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Abstract. The Compressed Delta Encoding paradigm is introduced, i.e., delta encod-
ing directly in two given compressed files without decompressing. Here we explore the
case where the two given files are compressed using LZW, and devise the theoretical
framework for modeling delta encoding of compressed files. In practice, although work-
ing on the compressed versions in processing time proportional to the compressed files,
our target file is much smaller than the corresponding LZW form.
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1 Introduction

Delta compression is a main field in data compression research. In this paper we
introduce a new model of differencing encoding, that of Compressed Differencing. In
this model we are given two files, at least one in its compressed form. The goal is to
create a third file which is the differencing file (i.e. the delta file) of the two original

files, in time proportional to the size of the input, that is, without decompressing the
compressed files.

More formally, let S be the source file and T be the target file (probably two
versions of the same file). The goal is to create a new file ∆(S, T ) which is the
differencing file of S and T . If both S and T are given in their compressed form, we
call it the Full Compressed Differencing Problem. If one of the files is given in its
compressed form we call it the Semi Compressed Differencing Problem. If none of the
files are compressed, it refers to the original problem of differencing.

One motivation for this problem is when the encoder is interested in transmitting
the compressed target file when both encoder and decoder have the source file in its
compressed or uncompressed form. Creating the Delta file can reduce the transmitted
file’s size and therefore the number of I/O operations. Working on the compressed
given form, the encoder can save memory space as well as processing time. Another
motivation is detecting resemblance among a set of files when they are all given in
their compressed form without decompressing them, perhaps saving time and space.
When the size of the difference file is much less than the target file, it indicates
resemblance.

Traditional differencing algorithms compress data by finding common strings be-
tween two versions of a file and replacing substrings by a copy reference. The resulting
file is often called a delta file. Two known approaches to differencing are the Longest
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Common Sub-sequence (LCS) method and the edit-distance method. LCS algorithms
find the longest common subsequence between two strings, and do not necessarily de-
tect the minimum set of changes. Edit distance algorithms find the shortest sequence
of edits (e.g., insert, delete, or change character) to convert one string to another. One
application which uses the LCS approach is the UNIX diff utility, which lists changes
between two files in a line by line summary, where each insertion and deletion involves
only complete lines. Line oriented algorithms, however, perform poorly on files which
are not necessarily partitioned into lines, such as images and object files.

Tichy [16] uses edit-distance techniques for differencing and considers the string to
string correction problem with block moves, where the problem is to find the minimal
covering set of T with respect to S such that every symbol of T that also appears in
S is included in exactly one block move. Weiner [17] uses a suffix tree for a linear time
and space left-to-right copy/insert algorithm, that repeatedly outputs a copy com-
mand of the longest copy from S, or an insert command when no copy can be found.
This left-to-right greedy approach is optimal (e.g., Burns and Long [5], Storer and
Szymanski [15]). Hunt, Vo, and Tichy [11] compute a delta file by using the reference
file as part of the dictionary to LZ-compress the target file. Their results indicate
that delta compression algorithms based on LZ techniques significantly outperform
LCS based algorithms in terms of compression performance. Factor, Sheinwald, and
Yassour [7] employ Lempel-Ziv based compression to compress S with respect to a
collection of shared files that resemble S; resemblance is indicated by files being of
same type and/or produced by the same vendor, etc. At first the extended dictionary
includes all shared data. They achieve better compression by reducing the set of all
shared files to only the relevant subset. Based on these researches we construct the
delta file using edit distance techniques including insert and copy commands. We also
reference the already compressed part of the target file for better compression.

Ajtai, Burns, Fagin, and Long [2] and Burns and Long [5] present several differen-
tial compression algorithms for when memory available is much smaller than S and
T , and present an algorithm named checkpointing that employs hashing to fit what
they call footprints of substrings of S into memory; matching substrings are found
by looking only at their footprints and extending the original substrings forwards
and backwards (to reduce memory, they may use only a subset of the footprints).
Heckel [10] presents a linear time algorithm for detecting block moves using Longest
Common Subsequences techniques. One of his motivations was the comparison of two
versions of a source program or other file in order to display the differences. Agarwal
et al. [1] speed up differential compression with hashing techniques and additional
data structures such as suffix arrays. In our work we use tries in order to detect
matches.

Burns and Long [6] achieve in-place reconstruction of standard delta files by elim-
inating write before read conflicts, where the encoder has specified a copy from a
file region where new file data has already been written. Shapira and Storer [14] also
study in-place differential file compression. The non in-place version of this problem
is known to be NP-Hard, and they present a constant factor approximation algo-
rithm for this problem, which is based on a simple sliding window data compressor.
Motivated by the constant bound approximation factor, they modify the algorithm
so that it is suitable for in-place decoding and present the In-Place Sliding Window
Algorithm (IPSW). The advantage of the IPSW approach is simplicity and speed,
achieved in-place without additional memory, with compression that compares well
with existing methods (both in-place and not in-place). Our delta file construction
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algorithm is not necessarily in place, but minor changes (such as limiting the offset’s
size) can result in an in place version.

If both files, S and T , are compressed using Huffman coding (or any other static
method), generating the differencing file can be done in the traditional way (perhaps
a sliding window) directly on the compressed files. The delta encoding is at least
as efficient as the delta encoding generated on the original files S and T . Common
substrings of S and T are still common substrings of the compressed versions of S

and T . However the reverse is not necessarily true, since the common substrings can
exceed the codeword boundaries. For example, consider the alphabet Σ = {a, b, c}
and the corresponding Huffman code {00, 01, 1}. Let S =abab and T =cbaa, then
E(S) =00010001 and E(T ) =1010000. A common substring of S and T is ba which
refers to the substring 0100 in the compressed file. However, this substring can be
extended in the compressed form to include also the following bit, as the LCS is 01000
in this case.

The problem is less trivial when using adaptive compression methods such as
Lempel-Ziv compressions. The encoding of a substring is determined by the data, and
depends on its location. For this reason the same substring is not necessarily encoded
in the same way throughout the text. Our goal is to identify reoccurring substrings in
the compressed form so that we can replace them by pointers to previous occurrences.
In this paper we explore the compressed differencing problem on LZW compressed files
and devise a model for constructing delta encodings on compressed files. In Section 2
we perform Semi Compressed Differencing using compressed pattern matching, where
the source file is encoded using the corresponding compression method. In Section 3
we present an optimal algorithm in terms of processing time for the Semi and Full
versions of the compressed differencing problem using tries.

2 Delta encoding in compressed files using compressed

pattern matching

Many papers have been written in the area of compressed pattern matching, i.e.
performing pattern matching on the compressed form of the file. Amir, Benson and
Farach [4] propose a pattern matching algorithm in LZW compressed files which
runs in O(n + m2) processing time or O(n log m + m), where n is the size of the
compressed text and m is the length of the pattern. Kida et al. [12], present an
algorithm for finding all occurrences of multiple patterns in LZW compressed texts.
Their algorithm simulates the Aho-Chorasick pattern matching machine, and runs in
O(n + m2 + r) processing time, where r is the number of pattern occurrences.

Compressed pattern matching was also studied in [9, 8, 13] and in many others.
In this section we use any compressed pattern matching algorithm to perform com-
pressed differencing using the same compression method. Given a file T and a com-
pressed file E(S), our goal is to present T as a sequence of pointers and individual
characters. The pointers point to substrings that either occur in S, or previously
occurred in T . This can be done by processing T from left to right and repeatedly
finding the longest match between the incoming text and either the text of S, or
the text to the left of the current position in T itself; the matching string is then
replaced by a pointer, or, if a match of two or more characters cannot be found, a
single character of the incoming text is output.

The input of any given compressed pattern matching algorithm is a specific pattern
P we are interested in searching for. Since we are interested in locating the longest
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possible match at the current position, we only know the position the pattern starts
with but not the one it ends with. A naive algorithm can, therefore, try to locate
all substrings of T starting at the current position by concatenating the following
character to the pattern each time a match in S or in the already scanned part of T

can still be found. A formal algorithm is given in Figure 1.

We use u to denote the length of the uncompressed file. Let cpm(P, E(S)) denote
any compressed pattern matching algorithm for matching a given pattern P in the
compressed file E(S). It returns the position of the (last) occurrence of P in the
original text S, and 0 if such location is not found. Similarly, pm(P, T ) denotes any
(standard, non-compressed) pattern matching algorithm for matching a given pattern
P in T , which returns the position of the (last) occurrence of P in T , and 0 if no such
location is found. If the match between the pattern starting at the current position
and the compressed form of S or the previous scanned part of T can not be extended,
we output the match we have already found. If this longest match is only of a single
character we output the character at the current position, and advance the position
in T by one.

1 i ←− 1
2 while i ≤ u do

{
2.1 P ←− Ti

2.2 j ←− 0
2.3 while i + j ≤ u and

(pos1 ←− cpm(P, E(S)) 6= 0 or pos2 ←− pm(P, T1 · · ·Ti−1) 6= 0)
2.3.1 j ←− j + 1
2.3.2 P ←− P · Ti+j // concatenate the next character
2.4 if j = 0 // no match was found
2.4.1 output Ti

2.5 elseif pos1 6= 0 //output a pointer to S

2.5.1 output a pointer (pos1, j)
2.6 else // output a pointer to T

2.6.1 output a pointer (pos2, j)
2.7 i ← i + j + 1

}

Figure 1. Solving the Semi Compressed Differencing problem using Compressed Pattern Matching

For analyzing the processing time of the naive algorithm presented in Figure 1,
let us assume that the compressed pattern matching algorithm is optimal in terms
of processing time. By the definition of Amir and Benson [3] of optimal compressed
matching algorithms the running time is O(n + m), where n is the size of the com-
pressed text and m is the length of the pattern. Thus the total running time of the
algorithm presented in Figure 1 is O(u(n+m)), even for optimal compressed pattern
matching algorithms. Our goal is, therefore, to reduce the processing time. In the
following chapter we concentrate on differencing in LZW files.
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3 Delta Encoding in LZW Files

The LZW algorithm by Welch [18] is a common compression technique which is used
for instance by the compress command of UNIX. The LZW algorithm parses the
text into phrases and replaces them by pointers to a dictionary trie. The nodes of
the trie are labeled by characters of the alphabet, and the string associated with
each node is the concatenation of the characters on the path going from the root
down to that node. The trie initially consists only of all the individual characters of
the alphabet. At each stage, the algorithm looks for the longest match between the
string starting at the current position and the previously scanned text. Since the trie
includes the individual characters, there is always a possible match. Once the longest
match has been found, the dictionary trie is updated to include a node corresponding
to the string obtained by concatenating the matched characters with the following
character in the text.

3.1 Semi Compressed Delta Encoding

1 construct the trie of E(S)
2 i ←− 1
3 while i ≤ u

{
3.1 P ←− TiTi+1...Tu

3.2 Starting at the root, traverse the trie using P

3.3 When a leaf v is reached
3.3.1 ℓ ←− depth of v in trie (= length of matching prefix)
3.3.2 output the position in S corresponding to v

3.4 i ←− i + ℓ

}

Figure 2. Semi Compressed Differencing algorithm for LZW compressed files

During LZW decompression a trie identical to that of the LZW compression is
constructed. Although the LZW decompression algorithm takes linear time in the
size of the original file, if the reconstructed file is not needed, the construction of the
dictionary trie can be done in time proportional to the size of the compressed file [4,
18].

Figure 2 presents an improved algorithm for constructing the delta file of the
compressed file E(S) and a given file T . The algorithm constructs the dictionary trie
corresponding to E(S). Starting from the root, the trie is traversed according to the
characters read from T until a leaf is reached. The position of the string corresponding
to the leaf is then output; this information has been kept in the nodes of the trie during
construction. The prefix of T corresponding to the matched string is truncated, and
traversing the trie continues with the remaining part of T starting again from the
root. Since the trie is initialized with nodes corresponding to all the characters of
the alphabet, outputting the positions of these nodes to the delta file corresponds to
inserting individual characters.
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The processing time of this algorithm is O(|E(S)|+ |T |), which is linear in the size
of the input. In order to improve the compression performance, we can add pointers
to the portion of T that has already been processed. This can be done by constructing
the trie for T in addition to that of S, as shown in the algorithm for full compressed
delta files of the next sub-section.

3.2 Full Compressed Delta Encoding

In this section we present a linear time algorithm for the Full Compressed Delta
Encoding problem. Figure 3 presents the algorithm for constructing the delta file of
S and T given E(S) and E(T ). It constructs the dictionary trie of S recording in the
node corresponding to the string x, a triplet (pos, len, k), where pos is the starting
position of the last occurrence of x, len is the length of x (the depth of the node in
the trie), and k is the first character of x. In addition, each node of the trie records
the corresponding index in the LZW list, indicating the order in which the nodes
were created; this index is also the codeword corresponding to that node in the LZW
encoding.

Let Dictionary[cw] be a function returning a pointer to the node in the trie
corresponding to codeword cw. Since the original file T is not needed, we construct
the trie of T in parallel to traversing the trie of S. New nodes are introduced during
this phase of the algorithm when substrings of T correspond to nodes that are not
present in the trie of S. When adding or updating a node (recording the position in
T and changing the corresponding codeword), the algorithm outputs the following
to the delta file, depending on whether the node did exist before or not. If it is an
existing node, the variables pos and len stored in it are output to the delta file; if the
node is a newly created one, then the variables pos and len stored in the parent of
this node are output. The ordered pair (pos, len) can refer to a substring of either S

or T , depending on the last update of the output node.
The variable flag indicates whether the character k, the first character of the

string corresponding to the current codeword, was already written to the delta file in
the preceding stage. If so, we should eliminate k from the string corresponding to the
current pointer by changing the (pos, len) pair to be emitted to (pos+1, len−1), that
is, advancing the start position of the string to be copied by 1, while shortening the
length of this string by 1. The processing time of this algorithm is O(|E(S)|+ |E(T )|),
which is again linear in the size of the input.

To improve the compression performance of the delta file, we can check whether
each ordered pair of the form (position, length) can be combined with its previous
ordered pair, i.e., if two consecutive ordered pairs are of the form (i, ℓ1) and (i+ℓ1, ℓ2)
where i denotes a position in S or T and ℓ1 and ℓ2 denote lengths, we combine them
into a single ordered pair (i, ℓ1+ℓ2). The combined ordered pair can then be combined
with successive ordered pairs.

Consider the following example: S =abccbaaabccba, T =ccbbabccbabccbba. Ap-
plying LZW we get that E(S) =1233219571 and E(T ) =33221247957. The dictionary
trie of E(S) and the combined dictionary of E(S) and E(T ) are given in the following
figures. In the combined trie, dotted nodes indicate new nodes that were introduced
during the parsing of E(T ). Bold numbers represent data that was updated during
the parsing of E(T ), and therefore corresponds to positions in T .

We get that∆(S, T ) = 〈3, 2〉〈5, 1〉〈5, 2〉〈2, 1〉〈3, 1〉(2, 1)(4, 2)〈9, 3〉(3, 1)(4, 2), where
pointers to S are delimited with brackets, and pointers to T with parentheses. Two
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1 construct the trie of E(S)
2 flag ←− 0 // output character k

3 counter ←− 1 // position in T

4 input oldcw from E(T )
5 while oldcw 6= NULL // still processing E(T )

{
5.1 input cw from E(T )
5.2 node ←− Dictionary[oldcw]
5.3 if (Dictionary[cw] 6= NULL)
5.3.1 k ←− first character of string corresponding to Dictionary[cw]
5.4 else

5.4.1 k ←− first character of string corresponding to node

5.5 if ((node has a child k) and (cw 6= NULL) )
5.5.1 output (pos + flag, len − flag) corresponding to child k of node

5.5.2 flag ←− 1
5.6 else

5.6.1 output (pos + flag, len − flag) corresponding to node

5.6.2 create a new child of node corresponding to k

5.6.3 flag ←− 0
5.7 pos of child k of node ←− counter

5.8 oldcw ←− cw

5.9 counter ←− counter + len − flag

}

Figure 3. Full Compressed Differencing algorithm for LZW compressed files
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Figure 4. The Dictionary Trie for E(S)

ordered pairs can be combined thus ∆(S, T ) = 〈3, 3〉〈5, 2〉〈2, 2〉c(4, 2)〈9, 3〉b(4, 2). In
this stage ordered pairs of length 1 are translated to the corresponding character.

The drawback of the above algorithm is that each codeword of the compressed
file T corresponds to an ordered pair (or a single character) in the delta file. Thus
relative to LZW, the only savings in compression is achieved by combining ordered
pairs, leaving the performance still similar to that of LZW. In fact, the limitation of
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Figure 5. The Combined Dictionary Trie for E(S) and E(T )

adhering to a strict use of the LZW compressed form of T in full compressed delta
encoding, is that it cannot take advantage of the similarity between S and T , which
might void the very basis of the applicability of differential compression.

The algorithm presented in Figure 3 constructs the trie of T after the construction
of the trie of S has been completed, recording at each node of the trie information
about the last occurrence of the corresponding string. However, it might be the case
that at the beginning of the compressed file of T we are interested in information about
earlier occurrences of that string in S, which have already been overwritten with later
information. To improve that, we allowed various degrees of partial decoding. That
is, the construction of the tries of S and T is done in parallel.

Partial decoding of degree d means alternatingly treating d codewords of S and
then d codewords of T . Using this approach, we increase the probability, for syn-
chronized files with long matches, that a codeword of the compressed file of T will
refer to a node in the combined trie of S and T that corresponds to a substring of
a long match. We then try to extend this match forwards while performing partial
decoding. In addition to the triplet (pos, len, k) and the pointer into the original file
that are stored in each node, we also add a pointer to the location in the compressed

file of the corresponding codeword. When a match is detected, that is, when a node
is reached in the combined trie that refers to a substring of S and T , we retrieve its
corresponding location in the compressed file S and decompress both S and T from
that point forwards, as long as the match can be extended. For highly similar files,
we can thus get matches that are much longer than the limit imposed by the depth
of the original LZW trie of S.

Preliminary tests with these variants gave encouraging results. For example, using
the executable file xfig.3.2.1.exe as source file S to compress the next version
xfig.3.2.2.exe, playing the role of T , the resulting delta file was smaller than 3K,
whereas the original size of T was 812K, Gzip would reduce that only to 325K, and
LZW, the method on which the delta encoding has been applied here, would yield a file
of size 497K. The coding used was a combination of different Huffman codes for the
characters, the offsets and the lengths. Non-compressed delta encoding could achieve
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even better results, but loose the advantage of working directly with the compressed
files.

4 Future Work

Our exposition here has been mainly theoretical, presenting optimal algorithms (in
the sense defined in [3]) for constructing delta files from LZW compressed data. We
intend to extend these techniques also to LZ77 based compression, which resembles
more to the basic delta encoding scheme.
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