
Sparse Compact Directed Acyclic Word Graphs

Shunsuke Inenaga1,2 and Masayuki Takeda2,3

1 Japan Society for the Promotion of Science
2 Department of Informatics, Kyushu University, Japan

{shunsuke.inenaga, takeda}@i.kyushu-u.ac.jp
3 SORST, Japan Science and Technology Agency (JST)

Abstract. The suffix tree of string w represents all suffixes of w, and thus it supports
full indexing of w for exact pattern matching. On the other hand, a sparse suffix tree
of w represents only a subset of the suffixes of w, and therefore it supports sparse
indexing of w. There has been a wide range of applications of sparse suffix trees, e.g.,
natural language processing and biological sequence analysis. Word suffix trees are a
variant of sparse suffix trees that are defined for strings that contain a special word
delimiter #. Namely, the word suffix tree of string w = w1w2 · · ·wk, consisting of k

words each ending with #, represents only the k suffixes of w of the form wi · · ·wk.
Recently, we presented an algorithm which builds word suffix trees in O(n) time with
O(k) space, where n is the length of w. In addition, we proposed sparse directed acyclic
word graphs (SDAWGs) and an on-line algorithm for constructing them, working in
O(n) time and space. As a further achievement of this research direction, this paper
introduces yet a new text indexing structure named sparse compact directed acyclic
word graphs (SCDAWGs). We show that the size of SCDAWGs is smaller than that of
word suffix trees and SDAWGs, and present an SCDAWG construction algorithm that
works in O(n) time with O(k) space and in an on-line manner.

1 Introduction

Suffix trees have played a very central role in combinatorial pattern matching as they
have wide applications such as data compression [10, 12, 6] and bioinformatics [11, 2,
5]. Suffix trees are fairly useful since they can be constructed in linear time and space
in the input string length [14]. On the other hand, there have been great demands to
deal with the common case that only certain suffixes of the input string are relevant.
Suffix trees that contain only a subset of all suffixes are called sparse suffix trees.
Among several versions of sparse suffix trees, we in this paper concentrate on word
suffix trees introduced in [1].

Let D be a dictionary of words and w be a string in D+ of length n, namely, w
be a sequence w1 · · ·wk of k words in D. The word suffix tree of w w.r.t. D is a tree
structure which represents only the k suffixes of w in the form wi · · ·wk. Although
the normal suffix tree of w requires O(n) space, the word suffix tree of w w.r.t. D
needs only O(k) space. One typical application of word suffix trees is a word- and
phrase-level index for documents written in a natural language. Note that normal
suffix trees report all occurrences of a keyword in the text string, which may cause
unwanted matchings (e.g., an occurrence of “other” in “mother” is possibly retrieved).
Andersson et al. introduced an algorithm to build the word suffix tree for w w.r.t. D
with O(k) space, but in O(n) expected time [1]. Lately, we invented a faster algorithm
that constructs word suffix trees with O(k) space and in O(n) time in the worst
case [8]. This is optimal, since the whole string w needs to be read at least once.

It is noteworthy that our word suffix tree construction algorithm gives a practical
solution to linear-time construction of sparse suffix trees for arbitrary subsets of

Proceedings of the Prague Stringology Conference ’06

suffixes. Given a set S of k−1 positions in string w, we insert a unique word delimiter
into w at the positions listed in S. Now we get a string which consists of k words,
each separated by #. The word suffix tree of this modified string is alternative to the
sparse suffix tree of w w.r.t. S. In the matching phase, we simply ignore any #’s in
the edge labels of the tree.

In this paper, we introduce a new data structure named sparse compact directed
acyclic word graphs (SCDAWGs) as an alternative to the word suffix trees and to the
sparse suffix trees as well. SCDAWGs are a sparse text indexing version of compact
directed acyclic word graphs (CDAWGs) of [4]. We define SCDAWGs based on ‘word-
position-sensitive’ equivalence relations on string w and dictionary D, and show the
asymptotic size of SCDAWGs to be O(k). Moreover, the fact is that SCDAWGs are
a minimization of sparse suffix trees, and therefore require no more space than sparse
suffix trees. Finally, we present an on-line algorithm for building SCDAWGs, which
is based on the on-line algorithm for building normal CDAWGs in [7]. By using the
minimum DFA MD which accepts D, and by tailoring suffix links accordingly, the
modified algorithm constructs SCDAWGs. Since our algorithm directly constructs
SCDAWGs (namely, not constructing sparse suffix trees as an intermediate), it works
with space linear in the output size. We also show that the proposed algorithm runs in
O(n) time. Furthermore, our algorithm can be seen as a generalization of the normal
CDAWG construction algorithm of [7]. Assume just for now D = Σ, and consider a
DFA which accepts Σ with only two states that are a single initial state and a single
final state. Then this DFA plays the same role as the auxiliary ‘⊥’ node used in [7],
and as a result normal CDAWGs are generated.

2 Preliminaries

2.1 Notations

Let Σ be a finite set of symbols, called an alphabet. Throughout this paper we assume
that Σ is fixed. A finite sequence of symbols is called a string. We denote the length
of string w by |w|. The empty string is denoted by ε, that is, |ε| = 0. Let Σ∗ be the
set of strings over Σ. For any symbol a ∈ Σ, we define a−1 such that a−1a = ε.

Strings x, y, and z are said to be a prefix, substring, and suffix of string w = xyz,
respectively. A prefix, substring, and suffix of string w are said to be proper if they
are not w. Let Prefix (w) and Suffix (w) be the set of the prefixes and suffixes of string
w, respectively. For set S of strings, let Prefix (S) =

⋃

w∈S Prefix (w).

Definition 1 (Prefix property). A set L of strings is said to satisfy the prefix
property if no string in L is a proper prefix of another string in L.

The i-th symbol of string w is denoted by w[i] for 1 ≤ i ≤ |w|, and the substring
of string w that begins at position i and ends at position j is denoted by w[i..j] for
1 ≤ i ≤ j ≤ |w|. For convenience, let w[i..j] = ε for i > j. For any strings x,w ∈ Σ∗,
let

Begposw(x) = {i | x = w[i..i + |x| − 1]}, and

Endposw(x) = {j | x = w[j − |x| + 1..j]}.

Let D be a set of strings called a dictionary. A factorization of string w w.r.t.
D is a list w1, . . . , wk of strings in D such that w = w1 · · ·wk and wi ∈ D for each

198

Sparse Compact Directed Acyclic Word Graphs

1 ≤ i ≤ k. In the rest of the paper, we assume that D = Σ∗# where # is a special
symbol not belonging to Σ, and that w ∈ D+. Then, a factorization of w w.r.t. D is
always unique, since D clearly satisfies the prefix property because of # not being in
Σ.

For any string w = w1 · · ·wk ∈ D+, let u be any prefix of w. Then we can write
as u = w1 · · ·wℓv with 1 ≤ ℓ < k, where v is a prefix of wℓ+1. For any 1 ≤ i ≤ ℓ,
let ui = wi · · ·wℓv, and for convenience, let uℓ+1 = v and uℓ+2 = ε. Now, we define a
word-oriented subset SuffixD(u) of Suffix (u) as follows:

SuffixD(u) = {ui | 1 ≤ i ≤ ℓ + 2}.

Namely, SuffixD(u) consists only of u, the suffixes of u which immediately follow any
in u, and the empty string ε.

Example 2. Let Σ = {a, b}, D = Σ∗#, w = ab#b#aa#, and u = ab#b#a. Then
SuffixD(u) = {ab#b#a, b#a, a, ε}.

Further, we define set WordposD(u) of the word-starting positions in u, as follows:

WordposD(u) = {|u| − |s| + 1 | s ∈ SuffixD(u) − {ε}}.

Example 3. For the running string u = ab#b#a, WordposD(u) = {1, 4, 6}.

2.2 Equivalence Classes on Strings over D

For set S of integers and integer i, we denote S ⊕ i = {j + i | j ∈ S} and S ⊖ i =
{j − i | j ∈ S}. Let w ∈ D+. For any u ∈ Prefix (SuffixD(w)) and x, y ∈ (Σ ∪ {#})∗,
we define the begin- and end-equivalence relations ≡B

u and ≡E

u , as follow:

x ≡B

u y ⇔ Begposu(x) ∩ WordposD(u) = Begposu(y) ∩ WordposD(u),

x ≡E

u y ⇔ Endposu(x) ∩ (WordposD(u) ⊕ |x| ⊖ 1)

= Endposu(y) ∩ (WordposD(u) ⊕ |y| ⊖ 1).

We note that the above equivalence relations are ‘word-position-sensitive’ versions of
the equivalence relations introduced in [3], where the intersections with WordposD(u)
make them word-position-sensitive. We denote by [x]Bu and [x]Eu the equivalence classes
of x w.r.t. ≡B

u and ≡E

u , respectively.

Proposition 4. All strings that are not in Prefix (SuffixD(u)) form one equivalence
class under ≡B

u (and ≡E

u), called the degenerate class.

Proof. For any x 6∈ Prefix (SuffixD(u)), clearly WordposD(u) = ∅. Thus Begposu(x)∩
WordposD(u) = ∅. Hence, any strings not belonging to Prefix (SuffixD(u)) form one
equivalence class. Similar discussion holds for ≡E

u . ⊓⊔

Proposition 5. For any strings x, y ∈ Prefix (SuffixD(u)), if x ≡B

u y, then either
x ∈ Prefix (y), or vice versa.

Proof. Assume, without loss of generality, that |x| ≤ |y|. Since x ≡B

u y, Begposu(x)∩
WordposD(u) = Begposu(y) ∩ WordposD(u). Let S be this set of positions. For any
i ∈ S, we have that x = u[i..i + |x| − 1] and y = u[i..i + |y| − 1]. Since |x| ≤ |y|,
x ∈ Prefix (y). ⊓⊔

199

Proceedings of the Prague Stringology Conference ’06

Example 6. For the running string u = ab#b#a, [b#a]Bu = {b#a, b#, b}. For any
pair of strings x, y ∈ [b#a]Bu , we have x ∈ Prefix (y) or y ∈ Prefix (x).

Proposition 7. For any strings x, y ∈ Prefix (SuffixD(u)), if x ≡E

u y, then either
x ∈ SuffixD(y), or vice versa.

Proof. Assume, without loss of generality, that |x| ≤ |y|. Since x ≡E

u y, Endposu(x)∩
(WordposD(u)⊕|x|⊖1) = Endposu(y)∩ (WordposD(u)⊕|y|⊖1). Let S be this set of
positions. For any i ∈ S, we have that x = u[i−|x|+1..i] and y = u[i−|y|+1..i]. Since
x ∈ Prefix (u[i − |x| + 1..|u|]), u[i − |x| + 1..|w|] ∈ SuffixD(u), and WordposD(u) =
{|u| − |s| + 1 | s ∈ SuffixD(u) − {ε}}, we have i − |x| + 1 ∈ WordposD(u). Similarly,
i − |y| + 1 ∈ WordposD(u). Since |x| ≤ |y|, we have x ∈ SuffixD(y). ⊓⊔

Example 8. For the running string u = ab#b#a, [ab#b]Eu = {ab#b, b}. Then b ∈
SuffixD(ab#b).

From Propositions 5 and 7, each non-degenerate equivalence class under ≡B

u or
≡E

u has a unique longest member, which is called the representative of the equivalence
class. For any x ∈ Prefix (SuffixD(u)), the representatives of [x]Eu and [x]Bu are denoted

by
u

←−x and
u

−→x , respectively.

For any x ∈ Prefix (SuffixD(u)) such that
u

−→x = xα and
u

←−x = βx with α, β ∈

(Σ ∪ {#})∗, we denote
u

←→x = βxα.

Proposition 9. For any x ∈ Prefix (SuffixD(u)),
u

←→x =

u

←−−

(
u

−→x) =

u

−−→

(
u

←−x).

Proof. Let
u

−→x = xα and
u

←−x = βx with α, β ∈ (Σ ∪ {#})∗. Then,
u

←→x = βxα. Since
u

−→x = xα, we have

x ≡B

u xα ⇔ Begposu(x) ∩ WordposD(u) = Begposu(xα) ∩ WordposD(u)

⇔ (Begposu(x) ⊕ |xα| ⊖ 1) ∩ (WordposD(u) ⊕ |xα| ⊖ 1)

= (Begposu(xα) ⊕ |xα| ⊖ 1) ∩ (WordposD(u) ⊕ |xα| ⊖ 1)

⇔ (Endposu(x) ⊕ |α|) ∩ (WordposD(u) ⊕ |xα| ⊖ 1)

= Endposu(xα) ∩ (WordposD(u) ⊕ |xα| ⊖ 1). (1)

On the other hand, since
u

←−x = βx, we have

x ≡E

u βx ⇔ Endposu(x) ∩ (WordposD(u) ⊕ |x| ⊖ 1)

= Endposu(βx) ∩ (WordposD(u) ⊕ |βx| ⊖ 1)

⇔ (Endposu(x) ⊕ |α|) ∩ (WordposD(u) ⊕ |x| ⊕ |α| ⊖ 1)

= (Endposu(βx) ⊕ |α|) ∩ (WordposD(u) ⊕ |βx| ⊕ |α| ⊖ 1)

⇔ (Endposu(x) ⊕ |α|) ∩ (WordposD(u) ⊕ |xα| ⊖ 1)

= (Endposu(βx) ⊕ |α|) ∩ (WordposD(u) ⊕ |βxα| ⊖ 1). (2)

Let

A = (Endposu(βxα)) ∩ (WordposD(u) ⊕ |βxα| ⊖ 1), and

B = (Endposu(βx) ⊕ |α|) ∩ (WordposD(u) ⊕ |βxα| ⊖ 1)

200

Sparse Compact Directed Acyclic Word Graphs

We show A = B. Since Endposu(βxα) ⊆ (Endposu(βx)⊕ |α|), it is clear that A ⊆ B.
For any i ∈ B, let k = i − |x| − |α| + 1. Then u[k..k + |x| − 1] = x and thus
k ∈ Begposu(x). Let j = i − |βx| − |α| + 1. Then u[j..j + |βx| − 1] = βx. We have
j ∈ WordposD(u) since i ∈ B. By Proposition 7 we have x ∈ SuffixD(βx), and
therefore βx[|β|] = β[|β|] = u[j + |β| − 1] = #. Hence j + |β| ∈ WordposD(u). On
the other hand, j + |β| = i − |βx| − |α| + 1 + |β| = k, thus k ∈ WordposD(u). Since

u[k..k + |x| − 1] = x and
u

−→x = xα, u[k..k + |xα| − 1] = xα. Now we get

u[j..j + |βxα| − 1] = u[j..j + |β| − 1]u[j + |β|..j + |βxα| − 1]

= u[j..j + |β| − 1]u[k..k + |xα| − 1]

= βxα.

Thus i = j + |βxα| − 1 ∈ A, and we obtain B ⊆ A.
From Equations (1) and (2), and A = B, we get xα ≡E

u βxα. It is easy to see that

βxα is the representative of [xα]Eu . Finally,

u

←−−

(
u

−→x) =
u

←−xα = βxα =
u

←→x . Similarly we can

show

u

−−→

(
u

←−x) =
u

←→x . ⊓⊔

3 Sparse Compact Directed Acyclic Word Graphs

In this section we introduce our new text indexing structure, sparse compact directed
acyclic word graphs (SCDAWGs).

3.1 Definitions and Size Bounds

We first give a formal definition of sparse (word) suffix trees.

Definition 10 (Sparse suffix tree). The sparse suffix tree of string w ∈ D+, de-
noted by SSTreeD(w), is a tree (V,E) such that

V = {
w

−→x | x ∈ Prefix (SuffixD(w))},

E =

{

(
w

−→x , aβ,
w

−→xa)

∣

∣

∣

∣

∣

x, xa ∈ Prefix (SuffixD(w)), a ∈ Σ ∪ {#},

β ∈ (Σ ∪ {#})∗, and
w

−→x aβ =
w

−→xa

}

.

Theorem 11 ([1]). For any string w = w1 · · ·wk ∈ D+, SSTreeD(w) has O(k) nodes
and edges.

To prove the above theorem, it suffices to show the two following claims:

Claim. SSTreeD(w) has at most k leaves.

Proof. Recall that w = w1 · · ·wk and that |SuffixD(x) − {ε}| = k. For any x ∈
Prefix (SuffixD(w)) − (SuffixD(w) − {ε}), it follows from Definition 10 that there

exist a symbol a ∈ Σ ∪ {#} and a string β ∈ (Σ ∪ {#})∗ satisfying
w

−→x aβ =
w

−→xa ∈
Prefix (SuffixD(w)). Thus there can be at most k leaves in SSTreeD(w). ⊓⊔

Claim. All internal nodes of SSTreeD(w) are branching (of out-degree at least 2).

201

Proceedings of the Prague Stringology Conference ’06

ba a ## b a b #

b a

#

b #

ba a # b# # a b #

b

b

#

b

a

a

a

a

#

b #

b #

#
a b #

b

b a b

Figure 1. SCDAWGD(w) with w = a#b#a#bab# and D = {a, b}∗# is shown on the upper, and
normal CDAWG(w) is shown on the lower for comparison. Observe that SCDAWGD(w) contains
only suffixes in SuffixD(w), while CDAWG(w) has all the suffixes in Suffix (w).

Proof. Assume for contrary that
w

−→x = x and internal node
w

−→x is not branching, i.e.,

there exists a unique symbol a ∈ Σ ∪ {#} such that Begposw(
w

−→x) = Begposw(
w

−→x · a).

Then we have x ≡B

w xa, which contradicts with the precondition that
w

−→x = x. Thus
all internal nodes of SSTreeD(w) are branching. ⊓⊔

Now we define sparse compact directed acyclic word graphs (SCDAWGs), as fol-
lows.

Definition 12 (Sparse compact directed acyclic word graph). The sparse
compact directed acyclic word graph of string w ∈ D+, denoted by SCDAWGD(w),
is a DAG (V,E) such that

V = {[
w

−→x]Ew | x ∈ Prefix (SuffixD(w))},

E =

{

([
w

−→x]Ew , aβ, [
w

−→xa]Ew)

∣

∣

∣

∣

∣

x, xa ∈ Prefix (SuffixD(w)), a ∈ Σ ∪ {#},

β ∈ (Σ ∪ {#})∗, and
w

−→x aβ =
w

−→xa

}

.

SCDAWGD(w) has single source node [
w

−→ε]Ew = [ε]Ew of in-degree zero, and single sink

node [
w

−→w]Ew = [w]Ew of out-degree zero.

We associate each node [
w

−→x]Ew of SCDAWGD(w) with length([
w

−→x]Ew) = |

w

←−−

(
w

−→x)| =

|
w

←→x |.
Figure 1 shows SCDAWGD(w) with w = a#b#a#bab# and D = {a, b}∗#,

together with normal CDAWG(w) representing all suffixes of w.
Due to the reflexivity of equivalence relations, for any string x, we have x ∈ [x]Ew .

Consequently, from Definitions 10 and 12, and Theorem 11, we obtain the following
theorem regarding the asymptotic size bound of SCDAWGs.

202

Sparse Compact Directed Acyclic Word Graphs

Theorem 13. For any string w = w1 · · ·wk ∈ D+, SCDAWGD(w) has O(k) nodes
and edges.

Notice that SCDAWGD(w) is a minimized version of SSTreeD(w) by the end-
equivalence classes. As a matter of fact, SCDAWGD(w) can be constructed by ap-
plying to SSTreeD(w) the DAG minimization algorithm of [13], in time proportional
to the number of edges in SSTreeD(w). Due to [8], SSTreeD(w) can be constructed in
O(n) time and O(k) space, thus it is possible to build SCDAWGD(w) in O(n) time
and O(k) space. However, this indirect construction wastes extra time and space of
once building SSTreeD(w). In the following section, we present our on-line, linear-
time algorithm that directly constructs SCDAWGD(w) in O(n) time and O(k) space.
Hence our algorithm consumes only linear space in the output size.

4 On-line Construction Algorithm for SCDAWGs

In this section we present our SCDAWG construction algorithm. Our algorithm is on-
line, namely, it sequentially processes the input string w ∈ D+ from left to right, one
by one. To discuss this on-line construction, we extend the definition of SCDAWGD(·)
to any prefix u of w ∈ D+, by replacing string w with its arbitrary prefix u in
Definition 12.

4.1 Suffix Links

In this section we define the suffix links of SCDAWGs. We modify the suffix links of
normal CDAWGs so that they are suitable for constructing SCDAWGs. The tailored
suffix links are essential to the linearity of our SCDAWG construction algorithm.

Let us consider the minimum DFA MD which accepts D = Σ∗#. Then it is easy
to see that MD requires only constant space, with a unique final state (refer to the
left of Figure 2). Let qs and qf be the initial and final states of MD, respectively.
Then we attach MD to the SCDAWG, by replacing qf with the source node of the
SCDAWG. Now we are ready to define the suffix links of SCDAWGs.

Definition 14 (Suffix links of SCDAWGs). For any node [
u

−→x]Eu of SDAWGD(u),

let z be the shortest member of [
u

−→x]Eu .

1. If
u

−→x 6= u and z ∈ Σ∗, the suffix link from node [
u

−→x]Eu goes to the initial state qs of
MD;

2. If
u

−→x 6= u and z ∈ (Σ ∪ {#})+, the suffix link from node [
u

−→x]Eu goes to to node

[y]Eu , where y is the longest string in SuffixD(z) such that y /∈ [
u

−→x]Eu ;

3. Otherwise (If
u

−→x = u), the suffix link from [
u

−→x]Eu is undefined.

The suffix link of the node in Group 3 is undefined, as it is never used in our con-
struction algorithm to be shown later. See Figure 2 showing SCDAWGD(u) and its
suffix links, where u = a#b#a#bab#b.

4.2 Updating SCDAWGD(u) to SCDAWGD(ua)

In what follows, we consider to update SCDAWGD(u) to SCDAWGD(ua) with u, ua ∈
Prefix (w), a ∈ Σ ∪ {#}, and w ∈ D+.

The next proposition describes what happens to Wordpos and Endpos .

203

Proceedings of the Prague Stringology Conference ’06

Σ

ba a ## b a b

b

a

#

b #
Σ

#
1 3 2

b

b

4

a b #
b

a ##
b a b #

b

Figure 2. To the left is the minimum DFA MD accepting dictionary D = Σ∗#. To the right is
SCDAWGD(u) with u = a#b#a#bab#b, where Node 1 is its source node. The suffix links are
displayed by broken arrows. Nodes 1 and 4 are those of Group 1, Nodes 3 is that of Group 2, and
Node 2 is that of Group 3 of Definition 14.

Proposition 15 ([9]). Let w ∈ D+ and u, ua ∈ Prefix (w) with a ∈ Σ ∪ {#}. Then,

WordposD(ua) =

{

WordposD(u) ∪ {|ua|}, if u[|u|] = #;
WordposD(u), otherwise.

Also, for any string x ∈ (Σ ∪ {#})∗,

Endposua(x) =

{

Endposu(x) ∪ {|ua|}, if x ∈ Suffix (ua);
Endposu(x), otherwise.

From here on we consider what happens to the nodes of SCDAWGD(u) when
updated to SCDAWGD(ua).

Proposition 16. Let w ∈ D+. For any u, ua ∈ Prefix (w) with a ∈ Σ ∪ {#}, ≡B

ua

and ≡E

ua are a refinement of ≡B

u and ≡E

u , respectively.

Let lrsD(ua) denote the longest string in SuffixD(ua) ∩ Prefix (SuffixD(u)). Then
we have:

Proposition 17. Let w ∈ D+. For any u, ua ∈ Prefix (w) with a ∈ Σ∪{#}, [ua]Eua =
SuffixD(u) · a − SuffixD(lrsD(ua)).

The above proposition implies that the new sink node [ua]Eua can be created by
extending the incoming edges of the old sink node [u]Eu with symbol a, and by
inserting a new a-labeled edge from each node [s]Eu to the old sink node, where
s ∈ SuffixD(u) − SuffixD(lrsD(ua) · a−1) − [u]Eu .

Locating lrsD(ua) in the SCDAWG can be done according to the following propo-
sition.

Proposition 18. Let w ∈ D+. For any u, ua ∈ Prefix (w) with a ∈ Σ ∪ {#},
lrsD(ua) ∈ SuffixD(lrsD(u)) · a.

The above proposition implies that we can locate lrsD(ua) by checking, for each
t ∈ SuffixD(lrsD(u)), the transitivity from [t]Eu with new symbol a in the SCDAWG,
in the decreasing order of the lengths. When we encounter the first string y ∈
SuffixD(lrsD(u)) such that ya ∈ SuffixD(ua), then ya is lrsD(ua). Locating [t]Eu can
be done efficiently by using suffix links of Definition 14.

204

Sparse Compact Directed Acyclic Word Graphs

u

ss b b## a

i1 i2

s#

Figure 3. We postpone creating a node corresponding to s ∈ SuffixD(u)−SuffixD(lrsD(ua) ·a−1)−
[u]Eu until we get the first symbol a satisfying a 6= b = u[i+1] for any i ∈ Endposu(s)∩(WordposD(u)⊕
|s| ⊖ 1).

Creating new nodes. While searching for lrsD(ua), due to Proposition 17, we
create a new a-labeled edge from the nodes corresponding to strings s ∈ SuffixD(u)−
SuffixD(lrsD(ua) ·a−1)− [u]Eu . However, the following proposition suggests a difficulty
of linear time maintenance of those nodes at each stage of updating the SCDAWG.

Proposition 19. Let w ∈ D+ and u ∈ Prefix (w). For any t ∈ SuffixD(u),
u

−→
t = t.

What is worse, it is possible that
ua

−→
t 6= t. Thus if we explicitly create a node for every

s ∈ SuffixD(u)−SuffixD(lrsD(ua)·a−1)−[u]Eu for each u ∈ Prefix (w), it can take O(n2)
time in total. To avoid this, we ‘postpone’ creating such a node until we get the first
symbol a satisfying a 6= b = u[i+1] for any i ∈ Endposu(s)∩ (WordposD(u)⊕|s|⊖1).
(see Figure 3.) This timing coincides with when we insert a new a-labeled edge to the
old sink node as mentioned above.

Due to Proposition 7, the new node [s]Eua can contain more than one string from
SuffixD(s). The equivalence test can be performed according to Lemma 21 given
below. Before that, we show Lemma 20 which supports Lemma 21.

Lemma 20. Let w ∈ D+, u ∈ Prefix (w), and x ∈ Prefix (SuffixD(u)). Let
u

−→x = z1.

For any i ∈ Begposz1
(x) such that i > 1, we have z1[i−1] 6= #. Similarly, let

u

←−x = z2.
For any j ∈ Begposz2

(x) such that j ≤ |z2| − |x|, we have z2[j − 1] 6= #.

Proof. Assume for contrary that z1[i − 1] = #. Then, Begposu(x) ∩ WordposD(u) =
(Begposu(z1) ∪ (Begposu(z1) ⊕ (i − 1)) ∩ WordposD(u). Since i > 1, Begposu(z1) ⊕
(i − 1) 6= Begposu(z1). Moreover, Begposu(z1) ⊕ (i − 1) ⊆ WordposD(u). Thus,
(Begposu(z1)∪ (Begposu(z1)⊕ (i− 1))∩WordposD(u) 6= Begposu(z1)∩WordposD(u),
which implies that Begposu(x) ∩ WordposD(u) 6= Begposu(z1) ∩ WordposD(u). How-

ever, this contradicts with x ≡B

u z1. Similar arguments hold for
u

←−x = z2. ⊓⊔

Lemma 21. Let w ∈ D+ and u ∈ Prefix (w). For any x, y ∈ Prefix (SuffixD(u)) such
that y ∈ SuffixD(x),

x ≡E

u y ⇔ [
u

−→x]Eu = [
u

−→y]Eu .

Proof. If x ≡E

u y, then
u

←−x =
u

←−y . By Proposition 9,

u

←−−

(
u

−→x) =

u

−−→

(
u

←−x) and

u

←−−

(
u

−→y) =

u

−−→

(
u

←−y). Thus

we get

u

←−−

(
u

−→x) =

u

←−−

(
u

−→y), which implies that [
u

−→x]Eu = [
u

−→y]Eu .

Now suppose [
u

−→x]Eu = [
u

−→y]Eu . Let
u

−→x = xα and
u

←−x = βx for some strings α, β ∈

(Σ ∪ {#})∗. Let z =
u

←→x . Then z = βxα by definition. Since y ∈ SuffixD(x), there

205

Proceedings of the Prague Stringology Conference ’06

ba a ## b

b

#

Σ

#
1

a ## b

2

ba a ## b a

b

a

#

Σ

#
1 3 2

a #
b

a

ba a ## b a

b a

#

Σ

#
1 3 2

Figure 4. A new node is created in the update of SCDAWGD(u) to SCDAWGD(ua), where u =
a#b#a#b. The stars represent the location from which we check a transitivity with a new symbol
a. When the transitivity check failed on an edge (namely, not right on a node), we divide the edge
into two at the check point (where the star lies) and create a new node there (Node 3 in this figure)
together with a new edge labeled with the new character leading to the sink node. Assume that
the next transitivity check point also lies on an edge. We apply Lemma 21 and if it is the case, we
‘shorten’ the edge till the check point and merge this shortened edge to the above created node, as
seen in the conversion from the second graph to the third one of this figure.

exists some string γ ∈ (Σ ∪ {#})∗ such that γy = x. Because
u

←→x =
u

←→y , z = βγyα.

By Lemma 20,
u

−→y = yα and
u

←−y = βγy. Hence,

Endposu(x) ∩ (WordposD(u) ⊕ |x| ⊖ 1)

= Endposu(βx) ∩ (WordposD(u) ⊕ |βx| ⊖ 1)

= Endposu(βγy) ∩ (WordposD(u) ⊕ |βγy| ⊖ 1)

= Endposu(y) ∩ (WordposD(u) ⊕ |y| ⊖ 1),

which implies that x ≡E

u y. ⊓⊔

Figure 4 displays how a new node is created.

Splitting a node. Lastly, we remark that there is a possibility that a certain node
of SCDAWGD(u) can be split into two nodes in SCDAWGD(ua), as shown in the
following lemma that has inherently been shown in [9].

Lemma 22. Let w ∈ D+, and let u, ua ∈ Prefix (w) with a ∈ Σ ∪ {#}. Let z =
lrsD(ua). Then, for any x ∈ Prefix (SuffixD(u)), we have

[x]Eu =

{

[
u

←→x]Eua ∪ [z]Eua, if z ∈ [x]Eu and z 6=
u

←→x ;
[x]Eua, otherwise.

206

Sparse Compact Directed Acyclic Word Graphs

ba a ## b a b #

b a

#

b #

Σ

#
1 3 2

ba a ## b a b #

b

a

#

b #
Σ

#
1 3 2

b

b

4

a b #
b

a ##
b a b #

b

Figure 5. Illustration for node splitting. Node 3 is split in the update of SDAWGD(u) to
SCDAWGD(ub) with u = a#b#a#bab#. The stars represent the location from which we check
a transitivity with a new symbol.

To node [x]Eu such that z ∈ [x]Eu , we examine whether z =
u

←→x or not by checking

the length of
u

←→x and z, as follows. Consider edge ([y]Eu , α, [x]Eu) such that
u

←→y · α = z.
Then, it is easy to see that

z =
u

←→x ⇔ |
u

←→y · α| = |
u

←→x | ⇔ |
u

←→y | + |α| = |
u

←→x | ⇔ length([y]Eu) + |α| = length([x]Eu).

Setting the length of the initial state qs of MD to be −1, no contradiction occurs even
in case that z = ε.

See Figure 5 for a concrete example of node splitting.

Pseudo Code. A pseudo code of our on-line algorithm to build SCDAWGs is shown
in Figures 6 and 7. Any edge label α ∈ (Σ∪{#})+ is implemented as an ordered pair
(i, j) of positions such that u[i..j] = α, in order to implement the SCDAWG with
O(k) space. To neglect to extend the existing in-coming edges of sink node (refer to
Proposition 17), we implement by (i,∞) the label of any edge leading to the sink
node. This is the same idea as in [14].

For each i = 1, . . . , n, we call function Update which converts SCDAWGD(w[1..i−
1]) to SCDAWGD(w[1..i]) and returns the location of lrsD(w[1..i]) by pair (s, k). Here,
s is the lowest node in the path that spells out lrsD(w[1..i]) from the source node.
Let lrsD(w[1..i]) = xy such that x belongs to the equivalence class of node s and y is
the rest. Then, k is the integer such that w[k : i] = y.

Function CheckEndPoint returns true if the location indicated by triple (s, (k, i))
corresponds to lrsD(w[1..i]), and false otherwise. Due to Proposition 17, in the while
loop of function Update, we create new edges (r, (i,∞), sink). This is continuously
done until finding lrsD(w[1..i]), according to Proposition 18. Consider the case that
(s, (k, i)) lies on an edge, and that we have created a new node r in the first else
condition of the while loop. Due to Proposition 21, when the second if condition is
satisfied, we shorten the edge and redirect it to node r . Note that, since s′ is initially
set to nil, this second if condition can be satisfied only after the else condition is

207

Proceedings of the Prague Stringology Conference ’06

Input: w = w[1..n] ∈ D+ and MD with initial state qs and final state qf .
Output: SCDAWGD(w).
{

/* We assume Σ = {w[−1], w[−2], . . . , w[−m]} */.
/* Replace the edge labels of MD with appropriate integer pairs */.
length(qf) = 0; length(qs) = −1; length(sink) = ∞;
source = qf ; link(source) = qs; link(sink) = nil;
(s, k) = (source, 1);
for (i = 1; i ≤ n; i++) (s, k) = Update(s, (k, i));

}

(node,integer)-pair Update(s, (k, i)) {
oldr = nil; s′ = nil;
while (CheckEndPoint(s, (k, i − 1), w[i]) == false) {

if (k ≤ i − 1) { /* (s, (k, i − 1)) is implicit. */
if (s′ == Extension(s, (k, p − 1))) {

let (s, (k′, p′), s′) be the w[k]-edge from s;
replace the edge by edge (s, (k′, k′ + p − k − 1), r);
(s, k) = Canonize(link(s), (k, p − 1));
continue;

}
else {

s′ = Extension(s, (k, p − 1));
r = CreateNode(s, (k, p − 1));

}
} else r = s; /* (s, (k, i − 1)) is explicit. */
create new edge (r, (i,∞), sink);
if (oldr 6= nil) link(oldr) = r;
oldr = r;
(s, k) = Canonize(link(s), (k, i − 1));

}
if (oldr 6= nil) link(oldr) = s;
return SplitNode(s, (k, i));

}

Figure 6. Main routine and function Update of our SCDAWG construction algorithm. For any node
s, link(s) denotes the node to which the suffix link of s goes. By ‘implicit’ we mean that the location
is on an edge, and by ‘explicit’ we mean that it is on a node.

208

Sparse Compact Directed Acyclic Word Graphs

boolean CheckEndPoint(s, (k, p), c) {
if (k ≤ p) { /* (s, (k, p)) is implicit. */

let (s, (k′, p′), s′) be the w[k]-edge from s;
return (c == w[k′ + p − k + 1]);

} else return (there is a c-edge from s);
}

node Extension(s, (k, p)) {
if (k > p) return s; /* (s, (k, p)) is explicit. */
find the w[k]-edge (s, (k′, p′), s′) from s;
return s′;

}

(node,integer)-pair Canonize(s, (k, p)) {
if (k > p) return (s, k); /* (s, (k, p)) is explicit. */
find the w[k]-edge (s, (k′, p′, s′) from s;
while (p′ − k′ ≤ p − k) {

k = k + p′ − k′ + 1;
s = s′;
if (k ≤ p) find the w[k]-edge (s, (k′, p′), s′) from s;

}
return (s, k);

}

node CreateNode(s, (k, p)) {
let (s, (k′, p′), s′) be the w[k]-edge from s;
create new node r;
replace the edge by edges (s, (k′, k′ + p − k), r) and (r, (k′ + p − k + 1, p′), s′);
length(r) = length(s) + (p − k + 1);
return r;

}

(node,integer)-pair SplitNode(s, (k, p)) {
(s′, k′) = Canonize(s, (k, p));
if (k′ ≤ p) return (s′, k′); /* (s′, (k′, p)) is implicit. */
/* (s′, (k′, p)) is explicit. */
if (length(s′) == length(s) + (p − k + 1)) return (s′, k′);
create node r′ as a duplication of s′ with the out-going edges;
link(r′) = link(s′); link(s′) = r′;
length(r′) = length(s) + (p − k + 1);
do {

replace the w[k]-edge from s to s′ by edge (s, (k, p), r′);
(s, k) = Canonize(link(s), (k, p − 1));

} while ((s′, k′) = Canonize(s, (k, p)));
return (r′, p + 1);

}

Figure 7. The other functions of our on-line SCDAWG construction algorithm. All these functions
are identical to those in [7].

209

Proceedings of the Prague Stringology Conference ’06

once satisfied and s′ gets a non-nil value. After creating new edge (r, (i,∞), sink),
we traverse the suffix link of node s to find lrsD(w[1..i]).

After the insertion of all the new edges, we call function SplitNode that splits the
node corresponding to lrsD(w[1..i]) into two nodes, when needed. This operation is
due to Lemma 22.

We remark that the only difference between our algorithm and the on-line algo-
rithm of [7] for constructing normal CDAWGs is the initialization steps of the main
routine where we set the source of the SCDAWG to the final state qf of MD and the
suffix link of the source to the initial state qs of MD. These simple modifications make
the proposed algorithm construct SCDAWGs together with their suffix links.

For the correctness of the algorithm, we attach an end-marker $ to any input string
w ∈ D+, which appears nowhere in w. Possible problems that may be caused by the
‘delay’ of creating new nodes, can be cleared by this end-marker, since $ appears
nowhere in w.

Theorem 23. For any string w ∈ D+, the algorithm of Figures 6 and 7 correctly
constructs SCDAWGD(w$).

Now the only remaining matter is the time complexity of the algorithm. The
following theorem can be proven by the same idea as the linearity proof of the normal
CDAWG construction algorithm in [7].

Theorem 24. For any w ∈ D+ such that w = w1 · · ·wk and |w| = n, the algorithm
of Figures 6 and 7 runs in O(n) time using O(k) space.

5 Conclusions and Open Problems

In this paper we introduced a new text indexing structure, sparse compact directed
acyclic word graphs (SCDAWGs) for strings w = w1 · · ·wk over dictionary D = Σ∗#.
We showed that SCDAWGs require only O(k) space and are strictly smaller than
sparse (word) suffix trees. Furthermore, we presented an on-line algorithm that builds
SCDAWGs in O(n) time, where n = |w|. The proposed algorithm correctly builds
SCDAWGs with the help of the minimum DFA MD accepting D, and the tailored
suffix links. SCDAWGs are expected to become a space-economical alternative to
sparse suffix trees in application areas such as natural language processing, biological
sequence analysis, etc.

Here are some open problems regarding sparse text indexing structures:

1. Exact numbers of nodes and edges of SCDAWGs. Being a tree with k leaves and
only branching internal nodes, any sparse suffix tree can have at most 2k−1 nodes
and 2k − 2 edges. Thus, it is guaranteed that any SCDAWG has less nodes and
edges than these.

2. Would it be possible to construct sparse suffix arrays efficiently? Sparse suffix
arrays can be obtained from the leaves of the corresponding sparse suffix trees,
but is it possible to build sparse suffix arrays directly, and in O(n) time with O(k)
space?

210

Sparse Compact Directed Acyclic Word Graphs

References

[1] A. Andersson, N. J. Larsson, and K. Swanson: Suffix trees on words. Algorithmica, 23(3)
1999, pp. 246–260.

[2] H. Bannai, S. Inenaga, A. Shinohara, M. Takeda, and S. Miyano: Efficiently find-
ing regulatory elements using correlation with gene expression. Journal of Bioinformatics and
Computational Biology, 2(2) 2004, pp. 273–288.

[3] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and J. Seiferas:
The smallest automaton recognizing the subwords of a text. Theoretical Computer Science, 40
1985, pp. 31–55.

[4] A. Blumer, J. Blumer, D. Haussler, R. McConnell, and A. Ehrenfeucht: Complete
inverted files for efficient text retrieval and analysis. Journal of the ACM, 34(3) 1987, pp. 578–
595.

[5] B. Dorohonceanu and C. G. Nevill-Manning: Accelerating protein classification using
suffix trees, in Proc. 8th International Conference on Intelligent Systems for Molecular Biology
(ISMB’00), AAAI Press, 2000, pp. 128–133.

[6] S. Inenaga, T. Funamoto, M. Takeda, and A. Shinohara: Linear-time off-line text
compression by longest-first substitution, in Proc. 10th International Symp. on String Process-
ing and Information Retrieval (SPIRE’03), vol. 2857 of Lecture Notes in Computer Science,
Springer-Verlag, 2003, pp. 137–152.

[7] S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, S. Arikawa, G. Mauri, and

G. Pavesi: On-line construction of compact directed acyclic word graphs. Discrete Applied
Mathematics, 146(2) 2005, pp. 156–179.

[8] S. Inenaga and M. Takeda: On-line linear-time construction of word suffix trees, in Proc.
17th Ann. Symp. on Combinatorial Pattern Matching (CPM’06), vol. 4009 of Lecture Notes in
Computer Science, Springer-Verlag, 2006, pp. 60–71.

[9] S. Inenaga and M. Takeda: Sparse directed acyclic word graphs, in Proc. 13th International
Symp. on String Processing and Information Retrieval (SPIRE’06), Lecture Notes in Computer
Science, Springer-Verlag, 2006, To appear.

[10] N. J. Larsson: Extended application of suffix trees to data compression, in Proc. Data Com-
pression Conference ’96 (DCC’96), IEEE Computer Society, 1996, pp. 190–199.

[11] L. Marsan and M.-F. Sagot: Extracting structured motifs using a suffix tree - algorithms and
application to promoter consensus identification, in Proc. 4th Annual International Conference
on Computational Molecular Biology (RECOMB’00), ACM, 2000, pp. 210–219.

[12] J. C. Na, A. Apostolico, C. S. Iliopoulos, and K. Park: Truncated suffix trees and their
application to data compression. Theoretical Computer Science, 304(1–3) 2003, pp. 87–101.

[13] D. Revuz: Minimisation of acyclic deterministic automata in linear time. Theoretical Com-
puter Science, 92(1) 1992, pp. 181–189.

[14] E. Ukkonen: On-line construction of suffix trees. Algorithmica, 14(3) 1995, pp. 249–260.

211

