we consider abi−kabiabk:

– When k = 0. abiabia appears only once (at the end of Xi).
– When 0 < k < i. Prefix abi−ka appears only once in Xi.
– When k = i. Prefix aa never appears in Xi.

Now let us consider bi−k+1abiabk. By Lemma 14, there is an internal node cor-
responding to bi−k+1abiabk−1 and this node belongs to group n1. This implies that
bi−k+1abiabk can appear at most once in Xi. ⊓⊔

The above lemma implies that the internal nodes v such that path(v) = bi−kabiabk

are the leaves of suflinktree(Xi). See also the upper diagram in Figure 3.

220

Reachability on Suffix Tree Graphs

…
…

b

b

b

b

b

b

b

bk

bi

$

b

a b b b b b b b b

a b b
…

b b b b
…

b b

a b b
…

b b b b
…

b b

a b b
…

b b b b
…

b b

a b b
…

b b b b
…

b b

a b b
…

b b b b
…

b b

a b b
…

b b b b
…

b b

… …
a b b

…

b b b b
…

b b

a b b
…

b b b b
…

b

a b b
…

b b b

a b b
…

b b

a b b
…

b

a b

a

bi

bk

…

……

bi

bk

…
…

b

b

b

b

b

b

b

bk

bi

$

b

b b b b b b b b

a b b
…

b b b b
…

b b

… …
b b

…

b b b b
…

b b

a

bi

bk

bi

bk

a b b b b b b b b

a b b
…

b b b b
…

b b

a b b
…

b b b b
…

b b

a b b
…

b b b b
…

b b

a b b
…

b b b b
…

b b

a b b
…

b b b b
…

b b

a b b b b b b b b

a b b
…

b b b b
…

b

a b b
…

b b b

a b b
…

b b

a b b
…

b

a b

…

……

a b b b b b b b b a b b b b b b b b

……

…
…

… … … …
bbbbb bbbbb bbbbb bbbbb bbbbb bbbbb bbbbb bbb bbb bbb bbb bbb bbb bbb bbbbbbbb

Figure 3. Illustration for the suffix links of suftree(Xi). For the sake of visibility, the suffix links of
Xi are shown in two rounds. Moreover, for simplicity, the suffix links for the leaves are omitted here.

Lemma 20. For any internal node vx,y such that path(vx,y) = bxaby (0 ≤ x ≤ i and
0 ≤ y ≤ i), we have |children l(vx,y)| = 1.

Proof. We have three cases to consider:

– When x = 0.
There is no occurrence of aaby, and we have two distinct occurrences of biabi in
Xi. Thus we have |children l(v0,y)| = 1.

– When 0 < x < i.
abxaby appears only once, since there is only one occurrence of abxabi. Because

221

Proceedings of the Prague Stringology Conference ’06

biaby appears more than once, there are more than one occurrence of bxaby. Thus
we have |children l(vx,y)| = 1.

– When x = i.
We have at least two occurrences of abiaby. Since bi+1 appears only once, there is
only one occurrence of bi+1aby. Thus we have |children l(vi,y)| = 1.

⊓⊔

Lemma 21. For any internal node vz such that path(vz) = bi−kabiabz (0 ≤ z < k),
where 1 ≤ k ≤ i, we have |children l(vz)| = 1.

Proof. By similar arguments to Lemma 20. ⊓⊔

Lemma 22. For any internal node vx such that path(vx) = bx (0 < x < i), we have
|children l(vx)| = 2. In addition, for the node vi such that path(vi) = bi, we have
|children l(vi)| = 1.

Proof. Due to Lemma 15, there exist internal nodes ux such that path(ux) = abx

for each 0 < x ≤ i, and therefore have (ux, vx) ∈ El. Due to Lemma 18, we have
(vx+1, vx) ∈ El for 0 < x < i. For x = i, however, we have (vi+1, vi) /∈ El because bi+1

does not correspond to a node (since it occurs only once in the string). ⊓⊔

From the above lemmas, only the nodes corresponding to bx (0 < x < i) are of
in-degree two in suflinktree(Xi). Plus, only the root node is of in-degree three in
suflinktree(Xi). See also Figure 3 for these observations.

The number of nodes covered in these lemmas are as follows:

Lemma 11 or 15 12 or 16 13 or 17 14 or 18
The number of nodes i + 1 (i + 1)2 i(i + 1)/2 i

the sum of these nodes is 3
2
i2 + 9

2
i+2 = n−3, which indicates that we have discussed

all nodes of the ST-graph for the string Xi.
Now we are finally ready to show the lower bound on the number of interval labels.

Theorem 23.The number of labels assigned to a suffix tree byAlgorithm1 is Ω(n
√

n).

Proof. From Lemmas 7, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, Corollary 17, we have
ℓ = i + 2 and achieve the following equations on the total number of interval labels
that are assigned to suftree(Xi):

(2 + 3 + · · · + ℓ − 1) × (i + 1) + ℓ ×
{
1 +

i∑

k=0

{(i + k + 2) − (ℓ − 2)}
}

+{(ℓ − 1) + (ℓ − 2) + · · · 3} + 1 × (n + 1)

= {2 + 3 + · · · + (i + 1)} × (i + 1) + (i + 2) × {1 +
i∑

k=0

(k + 2)}

+{(i + 1) + i + · · · 3} +
3i(i + 3)

2
+ 6

=
i(i + 3)(i + 1)

2
+

(i + 2){2 + i(i + 1) + 4(i + 1)}
2

+
(i − 1)(i + 4)

2
+

3i(i + 3)

2
+ 6

=
2i3 + 15i2 + 31i + 20

2
. (1)

222

Reachability on Suffix Tree Graphs

Since n = 3
2
i(i + 3) + 5 and i ≥ 1, we have

i =

√
24n − 39

6
− 3

2
.

By substituting this for the i’s in Equation (1), the total number of interval labels
assigned to suftree(Xi) is shown to be Θ(n

√
n). ⊓⊔

The worst case upper bound for Algorithm 2 is O(log n): From the argument in
Lemma 4, the labels at each node can be stored as sorted arrays. Also, the maximum
number of labels at each node is bounded by O(n) (Lemma 7). Therefore, line 2 in
Algorithm 2 can be run in O(log n) time using a standard binary search on the label
array.

5 Computational Experiments

We exhaustively enumerated all strings of length n ≤ 33 consisting of {a, b} and
ending with $, and applied Algorithm 1 to each string. For each n, the number of
labels in the worst case was recorded. The results are shown in Table 2.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#labels 3 6 9 12 15 18 22 26 30 34 39 44 49 54 59 64

n 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#labels 69 74 79 85 91 97 103 109 115 121 127 133 139 145 151 158

Table 2. The maximum number of labels that is assigned by Algorithm 1 to any string of length n.

We note that for n ≤ 7, the worst case corresponds to the string an−1$, and there-
fore the total number of labels is 3(n−1). For n = 11, 20, 32, the worst case instances
contain X1, X2, X3, and the total number of labels is as calculated in Theorem 23.
Generally for 7 ≤ n ≤ 33, we found that the total number of labels in the worst case
can be written exactly with the following formula:

max{f(⌊
√

(2n − 3)/3⌋), f(⌈
√

(2n − 3)/3⌉)}

where f(k) = (k + 2)n − k(k2 + 3)/2 − 3. We have also confirmed for smaller n
and with larger sized alphabets, the worst case instances will only contain one type
of character (excluding $) for n ≤ 7, and two types of characters (excluding $) for
n ≥ 7, therefore corresponding to the instances given above. (At n = 7, both types
had equal worst case label size of 18.) This seems natural since Lemma 8 indicates
that the more types of characters used, the less number of nodes there are in the
ST-graph.

Although we have not been able to give a rigorous proof for an upperbound of
O(n

√
n), the above results strongly suggest this bound.

6 Discussion

We presented an algorithm that can processes an ST-graph for a string of length n, so
that reachability queries between arbitrary pairs of nodes can be answered in O(log n)
time. The expected time and space complexity of the preprocessing algorithm for a

223

Proceedings of the Prague Stringology Conference ’06

random string is O(n log n). We also presented a series of strings for which the algo-
rithm requires Θ(n

√
n) time and space for preprocessing. Exhaustive computational

search for n ≤ 33 showed that the strings of the series also achieve the worst case
instances of the algorithm. Although we have not been able to give a direct proof,
this provides strong evidence that the worst case time complexity of the algorithm is
also Θ(n

√
n).

Since a suffix tree can have a height of O(n), a näıve consideration of Lemma 5
only gives an O(n2) bound for the number of labels for an ST-graph of a suffix tree
of height O(n), rather than O(n

√
n). There seems to be a delicate tradeoff between

deep paths in the suffix tree and deep paths in the suffix link tree. For example, the
suffix tree for string an$ will have a path of depth O(n). However, the number of
total labels in this case is also limited to O(n), since there are only two leaves in the
suffix link tree, which bounds the number of labels for each node to 2 (Lemma 7).
There also exists strings ak bbccddeeff...

︸ ︷︷ ︸

k character types

$ (n = 3k +1), where their suffix trees have

a path of depth O(n), and their suffix link trees have O(n) leaves. However, the total
number of labels in this case is also O(n), since all but two of the leaves in the suffix
link tree are very shallow.

6.1 Open Problems

There are several open problems that are of interest concerning reachability queries
on ST-graphs.

1. Whether or not there exists an algorithm which can do better: O(n
√

n) prepro-
cessing and O(1) query, or ultimately O(n) preprocessing and O(1) query.

2. Whether or not we can simulate reachability queries on suffix trie graphs. All
nodes in the suffix tree correspond to a substring of the original string. However,
there can exist substrings in the string without a corresponding explicit node. An
implicit node of a suffix tree is a position in the suffix tree which ends somewhere
in the middle of an edge. So far we have considered reachability queries between
explicit nodes of the ST-graph. Although reachability between implicit nodes of
the ST-graph is straightforward with respect to the ST-graph, the result does not
correspond to the substring relation between implicit nodes, as it does for explicit
nodes shown in Lemma 2.

Acknowledgments

This work was supported in part by The Ministry of Education, Culture, Sports,
Science and Technology, Grant-in-Aid for Young Scientists (B).

224

Reachability on Suffix Tree Graphs

References

[1] R. Agrawal, A. Borgida, and H. V. Jagadish: Efficient management of transitive relation-

ships in large data and knowledge bases, in Proceedings of the 1989 ACM SIGMOD International
Conference on Management of Data, 1989, pp. 253–262.

[2] A. Apostolico and W. Szpankowski: Self-alignments in words and their applications. Jour-
nal of Algorithms, 13(3) 1992, pp. 446–467.

[3] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick: Reachability and distance queries

via 2-hop labels, in Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms, 2002,
pp. 937–946.

[4] D. Gusfield: Algorithms on Strings, Trees, and Sequences, Cambridge University Press, 1997.
[5] T. Kameda: On the vector representation of the reachability in planar directed graphs. Infor-

mation Processing Letters, 3(3) 1975, pp. 75–77.
[6] E. M. McCreight: A space-economical suffix tree construction algorithm. J. ACM, 23(2) 1976,

pp. 262–272.
[7] M. Talamo and P. Vocca: A data structure for lattice representation. Theoretical Computer

Science, 175(2) 1997, pp. 373–392.
[8] E. Ukkonen: On-line construction of suffix trees. Algorithmica, 14(3) 1995, pp. 249–260.
[9] H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu: Dual labeling: answering graph reach-

ability queries in constant time, in Proc. 22nd International Conference on Data Engineering,
2006, to appear.

[10] P. Weiner: Linear pattern matching algorithms, in Proc. 14th IEEE Annual Symp. on Switch-
ing and Automata Theory, 1973, pp. 1–11.

225

