
Using Alignment for Multilingual Text

Compression

Ehud S. Conley and Shmuel T. Klein

Department of Computer Science
Bar Ilan University
52 900 Ramat-Gan

Israel
Tel: (972–3) 531 8865
Fax: (972–3) 736 0498

{konli,tomi}@cs.biu.ac.il

Abstract. Multilingual text compression exploits the existence of the same text in
several languages to compress the second and subsequent copies by reference to the
first. We explore the details of this framework and present experimental results for
parallel English and French texts.

Keywords: Compression, multilingual texts, text alignment, coding

1 Introduction

In countries like Canada, Belgium and Switzerland, where speakers of two or more
languages live side-by-side, all official texts have to be published in multilingual form.
The current legislation of the ever expanding European Union obliges the translation
of all official texts into the languages of all member states. As a result, there is a
growing corpus of important texts, large parts of which are highly redundant, since
they do not have any information content of their own, and are just transformed
copies of some other parts of the text collection.

We wish to exploit this redundancy to improve compression efficiency in such
situations, and introduce the notion of Multilingual Text Compression: one is given
two or more texts, which are supposed to be translations of each other and are referred
to as parallel texts. One of the texts will be stored on its own (or compressed by
means of pointers referencing only the text itself), the other texts can be compressed
by referring to the translation, using appropriate dictionaries.

Data compression in general, and text compression in particular, have for long
been prominent topics in the Information Retrieval literature, as full text IR systems
are voracious consumers of storage space, both for the underlying textual database
itself, but also for the auxiliary overhead, such as indices, dictionaries, thesauri, etc.,
see, for example, [14, 20, 13]. This work concentrates on multilingual information re-
trieval systems and how their data could be compressed.

In a certain sense, multilingual text compression is an extension of delta-coding ,
in which source and target files S and T are given, with the assumption that T is
very similar to S, for example in the case of several versions of the same software
package. Highly efficient compression schemes have been designed for that case, and
the compressibility is obviously a function of the similarity of the input files. Our
problem extends the delta-coding paradigm to the case where similarity is not based

Proceedings of the Prague Stringology Conference ’06

on the appearance of identical strings, but allow the use of some transformation to
pass from a given text fragment to its matching part.

The basis for enabling multilingual text compression is first the ability to match
the corresponding parts of related texts by identifying semantic correspondences
across the various sub-texts, a task generally referred to as alignment. As the methods
for detailed alignment are quite sensitive to noise, they usually use a rough alignment
of the text as an auxiliary input. They might also use an existing multilingual glos-
sary, but they always generate their own probabilistic glossary, which corresponds to
the processed text.

The current work extends the use of alignment to the question of whether and
how the property of parallelism can be exploited to store those texts in a more space-
efficient way. In other words, we wish to find a way to compress the constituent
parallel sub-texts so that the result will demand less space than would be required if
they were compressed without exploiting their parallelism.

In the next section, we review some related work. Section 3 then brings the sug-
gested algorithm and in Section 4 we report on preliminary experimental results. The
last section suggests future work.

2 Related work

Multilingual texts have been considered in the Information Retrieval literature, where
the challenge is to access information in one language while the query might be
given in another, see, e.g. [5]. Alignment of parallel texts has been used mainly for
machine translation, machine-aided translation and bilingual term extraction [17].
Most algorithms for alignment are designed for bilingual texts only [9], but some
work has been done already for three languages as well [16]. However, the state of the
art for detailed alignment, even for two languages, is still far from perfect. It is thus
not surprising that works on more than two languages do not exist, but a reasonable
mapping for (A,B,C) can be synthesized given alignment outputs for (A,B) and
(A,C).

Most current detailed alignment techniques are based on one of the following
models: (a) IBM’s Model 2 [3], from which the word align algorithm [7] has been
derived; and (b) Hiemstra’s model [12], used both by Xerox’ system [10] and the
linköping Word Aligner [1].

All these methods use some monolingual tools such as part-of-speech taggers,
lemmatizers and possibly parsers for phrase detection. Determining the lemma (=
base form) of each word is critical for the success of the alignment process, especially
when performed across languages from different groups [6]. When the lemmatized
versions of the texts are processed instead of the original versions, the words within
the induced bilingual glossary will naturally be all lemmata rather than morphological
variants.

The compression of similar texts has been considered in the vast research area
dealing with delta coding, see [4, 2]. The popular ZLIB tool is optimized to take
advantage of the similarity across the files, and some of its features are used also in
our algorithm. The compression of parallel texts is treated in [15], but without using
text alignment tools.

152

Using Alignment for Multilingual Text Compression

3 Compression of a text using its translation

3.1 Compression modeling

The following compression algorithm tries to take advantage of the fact that the text
being compressed is divisible into two parallel parts which are translations of each
other. Dictionary based compression algorithms use pointers to occurrences of the
same substrings either along the text, as in LZ77 [21] or within an auxiliary dictionary,
as in LZW [19]. The current algorithm, however, uses pointers to the translations of
the substring appearing in the parallel section of the text. The original substrings
may be easily retrieved through these pointers using a bilingual glossary along with
some other linguistic resources.

Pointing to another occurrence of a given substring within the same text some-
times requires a relatively large number of bits. That is because the closest occurrence
of that substring can happen far back in history, which is why most implementations
limit the size of the window in which a previous occurrence is to be searched for. In
contrast, translations of words or phrases within a parallel text, if such exist, must
appear in the corresponding translation unit, namely a sentence or paragraph. More-
over, if no large omissions or insertions occur, the translation is expected to be found
within a very narrow text window, whose middle position is computable using the
given alignment. The encoding pointers can store the offset of the translation from
that alignment; these offsets are always very small and thus may be encoded using
only a few bits.

It is important to emphasize that the quality of the alignment does not have any
effect on the correctness of the compression algorithm. That is because the missing
words or word sequences are restored according to the same glossary by which the
alignment has been determined. It is expected that the compression rate would not
be affected either, as alignment algorithms make mistakes due to the consistent ap-
pearance of the wrong translations in the corresponding text windows, even in more
probable positions. This means that the same sequence can be compressed at least
the same number of times using the erroneous translation and perhaps even at a
better cost.

The suggested algorithm assumes the following resources:

1. S, T : The source- and target-language texts, respectively, where T is a translation
of S.

2. AS,T : A word- and phrase-level alignment of the text pair (S, T). Let si,l denote
the word sequence of length l within S beginning at the ith word. Similarly, let tj,m
denote the word sequence of length m within T beginning at the jth word. AS,T

consists of a set of connections of the form 〈i, l, j,m〉, each of which indicating the
fact that si,l and tj,m have been determined as matching phrases. We assume that
for any pair (j,m) there is at most one connection of the form 〈i, l, j,m〉 within
AS,T . From here and below, si and tj stand for si,1 (the ith word of S) and tj,1
(the jth word of T), correspondingly.

3. S lem, T lem: Lemmatized forms of S and T . Let slem

i,l and tlem

j,m denote the lemma
sequences corresponding to si,l and tj,m, respectively. That is the concatenations
of the lemmata of si, si+1, . . . , si+l−1 and tj, tj+1, . . . , tj+l−1, correspondingly.

4. LS: A lemmata dictionary. The entries of this dictionary are the words appearing
in S. Each entry stores a list of all possible lemmata of the keyword, sorted in
descending order of frequency. Let LS(s) denote the lemma list for the word s.
For instance, if S is an English text, then LS(working) = (work, working).

153

Proceedings of the Prague Stringology Conference ’06

compress target

j ←− 1
while j ≤ |T | do

found ←− false

for m ←− mmax downto 1 do

if ∃i, l such that 〈i, l, j,m〉 ∈ AS,T //〈i, l, j,m〉 is unique

diff ←− i − al(j)

if diff ≥ 0 then sign ←− 0
else sign ←− 1

offset ←− B(|diff|)
length ←− B(l − 1)

for n ←− 0 to l − 1 do

lemman ←− I(slem

i+n, LS(si+n))

trans ←− I(tlemj,m, GS,T (slem

i,l))

for n ←− 0 to m − 1 do

variantn ←− I(tj+n, VT (tlemj+n))

pointer ←− concatenation (1, offset, sign, length,
lemma0, . . . , lemmal−1, trans,
variant0, . . . , variantm−1)

output pointer

j ←− j + m
found ←− true

break

endif

end for

if not found

output concatenation (0, code(tj))
j ←− j + 1

endif

end while

Figure 1. Compression using a translated file

5. VT : A variant dictionary. The entries of this dictionary are the lemmata of all words
appearing in T . Each entry stores a list of all possible morphological variants of
the key lemma, sorted in descending order of frequency. Let VT (t) denote the
variant list for the lemma t. For example, if T is a French text, then VT (normal)
= (normal, normale, normaux, normales).

6. GS,T : A bilingual glossary corresponding to the text pair (S, T). The entries of
this glossary are source language lemma sequences. Each entry includes a list of
possible translations of the key sequence into target language sequences, sorted in
descending order of probability. The translations also appear in lemmatized form.
Let GS,T (s) denote the translation list of the source language sequence s into
the target language. For instance, if S and T are English and French texts, corre-
spondingly, then GS,T (mineral water) = (eau mineral). Note that the word eau

(water) in French is feminine, which requires a feminine-form adjective, namely
minerale, whereas the adjective mineral is the masculine singular form, which is
the corresponding lemma.

154

Using Alignment for Multilingual Text Compression

Let al(j) denote the expected position within S of the term corresponding to tj
in T , that is,

al(j) =

⌊

|S|

|T |
j +

1

2

⌋

.

In other words, sal(j) is the source word parallel to tj if taking into account only the
proportion between the lengths of S and T . The accurate alignment may then be
expressed by the signed offset from sal(j). If a paragraph- or sentence-level alignment
is available, then S and T can be referred to as the current parallel units, and the
indices i and j are then relative to the beginnings of these units.

Token number S (English) T (French) Encoding

1 Subject Objet 1(0,ǫ,0,ǫ,6,0)
2 : : 0(c(:))
3 Supplies Livraisons 0(c(livraison),2)
4 of de 1(2,0,0,ǫ,1,0,0)
5 military matériel

6 equipment militaire 1(0,ǫ,0,ǫ,0,1)
7 to à 0(c(à),0)
8 Iraq l’ 0(c(le),2)
9 Irak 1(0,ǫ,0,ǫ,0,ǫ)

Figure 2. Example of compression of French text using its English parallel

The algorithm works as follows: beginning at the first position j = 1 within T ,
use AS,T to find the longest sequence tj,m having a corresponding sequence si,l in S. If
found, create a pointer to si,l by concatenating some binary encodings of the following
details:

1. i − al(j): Offset of si from al(j), including sign bit.
2. l − 1: Length of the source sequence minus 1. As l is always greater than 0, l − 1

can be encoded.
3. Indices of slem

i . . . slem

i+l−1 within LS(si) . . . LS(si+l−1), respectively. If a single lemma
exists, then the empty string ǫ is used as index (no need for encoding).

4. Index of tlem

j,m within GS,T (slem

i,l). As above, in the case of a single translation, ǫ will
be used.

5. Indices of tj . . . tj+m−1 within VT (tlem

j) . . . VT (tj+m−1), correspondingly. Again, ǫ is
used in the case of singletons.

The pointer is then output with a 1-bit prefix. The next iteration will work for
j = j + m.

If no m is found such that 〈i, l, j,m〉 ∈ AS,T , an alternative encoding of tj is
written to the output stream preceded by a 0-bit, and j is incremented by 1. The
process continues while j ≤ |T |. We shall use some UD (Uniquely Decypherable)
code, e.g., a Huffman code, for all unaligned words in T . This code may be initially
generated for all words in T and then be improved when the counts of unaligned
words are known. Alternatively, the final code can be generated in advance following
a preliminary parsing stage.

As to the encoding of the pointer consisting of a sequence of generally very small
numbers, many of which are zeros, a simple solution would be to use an Elias γ-
code for each component. A more compact encoding can be achieved by devising a
Huffman code for the possible numbers, see the section on coding below.

155

Proceedings of the Prague Stringology Conference ’06

Figure 1 displays the formal pseudo-code. B(x) denotes the variable length binary
encoding of x and I(x, y) denotes the variable length binary encoding of the index of
x within the dictionary entry y; if y contains only one item, I(x, y) = ǫ.

The decompression algorithm is straightforward. Note that it needs only the dic-
tionary files, as all relevant information included in the other files is encoded within
the compressed text itself.

Figure 2 gives an example of the algorithm’s output. The second and third columns
contain the English and French parallel texts, respectively. The fourth column is
a decimal representation of the binary encoding. The 0 to the left of parentheses
denotes the encoding of unaligned words, while a 1 indicates a pointer. Numeric
values within the parentheses are actually written to the binary output as variable
length binary numbers, for example, if a γ-code is used, the 6-tuple (2, 0, 0, ǫ, 1, 0, 0)
would be encoded as 1100|0|0||10|0|0 (10 bits).

As an example, we explain in detail the decoding of the fourth encoded token,
which is (2, 0, 0, ǫ, 1, 0, 0), assuming that the first three items have already been de-
coded to Objet : Livraison. The current position (in terms of tokens) in the file T
is therefore 4, and in S, it is ⌊(8/9)× 4 + 1

2
⌋ = 4, corresponding to the word of. The

first two numbers of the 6-tuple are retrieved: 2, 0 are translated to +2, indicating
the fact that the translation sequence is located two words to the right of the current
position in S, which brings us to the term equipment. Adding 1 to the next value, 0,
tells the decoder that it should relate to a 1-word English sequence beginning (and
ending) at the word equipment. Taking a look at the entry equipment in the English
lemmata dictionary (Len(equipment)) reveals there is only one lemma for that word
(the lemma equipment). Therefore, no bits are needed in order to lemmatize it.

Now the decoder looks up the entry equipment within the bilingual glossary
(Gen,fr(equipment)) and finds the list le équipement, de matériel, équipement.
Since several French translations exist, it reads the next value, 1, and retrieves the
corresponding translation (the second option), namely de matériel, so the transla-
tion sequence is of length 2. Since both words in this sequence have more than one
variant, another two values are fetched in order to determine the exact form of each.
The variants list of the lemma de starts with de, des, d’, du. . . and that of matériel
starts with matériel, matériaux, matériels, matérielles, matérielle. . . . The
two last zeros in the sequence to be decoded indicate that the first variant of each
list should be taken, yielding finally the terms (not the lemmata) de matériel as
translation for equipment.

Note that this translation, if considered on its own and not within the larger
context of a bilingual corpus, is in fact quite wrong, since de matériel is a genitive
form rather corresponding to of equipment. This is an example for the fact that an
erroneous translation can still be useful in our case, if the error appears consistently.

3.2 Choosing the encoding

To understand the rational of the encoding decisions, consider Figure 3, listing the
first few output lines of the above algorithm applied to our test data.

The first column is a flag indicating whether the element is a pointer or one of the
non-aligned words, If it is a word, it may be followed by a number, giving the index
of the requested variant in the list of alternatives for this lemma. If it is a pointer, it
starts with a number k, representing an offset, in number of words, between some term

156

Using Alignment for Multilingual Text Compression

1 0 0 0 0
0 :
0 organigramme 1
0 de 0
1 11 0 0 1 1 0
1 5 0 0 3 5 0
1 1 0 0 3 0
0 elle 0
0 :

1 9 0 0 0
0)

1 3 0 0 2 0
1 5 0 0 5 4 0 2
0 agent 0
1 7 0 0 1
1 10 0 0 0 3 0
0 dans 0

Figure 3. Output of translation algorithm

positions as explained above. If k is not zero, it is followed by a sign bit, encoded here
by 0 or 1. The rest of the numbers in the pointers are indices within sets of variants.

The encoding tries to take advantage of the fact that the distribution of the
elements in the different fields is not the same. In fact, three Huffman codes are used:

1. H1 — for the different words in the lines labeled 0;
2. H2 — for the offsets (first numbers in lines labeled 1);
3. H3 — for all the indices appearing in both types of lines, words and pointers.

The first tree H1 is quite large, giving a codeword for each of the different non-
aligned words. As to H2, most of the offsets are small, and their distribution is skewed,
with a clear bias to the smaller numbers. The numbers encoded by H3 are usually
even smaller, since for most sets, there are generally very few variants. Moreover, since
these variants are ordered by decreasing frequency, the first few integers, especially
0, will appear with high probability. The reason for not using the same Huffman tree
for the last two classes, in spite of the fact that similar elements are encoded, is that
their distributions are different enough to justify two trees, in particular because no
ambiguity arises: there is only one element of H2 for each pointer line, so no special
indicator is needed for the fact that the next codeword is from H3.

There is no need to encode the sign field by some Huffman code. Once we know
that a pointer is encoded, the first codeword belongs to H2, and if it is decoded as
representing a number different from 0, we know that it is followed by a sign bit,
so the Huffman codeword is just followed by the sign bit itself. On the other hand,
the flag bit indicating if the current line is a word or a pointer, needs to be encoded.
Instead of wasting one bit for each line, it turned out, on our tests, to be advantageous
to adopt the following scheme: every new line is by default assumed to represent a
word, and the Huffman tree H1 is extended to accommodate also an “Escape” word,
which will be used at the beginning of every pointer line.

The encoding of H3 can further be improved by noticing that the probability of
the number 0 will be higher than 1

2
, suggesting, as in [8], to build a Huffman code for

a set of items consisting of (a) individual numbers appearing in the sequences and (b)
of runs of zeros of different lengths. The elements to be encoded by H3 are therefore
0, 1, 2, . . . , Z2, Z3, . . ., where Zi stands for a run of i zeros.

157

Proceedings of the Prague Stringology Conference ’06

As example, the first 5 lines of Figure 3 would be encoded by the sequence:
H1(ESC), H2(0), H3(Z3), H1(:), H1(organigramme), H3(1), H1(de), H3(0), H1(ESC),
H2(11), 0, H3(0), H3(1), H3(1), H3(0).

3.3 Results

The bilingual text used for evaluating the new algorithm comprises the English and
French versions of the European Union’s JOC corpus, a collection of pairs of questions
and answers on various topics. These texts, used on the ARCADE evaluation project
[18] were supplied aligned at the question/answer (paragraph) level. As the transla-
tion is rather precise, correct word- and phrase-level alignments reside quite close to
the linear alignment of each paragraph pair. The automatic word- and phrase-level
alignment as well as the bilingual glossary were obtained using an extended version
of the word align algorithm [7].

The English raw text has about 1,050,000 words, whereas the respective French
text consists of about 1,162,000 words. Table 1 brings the sizes of the compressed
French file (as a fraction of the original) for various compression schemes: Gzip, based
on LZ77, Bzip, based on the Burrows-Wheeler transform, Hword, a Huffman code
encoding each of the different words in the text as single items, and finally Trans, the
algorithm suggested in this work, based on the translation from the English parallel.

The numbers do not include the sizes of the auxiliary files for Trans and Hword,
since in the scenario of a large multilingual information retrieval system, dictionar-
ies and glossaries are needed anyway and are not stored exclusively as an aid for
compression. However, even if those sizes are to be considered, it should be kept in
mind that, according to Heaps’ Law [11], the size of a dictionary for a text of size
n is expected to be αnβ, where 0.4 ≤ β ≤ 0.6. The total size of the auxiliary dic-
tionaries for the current evaluation corpus, compressed using Bzip (rather than a
dictionary-oriented compression scheme), is about 9% of the French raw text. Should
a 1GB corpus be compressed, then corresponding dictionaries would comprise less
than 0.9% of the original text. Obviously, specific dictionary compression can further
decrease that rate.

Full size Gzip Bzip Hword Trans

7551550 0.307 0.214 0.225 0.212

Table 1. Comparison of compression efficiency

As can be seen, Trans is better than Gzip, Hword and Bzip, even without
attempting to optimize the code further. Additional savings can be achieved by using
an improved alignment module, transforming a larger part of the file into pointers
rather than words, or by improving the encoding schemes. Consider, for example,
again the table in Figure 3. At first sight, having a variant number associated with
words like agent seems reasonable, as the word could also appear in plural form
agents, but getting such a number for a preposition like dans might be surprising. A
closer look however reveals that almost every word appears in at least two forms: all
lower case and capitalized (except, obviously, special words like punctuation signs).
This suggests the following strategy (not yet implemented).

Only one form of every word will be kept, using capitalization for proper nouns
and lower case for the other words. If a word appears at the beginning of a sentence

158

Using Alignment for Multilingual Text Compression

(follows a period or similar mark), it will be assumed to be capitalized. Exceptions,
which should be rare, are handled by adding a codeword for an Override, which
will be encoded as part of the Huffman tree H1 and will have the interpretation of
(a) being followed by another codeword w from H1; and (b) changing the case of the
first letter of the word represented by w. The Override will be used in case of lower
case proper nouns (like in email addresses) or capitalized other words in the middle
of a sentence. The effect of such a change will be to reduce the number of variants, so
that smaller numbers will be encoded, and in some cases, if the number of variants
is reduced to 1, no encoding at all is needed.

Another optimization could be to compare, for each item, the number of bits re-
quired to encode it with reference to its translation with the number of bits needed for
the corresponding word using a word based Huffman code, that is, it might sometimes
pay to consider a term that could be aligned as if it were unaligned. The resulting
hybrid algorithm improves on both the original form of Trans and on Hword.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4 8 16 32 64 128 256 512

C
om

pr
es

si
on

 r
at

io

Number of documents per block

Trans
Bzip
Gzip

Figure 4. Compression performance as function of basic block size

Gzip and Bzip are adaptive methods and not really competitors for the applica-
tions treated here. The full decoding of the entire corpus is rarely needed, and small
sub-parts, such as a single question/answer document, should be accessible individu-
ally. This is, however, not the case for adaptive methods, which require a sequential
scan from the beginning of the file, while methods like Trans and static Huffman
coding support selective access and decoding. One can, of course, encode smaller parts
of the file individually also by Gzip and Bzip, but compression will deteriorate. Fig-
ure 4 shows the relative size of the compressed French file for the various methods, as
a function of the size of a basic block, which is supposed to be encoded independently
from the others. This size is expressed by the number of consecutive question/answer
documents in each block. For example, if each document is compressed on its own,
compression by Gzip and Bzip reduces the full file only to 0.516 and 0.549, respec-
tively, while Trans stays at 0.212. With increasing block size, compression by the
adaptive methods improves, but approaches the performance of Trans only for very
large blocks of more than 500 documents.

159

Proceedings of the Prague Stringology Conference ’06

4 Conclusion and Future Work

The existence of the same text in several languages can be used to improve the com-
pression of a multilingual system. We have presented preliminary tests for two lan-
guages, achieving a good performance. By fine tuning the encoding, the compression
results may be improved.

We intend to test our method on much larger parallel corpora of various lan-
guages, in order to obtain more reliable and generic results. We plan to explore also
the possibility of bidirectional bilingual compression, where pointers can refer both
from S to T and vice versa, which could lead to improvements, since phrases may
have different lengths in different languages. A further topic to be treated is pattern
matching directly within the compressed bilingual text, allowing the treatment of
simple queries in a multilingual Information Retrieval environment.

Acknowledgement: This work has been supported in part by Grant 25915 of the Israeli Ministry

of Industry and Commerce (Magnet Consortium Kite). The first author also wishes to express his

gratitude for the support by a grant from Globes, the Israeli business daily.

References

[1] Ahrenberg, L., Andersson, M., and Merkel, M.: A knowledge-lite approach to word

alignment, in Parallel Text Processing, J. Véronis, ed., Kluwer Academic Publishers, Dordrecht,
2000, pp. 97–116.

[2] Ajtai, M., Burns, R. C., Fagin, R., and Long, D. D. E.: Compactly encoding unstructured

inputs with differential compression. Journal of the ACM, 49(3) 2002, pp. 318–367.
[3] Brown, P. F., Della Pietra, S., Della Pietra, V. J., and Mercer, R. L.: The ma-

thematics of statistical machine translation: parameter estimation. Computational Linguistics,
19(2) 1993, pp. 263–311.

[4] Burns, R. C. and Long, D. D. E.: Efficient distributed backup and restore with delta com-

pression, in Workshop on I/O in Parallel and Distributed Systems (IOPADS), ACM, 1997.
[5] Carbonell, J. G., Yang, Y., Frederking, R. E., Brown, R. D., Geng, Y., and Lee, D.:

Translingual information retrieval: A comparative evaluation, in Proc. IJCAI, 1997, pp. 708–715.
[6] Choueka, Y., Conley, E. S., and Dagan, I.: A comprehensive bilingual word alignment

system: Application to disparate languages: Hebrew and english, in Parallel Text Processing,
J. Véronis, ed., Kluwer Academic Publishers, Dordrecht, 2000, pp. 69–96.

[7] Dagan, I., Church, K. W., and Gale, W. A.: Robust bilingual word alignment for machine-

aided translation, in Proc. of the Workshop on Very Large Corpora: Academic and Industrial
Perspectives, Columbus, Ohio, 1993, pp. 1–8.

[8] Fraenkel, A. S. and Klein, S. T.: Novel compression of sparse bit-strings, in Combinatorial
Algorithms on Words, Apostolico, A. and Galil, Z., eds., vol. F12 of NATO ASI Series, Springer
Verlag, Berlin, 1985, pp. 169–183.

[9] Gale, W. A. and Church, K. W.: A program for aligning sentences in bilingual corpora.
Computational Linguistics, 19(3) 1993, pp. 75–102.

[10] Gaussier, É., Hull, D., and Aı̈t-Mokhtar, S.: Term alignment in use: Machine-aided

human translation, in Parallel Text Processing, J. Véronis, ed., Kluwer Academic Publishers,
Dordrecht, 2000, pp. 253–274.

[11] J. Heaps: Information Retrieval: Computational and Theoretical Aspects, Academic Press,
Inc., New York, NY, 1978.

[12] D. Hiemstra: Using statistical methods to create a bilingual dictionary, Master’s thesis, Uni-
versiteit Twente, 1996.

[13] S. T. Klein: Techniques and applications of data compression in information retrieval systems,
in Database and Data Communication Network Systems, C. Leondes, ed., vol. 2, Elsevier Science,
San Diego, CA, 2002, ch. 16, pp. 573–633.

[14] Moffat, A. and Zobel, J.: Adding compression to a full-text retrieval system. Software —
Practice & Experience, 25(8) 1995, pp. 891–903.

160

Using Alignment for Multilingual Text Compression

[15] Nevill, C. and Bell, T.: Compression of parallel texts. Information Processing & Manage-
ment, 28 1992, pp. 781–793.

[16] M. Simard: Translation-text alignment: Three languages are better than two, in Proc. of the
Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very
Large Corpora, June 1999, pp. 2–11.

[17] J. Véronis, ed., Parallel Text Processing, Kluwer Academic Publishers, Dordrecht, 2000.
[18] Véronis, J. and Langlais, P.: Evaluation of parallel text alignment systems: The arcade

project, in Parallel Text Processing, J. Véronis, ed., Kluwer Academic Publishers, Dordrecht,
2000, pp. 369–388.

[19] T. A. Welch: A technique for high-performance data compression. IEEE Computer, 17 June
1984, pp. 8–19.

[20] Witten, I. H., Moffat, A., and Bell, T. C.: Managing Gigabytes: Compressing and

Indexing Documents and Images, Van Nostrand Reinhold, New York, 1994.
[21] Ziv, J. and Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans.

on Inf. Th., IT–23 1977, pp. 337–343.

161

