
FireµSat: An Algorithm to Detect Microsatellites

in DNA

Corné de Ridder1, Derrick G. Kourie2, and Bruce W. Watson2

1 School of Computing, University of South Africa, South Africa, Pretoria 0003
2 Fastar Research Group, Department of Computer Science, University of Pretoria,

South Africa, Pretoria 0002
driddc@unisa.ac.za, dkourie@cs.up.ac.za, watson@cs.up.ac.za

Abstract. In the context of this paper microsatellites (short approximate tandem re-
peats) refer to consecutive patterns contained in genomic sequences. A new algorithm
to detect such microsatellites in DNA is proposed. The algorithm relies on the construc-
tion of finite automata originating from the Moore machine paradigm. The proposed
finite automata contain “counting states”. The overall algorithm is designed to support
user requirements as expressed by the typical geneticist.

Keywords: finite automata, microsatellites, tandem repeats, computational biology

1 Introduction

A perfect tandem repeat (PTR) is a string of nucleotides in a genomic sequence whose
initial substring (of some arbitrary length) is followed by two or more copies of that
substring. The introductory substring is called the motif of the PTR.

For example, ACGACGACGACGACG is a PTR, in which the motif is a substring of
length 3 (i.e. |motif | = 3), namely ACG.

In contrast, an approximate tandem repeat (ATR) is a genomic sequence whose
introductory substring (or motif) is followed by two or more substrings, of which at
least one need not necessarily be an exact copy of the motif. The extent to which
these non-exact copies may vary from the motif is limited, as will be discussed later
in this article.

An example of an ATR is: ACGACTACG. In this case, the substring ACT that directly
follows on the motif ACG has a mismatch in the third position.

In the absence of further qualification, reference to a TR should be construed as
a reference to either a PTR or an ATR. It should be noted that there is not complete
consensus on the precise meaning of a TR. In some cases, it is not required that
the TR starts off with its motif. In fact, there are some who would be content to
regard a string of approximate repeats as a TR, even if it did not contain the motif
at all. However, this research has been driven by the requirements of geneticists and
molecular biologists who were interested in detecting TR’s as defined above.

A TR element (TRE) that matches the identified motif of the TR will be referred
to as a PTR element (PTRE). A TRE that does not match the motif is referred to
as an ATR element (ATRE).

In the literature ([21]; [15]; [16];) a distinction is made between TR’s that con-
stitute microsatellites, minisatellites and satellites. However, terminology is not used
consistently in the literature.

Castelo et al. [4] coins the term Simple Sequence Repeats (SSR’s) for microsatel-
lites; Tran et al. [22] terms microsatellites short tandem repeats. Delgrange and Rivals

Proceedings of the Prague Stringology Conference ’06

[6], Benson [3] and Abajian [1] consider TR’s characterized by motif lengths greater
than or equal to two and smaller than or equal to five (2 ≤ |motif | ≤ 5) to be mi-
crosatellites. Thurston and Field [21] consider TR’s microsatellites if 2 ≤ |motif | ≤ 6.
For the purposes of this paper microsatellites will be consider to be TR’s with a
PTRE or motif such that 2 ≤ |motif | ≤ 5. Microsatellites may include both PTRE
and ATRE.

Although the algorithm, FireµSat, that is proposed here, can in theory be applied
to search for TR’s of any length, the focus at this stage, is to introduce an algorithm
that searches specifically for microsatellites.

It will be seen that FireµSat has several parameters that can be used to tune its
search. It should be emphasised that these parameters have been devised in consul-
tation with the intended user community, who have been unable to usefully deploy
existing software for TR detection. The objective is to fine tune a TR search so that
redundant data is avoided, and relevant data is not missed.

The remainder of this paper is laid out as follows. Section 2 provides a brief
overview of existing software packages or proposed algorithms that attempt to address
the computational problem of detecting microsatellites on DNA. Section 3 defines
the problem in a formal manner. In section 4 an outline is provided of how finite
automaton (FA) technology can be used to detect tandem repeats in a DNA string,
culminating in pseudo-code for the FireµSat algorithm. Section 5 concludes the paper,
and points to work currently underway to empirically test the FireµSat algorithm.

2 Related work

There are various software packages that search directly or indirectly for microsatel-
lites. In this regard Van den Bergh [23] mentions that although most authors reference
a selection of software that has been developed before the software that they propose,
there does not seem to be a comprehensive catalogue of relevant software. It is pos-
sible to classify existing software in various ways. Benson [3] divided the algorithms
that he investigated into three categories and mentions their shortcomings as follows:

– Alignment algorithms
Alignment algorithms proposed by (Benson [2], Kannan and Myers [7] and Schmidt
[19]) have an excessive running time—their running time is exponential.

– Algorithms from the field of data compression
An algorithm proposed by Milosavljevic and Jurka [14] detects simple sequences
thus mixtures of fragments that occur elsewhere. Simple sequences may or may
not contain TR’s. This algorithm makes no attempt to deduce a repeated pattern.
Rivals et al. [17] also developed an algorithm belonging to this category that is
based on the presence of preselected patterns with (1 ≤ |motif | ≤ 3). This algo-
rithm suffers from severe limitations in terms of the motif length that is allowed,
and in terms of the fact that the algorithm only searches for preselected motifs.

– Algorithms that aim to find TR’s more directly.
Of these algorithms, the one developed by Landau et al. [11] is limited by its
definition of approximate repeats. The algorithm requires that two copies differ
by k or fewer substitutions (Hamming distance) or by k or fewer substitutions and
indels (unit cost edit distance). The requirement for a fixed number of differences
rather than a percentage is regarded as unsatisfactory. Similarly, the treatment
of substitutions and indels as equals is regarded as unsatisfactory. The heuristic

138

FireµSat: An Algorithm to Detect Microsatellites in DNA

algorithm proposed by Karlin et al. [8] is hampered in the same manner by the use
of matching blocks separated by error blocks of fixed size. Myers and Sagot [15] has
proposed an exact algorithm that requires that the approximate pattern size and
a range for the number of copies should be pre-specified. An earlier algorithm of
Benson [2] only finds TR’s if they have a pattern size that is specified in advance.

Delgrange and Rivals [6] argue that an exact algorithm that entails the systematic
detection of significant TR’s in a way that is independent of the motif or of the
sequence length is beyond the scope of present methods. In regard to existing software
Delgrange and Rivals [6] also distinguish between three different classes of algorithms
and their shortcomings as follows:

– Fast algorithms from the field of computer science.
In the field of computer science there are several fast algorithms that search for
only two exact tandem repeats. Authors presenting these approaches include Main
and Lorentz [13]; Kolpakov and Kucherov [9] and Stoye and Gusfield [20]. Al-
though these algorithms may be useful as filters to detect possible duplicate motifs
they do not comply with the needs of molecular biologists [6].

– Algorithms that do not make provision for the detection of TR’s containing sub-
stitutions, deletions and insertions at once.
Algorithms in this category include those developed by Kolpakov and Kucherov
[10], as well as the algorithms developed by Landau et al. [12] and Coward and
Drablos [5]. These particular algorithms only make provision for substitutions.

– Algorithms that detect TR’s and allow for substitutions, insertions and deletions.
These algorithms include the work of Myers and Sagot [15] who introduced a
combinatorially exhaustive approach that identifies several possible motifs and
alignments for each TR. The complexity of this approach depends exponentially
on some parameters. The work of Rivals [18] is limited to small motifs and allows
only indels between two of the motifs within a TR.

3 Formal problem statement

ATR’s on genetic sequences are defined in terms of the following, more formal con-
ventions. A PTR whose motif ρ is repeated p times where p ≥ 1, is denoted by ρp. An
ATR u that is derived from this PTR ρp, must also have the motif (ρ) as its prefix.
It therefore has the form ρu2 · · ·up where each ATRE, uk(k = 2 · · · p), is the result
of at most ε mutations on ρ. Here ε is called the motif error. In theory, ε could be
anywhere in the range 0 ≤ ε ≤ |ρ|.

However, when running FireµSat, the user is required to choose a maximum value
for ε that complies with certain practical considerations. In determining whether the
string ρu2 · · ·up is to be construed as an ATR, this value of ε represents the maximum
number of mutations (or errors) that are tolerated, in deciding whether or not, for
each k = 2 · · · p, uk represents an acceptable ATRE. In 3.1, the author discusses
the types of mutations that are tolerated. Here it is emphasized that the following
toleration limits on ε apply for a given ρ.

1. If |ρ| = 2 or |ρ| = 3 then only zero or one error is tolerated; i.e. ε may be chosen
as either 0 or 1. (The default is 1.)

2. If |ρ| = 4 or |ρ| = 5 then zero, one or two errors are allowed; i.e. ε may be chosen
as either 0, 1 or 2. (The default is 2.)

139

Proceedings of the Prague Stringology Conference ’06

Recall that the objective is to detect microsatellites. This means that 2 ≤ |ρ| ≤ 5.
Consider an example where ρ = ACGTT. Then |ρ| = 5 and the user may conse-

quently select the maximum number of errors to be either 0 or 1 or 2. If the user
selects “2”, then ACT would be regarded as an ATRE, since it may be construed as
the motif in which two deletions (see 3.1) have occurred. Likewise, ACGT could be
regarded as an ATRE, since it may be seen as the motif in which one deletion has
occurred. (See 3.1.) However, AC will not be regarded as an ATRE.

3.1 Type of mutations tolerated

A substring u is considered similar to the substring ρp if it can be written as u =
u1u2 · · ·up where each word uk (k = 1 · · · p) is obtained by at most ε mutations on ρ

and where ε is some pre-specified limit in the range 0 ≤ r ≤ |ρ|. This was explained
in the previous paragraph (3). (Note that in running FireµSat, the user has further
options for constraining the search for ATR’s. These options are discussed in 3.2.
They are concerned with constraining the ratio of ATRE’s to PTRE’s in a string
and/or constraining the number of consecutive ATRE’s in the string.)

To further illustrate the above, consider an example based on the three letter
PTRE ρ = ACG, where ε = 1 has been selected. This means that at most 1 mutation
is allowed. The authorized forms of each ATRE uk are, therefore, as follows:

1. The word ρ itself: uk = ACG and |uk| = 3.
2. The word ρ with the deletion of one nitrogenous base: uk ∈ {CG, AG, AC}. Thus, in

all these cases |uk| = 2.
3. The word ρ with the mismatch of one base: uk ∈ {XCG|X : {C,G,T}} ∪ {AXG|X :

{A,G,T}} ∪ {ACX|X : {A,C,T}}. In all these cases |uk| = 3.
4. The word ρ with an insertion in front of or behind any position ρi of ρ. uk ∈

{ACGX|X : {A,C,G,T}}∪{ACXG|X : {A,C,G,T}}∪{AXCG|X : {A,C,G,T}}∪{XACG|X :
{A,C,G,T}}. In all these cases |uk| = 4.

It should be noted that all these words keep at least 2 bases from the original word
ρ. As it stands, the foregoing could lead to ambiguity in determining the mutational
origin of a string. For example, ACG could be construed as some intended PTRE, ρ,
or as a deletion of the last nucleotide, G, of the PTRE ρ, followed by the insertion
of G.

To resolve such ambiguities, the following rules will be applied wherever possible:

1. A string will be interpreted as a PTRE rather than as an ATRE with mutations.
2. A string will always be regarded as an ATRE that results from mismatches, rather

than from insertions or deletions.
3. An ATRE will be regarded as originating from a deletion rather than from an

insertion.

This manner of defining authorized forms of mismatches and deletions of uk derives
from experimental observations cited by Rivals et al. [17]. It has been endorsed by
Benson

[3] as providing statistically relevant information. The algorithm proposed also al-
lows for other types of errors that can be adjusted by the user. More details pertaining
to this matter are to be found in 3.2.

140

FireµSat: An Algorithm to Detect Microsatellites in DNA

Indeed, the approach was discussed with a molecular biologist, L. P. Wright, from
the University of Pretoria, who was positive about the statistical relevance of the
information that would be generated by the proposed algorithm.

In principle, then, an algorithm seeking TR’s could rely on the motif error (ε)
alone to determine when the end of a candidate string has been found. However,
in practice, it is useful to rely on additional metrics. In 3.2 three such metrics are
introduced. They determine whether a string that has been found to be a possible
TR at some point in the algorithm, should be output as such, or whether further
processing should occur to see if the string can be further extended to produce a
longer TR.

3.2 Additional metrics and threshold values

In addition to considering ε (the maximum motif error that may occur within a TR),
FireµSat also computes three additional metrics. These are σ, the so-called substring
error; tn atreC, the number of ATRE’s that occur consecutively; and tn tre, the total
number of TRE’s. In each case, the user can specify maximum values for these metrics,
which FireµSat will use as a threshold value in determining when a given substring
can be regarded as a TR. Each of these metrics will now be considered in turn.

1. The substring error :σ
This is a measure of the extent to which the number (weighted as described
below) of ATRE’s in the candidate TR exceeds the number of PTRE’s. The mea-
sure is computed at appropriate points by FireµSat and then compared against a
user-specified threshold value of the maximum substring error allowed, τ . During
processing σ ≤ τ should always hold.
In line with the guidelines suggested by Benson [3], the value of σ depends, inter
alia on penalties (or weights) allocated by the user to mismatches (p m), deletions
(p d) and insertions (p i). For a given motif, ρ, and a given substring that has been
partitioned into the form u = ρu2 · · ·up, σ on u is computed as:

σ = (n d ∗ p d) + (n i ∗ p i) + (n m ∗ p m) − n ptre

where n d is the number of deletions in u; n i is the number of insertions in u;
n m is the number of mismatches in u; and n ptre is the number of PTRE’s in u.
The user may rely on system default values for the penalties. These are p i = 1.0,
p d = 1.0 and p m = 0.5 respectively. A penalty weight of 0 may be chosen for one
or more of the mutation types, in which case no penalty is assigned to ATRE’s
that derive from that mutation type.
The value of σ therefore reflects the extent to which the number of ATRE’s ex-
ceeds the number of PTRE’s, weighted in terms of penalty values associated with
mismatches, deletions and insertions.
The foregoing implies that FireµSat has to keep a count of the number of the
various types of mutations. As will be seen in section 4.1, FireµSat makes use
of an FA denoted by FATR, which is the sum (in the sense of Kleene’s theorem
Rule 2 of part 3) of four other FA’s: one for recognizing PTRE’s, and one each for
recognizing insertions, deletions and mismatches. In general the substring error σ

is calculated every time a final state is reached in FATR. Each such final state is
associated with a unit increment in either the number of PTRE’s, or the number
of insertions, or the number of deletions or the number of mismatches. It is these
final states, therefore, that enable the counting of the various types of mutations.

141

Proceedings of the Prague Stringology Conference ’06

For as long as σ ≤ τ holds, the scan of the input string continues in an effort to
increase the length of the TR found to date. If the condition is not met, then the
TR found to date is output, and the next TR in the input string is sought.
Of course, whenever a dead end state (a state that has only incoming edges,
including a loop into the state itself labelled with all the alphabet letters of the
input alphabet) of FATR is reached, then the TR is also output, and the search
for the next TR resumed.

2. The maximum number of consecutive ATRE’s (α)
The user has the option of entering a value denoted by α. This value indicates the
maximum number of ATRE’s that are allowed to occur next to each other. Thus
α serves as a second threshold value.
If the user specifies a value for α, then the counter tn atreC is maintained to
record the total number of consecutive ATRE’s since the last PTRE. The counter
is incremented whenever an ATRE has been read (indicated by a transition to
a final state of FATR) irrespective of the type of elements—whether it be an
insertion, deletion or mismatch. However, when a PTRE is read, then the value of
tn atreC is again set to zero. The processing of a string will only proceed if α ≤
tn atreC.
Note that a value for α is not activated by default. Thus, if the user does not
enter a value for α, then there is no limit to the number of ATRE’s that may
occur consecutively. (Alternatively, one might say that the default value of α is
∞.)

3. The minimum number of tandem repeat elements (β)
To avoid the output of unwanted data, the user may indicate the minimum num-
ber of TRE’s that has to occur before a TR is output, denoted by β. To this end,
a count, tn tre, is kept of the total number of tandem repeat elements encoun-
tered to date in the current candidate TR. In fact, a count is also kept of the
total number of PTRE’s encountered to date, tn ptre, and of the total number of
ATRE’s encountered to date, tn atre. Clearly, tn tre = tn ptre + tn atre.
The current candidate TR will only be reported as a TR if one of the previously
mentioned thresholds or terminating conditions is encountered and if tn tre ≥ β.
The default value for β is two.

To illustrate these concepts, consider the genetic substring ACGACACACACGCGCGACGACT.
Let the motif be ACG. The values for n d,n i, n m, tn ptre, tn atre and tn atreC are
as follows at different processing intervals of the substring.

0. ACGACACACACGCGCACGACT n d n i n m tn ptre tn atre tn atreC
1. ACG 0 0 0 1 0 0
2. ACGAC 1 0 0 1 1 1
3. ACGACAC 2 0 0 1 2 2
4. ACGACACAC 3 0 0 1 3 3
5. ACGACACACACG 3 0 0 2 3 0
6. ACGACACACACGCGC 3 0 1 2 4 1
7. ACGACACACACGCGCGACG 3 0 1 3 4 0
8. ACGACACACACGCGCACGACT 3 0 2 3 5 3

Suppose that τ was specified by the user as 5, and that the default values for the
penalties are used, namely p i = 1.0, p d = 1.0, p m = 0.5. Then:

142

FireµSat: An Algorithm to Detect Microsatellites in DNA

σ = (n d ∗ p d) + (n i ∗ p i) + (n m ∗ p m) − n ptre

= (3 ∗ 1) + (0 ∗ 1) + (2 ∗ 0.5) − 3

= 1

and since this is less than the specified value for τ , FireµSat would attempt to
explore elements beyond the given genetic substring before deciding at which stage
the substring should be reported as a TR.

The algorithm is invoked by:

FireµSat(min, max,ε, τ, α, β, p d, p i, p m, gSeq)

where gSeq represents the entered genetic sequence. It returns all TR’s with motif
lengths in the range [min,max] in gSeq, subject to motif error ε and threshold values
τ , α and β as discussed in subsections 3.1 and 3.2 respectively.

4 Algorithm Construction

4.1 FireµSat

The theory underlying FireµSat is a combination of straightforward FA technology
combined with a flavour of Moore machine technology. How this theory is applied will
be elaborated in the process of introducing the theoretical underpinnings of FireµSat.

For illustrative purposes, ACG will be used throughout as the motif string. In addi-
tion, to facilitate the explanation of the algorithm, the following FA’s are introduced.
In each case, the way in which the given FA scans a string of the form u = ρu2u3 · · ·up

will be described.

– FAP (ρ) is an FA that reaches a final state after scanning the first occurrence of ρ

in u. In fact, it reaches the final state again if u2 = ρ is encountered in u, and again
if u3 = ρ is encountered in u, etc. However, FAP (ρ) goes to a dead end state as
soon as a character in u is encountered that indicates that u is not a PTR. Thus,
FAP (ρ) accepts a PTR of arbitrary length, with motif ρ, entering the final states
as many times as there are PTRE’s in the PTR.

– FAD(ρ, ε) is an FA that, upon scanning u, reaches its first final state once the
substring ρ has been read. FAD(ρ, ε) continues to reach final states after scanning
each word, ui (where i = 2 · · · p) provided that one of the following conditions
hold: a) either ui = ρ or b) ui is a word deduced from ρ that contains a maximum
of ε deletions.

– FAM(ρ, ε) is an FA that functions analogously to FAD(ρ, ε), except that it func-
tions in terms of mismatches rather than deletions.

– FAI(ρ, ε) is an FA that functions analogously to FAD(ρ, ε), except that it func-
tions in terms of insertions rather than deletions.

– FATR(ρ, ε) is an FA obtained from the sum of all the previously defined FA’s.
Thus:

FATR(ρ, ε) = FAP (ρ) + FAD(ρ, ε) + FAM(ρ, ε) + FAI(ρ, ε)

– Finally, the predicate isTR(gSeq[i, j], ε, τ, α, β, ρ) is defined as true if there is a
TR with motif ρ in the genetic sequence gSeq[i, j], such that the motif error is
no greater than ε, the substring error (σ) is no greater than τ , the number of
consecutive occurrences of ATRE’s (tn atreC) is no greater than α and the total
number of TRE’s (tn tre) is at least β.

143

Proceedings of the Prague Stringology Conference ’06

The Fire Engine software [24] constructs an FA from a regular expression (r.e.)
that is provided as input. For a given motif, it is relatively easy to specify the regular
expressions that correspond to the various FA’s just mentioned above.

For example, the language accepted by FAP (ACG) can be defined by the r.e.
(ACG)(ACG)∗. Similarly, the languages accepted by FAD(ACG, 1), FAM(ACG, 1) and
FAI(ACG, 1) may be defined by means of r.e.’s, respectively, as follows:

– FAD(ACG, 1) accepts the language defined by the r.e.
(ACG)(ACG + AC + AG + CG)∗.

– FAM(ACG, 1) accepts the language defined by the r.e.
(ACG)(ACG + CCG + GCG + TCG + AAG + AGG + ATG + ACA + ACC + ACT)∗.

– FAI(ACG, 1) accepts the language defined by the r.e.
(ACG)(ACG + AACG + CACG + GACG + TACG + ACCG + AGCG + ATCG+
ACAG + ACGG + ACTG + ACGA + ACGC + ACGT)∗.

If these deterministic FA’s (FAD(ACG, 1), FAM(ACG, 1)) are constructed and dis-
tinction is made between the type of final states a trace through each respective FA
will confirm that strings of the form ρu1 · · ·uq are recognized, where:

– ρu1 · · · uq may be preceded by p, some arbitrary non-motif prefix.
– ρ is the motif (in the present example, ACG) of the TR,
– each ui, i = 1 · · · q is an ATRE based on ρ, allowing for an error of maximally

ε. Note that in the present example, ρ = ACG and thus |ρ| = 3. Therefore, as
previously discussed, ε is only allowed to assume the value of 1 or 0.

– q ≥ 1 is the number of ATRE’s that follow on from the motif in the TR.

If FAD(ACG, 1), FAM(ACG, 1) and FAI(ACG, 1) are constructed as deterministic FA’s
then it will be seen that if any additional element that does not belong to the TR
identified up to that point is encountered in the input string, the FA will transit to a
dead-end state in each respective case.

It is possible to distinguish between two kinds of final states in each of these
machines: those which signal that a motif (PTRE) has been scanned, and those which
indicate that a deletion or mismatch or insertion has been scanned. These states will
be referred to as PTR- and ATR-final states, respectively. As explained below, the
number of transitions into these states have to be counted, and the respective values
of σ, tn atreC and tn tre have to be correspondingly updated so as to ensure that
the strings designated as TR’s are consistent with thresholds τ , α and β respectively,
as explained in section 3.2 above.

In order to contribute to the foregoing explanation figure 1 has been included. A
trace through figure 1 will confirm that strings of the form pρu1 · · ·uq are recognized,
where:

– p is some arbitrary non-motif prefix preceding a TR,
– ρ is the motif (in the present example, ACG) of the TR,
– each ui, i = 1 · · · q is a TRE based on ρ, allowing for an error of maximally ε. Note

that in the present example, ρ = ACG and thus |ρ| = 3. Therefore, as previously
discussed, ε is only allowed to assume the value of 1. Thus only 1 deletion may
occur.

– q ≥ 1 is the number of ATRE’s that follow on from the motif in the TR.

144

FireµSat: An Algorithm to Detect Microsatellites in DNA

D

1

-
 D

2

D

3

D

4

+

D

8

D

5

D

9
 D

6

+

D

7

+

A
,C

,T

G,T

A,T

T

C

C
 A

G

A

G

G

C

C

G
C
A

G,T

C,T

G,T

A
,C

,

G
,T

C
,G

,T

 A

PTR final state

ATR final state

Dead end state

A

A

Figure 1. FAD(ACG,1)

It will also be seen that if any additional element that does not belong to the TR
identified up to that point is encountered in the input string, then the FA transits
to a dead-end state. State D9 in figure 1 is a dead-end state without any outgoing
edges.

In figure 1, there are also two kinds of final states: those which signal that a motif
(PTRE) has been scanned, and those which indicate that a deletion has been scanned.
These states will be referred to as PTR- and ATR-final states, respectively. As ex-
plained below, the number of transitions into these states have to be counted, and
the respective values of σ, tn atreC and tn tre have to be correspondingly updated
so as to ensure that the strings designated as TR’s are consistent with thresholds τ ,
α and β respectively, as explained in section 3.2 above.

In order to construct FATR(ρ, 1) we first construct the respective constituent
machines and then apply the constructive algorithm which forms part of the proof of
Rule 2, Part 3 of Kleene’s theorem.
FATR(ACG, 1) = FAP (ACG) + FAD(ACG, 1) + FAM(ACG, 1) + FAI(ACG, 1).
This can be done by using the Fire Engine software toolkit [24] that provides a
function for adding FA’s.

The discussion to date can be generalized: FATR(XYZ, 1) is an FA for recognizing
the parameterized motif XYZ of length 3. The parameters are X, Y and Z and each of
these parameters can be instantiated to any one of the nucleotides {A, C, G, T}. This
parameterized FA is, as before, the sum of four other FA’s, each of which are also
parameterized.

Thus, the r.e. associated with FAP (XYZ) can be defined as (XYZ)(XYZ)∗. Further-
more, FAD(XYZ, 1), FAM(XYZ, 1) and FAI(XYZ, 1) can also be defined as follows:

145

Proceedings of the Prague Stringology Conference ’06

– FAD(XYZ, 1) accepts the language defined by the r.e.
(XYZ)(XYZ + XY + XZ + YZ)∗.

– FAM(XYZ, 1) accepts the language defined by the r.e.
(XYZ)(XYZ + YYZ + ZYZ + RYZ + XXZ + XZZ + XRZ + XYX + XYY + XYR)∗.

– FAI(XYZ, 1) accepts the language defined by the r.e.
(XYZ)(XYZ + XXYZ + YXYZ + ZXYZ + RXYZ + XYYZ + XZYZ + XRYZ+
XYXZ + XYZZ + XYRZ + XYZX + XYZY + XYZR)∗.

Thus, in principle, any FATR of motif length 3 can be algorithmically constructed.
Similarly, parameterized versions for FATR(ρ, ε) can be constructed for |ρ| = 2, 4, 5
and for permissable values of ε. In each case, the r.e.’s relating to the constituent
FA’s have to be determined, the corresponding FA’s are then derived using the Fire
Engine toolkit, and these derived FA’s are then summed, also using the toolkit, to
provide FATR(ρ, ε).

Once FATR(ρ, ε) is constructed, certain adaptations to the conventional FA lan-
guage recognition algorithm are required when scanning through a genomic sequence
in search of the next TR. Some of the details relating to these adaptations will be
discussed later.

For the present, consider the high-level description of FireµSat given henceforth.
As mentioned previously, the algorithm requires as parameters:

– The lower and upper bound of motif lengths to be considered (min and max

respectively);
– the maximum allowable motif error (ε - discussed in section 3.1);
– the maximum allowable substring error (τ - discussed in section 3.2);
– the penalty values used to calculate the substring error (p m, p d and p i all

explained in section 3.2);
– the maximum allowable number of ATRE’s that may occur consecutively (α -

discussed in section 3.2);
– the minimum number of TRE’s that should occur before a string is output as a

TR (β - explained in section 3.2) and;
– the genomic sequence itself (gSeq). (The development of the actual software is in

progress the user is provided with an additional option to select default values for
the respective threshold values.)

The following functions are assumed:

– GenerateWords(ρLength) generates a set of all words of length ρLength from
the alphabet Σ = {A,C,G,T}.

– CreateFATR(ρ, ε) returns FATR(ρ, epsilon) as discussed.
– FindIndices(gSeq,FATR, τ, α, β, p m, p d, p i) returns a set of index pairs in gSeq.

A substring of gSeq is a TR recognized by FATR within the constraints specified
by τ , α and β as explained in section 3.2 if and only if its start and endpoint
indices constitute a pair in the returned set. Note that the call to this function is
independent of all prior and subsequent calls to it.

146

FireµSat: An Algorithm to Detect Microsatellites in DNA

proc FireµSat(min,max, ε, τ, α, β, p m, p d, p i, gSeq)
pre {(0 < min ≤ max) ∧ (0 ≤ ε) ∧ (σ ≤ τ) ∧ (0 ≤ α ≤ tn atreC)∧

(0 ≤ β ≤ tn tre) ∧ (gSeq ∈ Σ∗)}
indices := φ

; for ρLength : [min,max] →
; words := GenerateWords(ρLength)
; FASet := φ

; for w : words →
; FATR := CreateFATR(w, ε)
; indices := indices ∪ FindIndices(gSeq, FATR, τ, α, β, p m, p d, p i)

rof

rof

post {(i, j) ∈ indices ⇔ ∃ρ : Σ∗ · |ρ| ∈ [min,max]∧
isTR(gSeq[i, j], ε, τ, α, β, p m, p d, p i, ρ)}

Note that in order to use FATR appropriately in FireµSat, it is required that
the final states of the original component FA’s be identifiable in it. Note that of the
features of the constructive algorithm introduced in the proof of Rule 2, Part 3 of
Kleene’s algorithm is that if it is used to compute say FAX =FAY +FAZ , then every
final state in FAY can be mapped to a final state in FAX . The same holds true for
every final state in FAZ . Moreover, every final state in FAX will either map to a final
state in FAY or to a final state in FAZ or to a final state in both FAY and FAZ .

To determine whether the conditions on the threshold values, τ (representing
the maximum allowable substring error), α (representing the maximum number of
ATRE’s that may occur consecutively) and β (the minimum allowable number of
TRE’s that have to occur before a TR is reported) have been met when scanning
through a tandem repeat, various counters, initially at 0, have to be updated once a
motif is encountered as we scan through a string. To this end let the variables tn ptre

and tn atre store the number of PTR-final states and ATR-final states encountered
to date, respectively. Additionally, the variables n d, n m and n i store the number
of deletions, mismatches and insertions encountered to date, respectively.

For reasons explained later, the number of symbols scanned since the last tally of
a final state is stored in ℓ, and a flag motif is set to true that final state marked the
end of a PTRE and to false, otherwise. Finally ε, is the maximum number of symbols
by which an ATRE may differ from the motif. (The value of ε is easily determined
and depends on the motif length as explained in section 3.)

The logic of how these counters are to be updated whenever a state, Q, of an
FATR is being examined. A number of predicates are assumed that test whether
Q is a final state (isF inal(Q)) and/or whether Q is a state that terminates a mo-
tif (isPTRE(Q)), and/or a deletion (isDel(Q)), insertion (isIns(Q)) or mismatch
(isMis(Q)).

Note, specifically, that more than one of these conditions may hold for a final state,
as forthcoming discussed. Dijkstra’s guarded command language (GCL) is used, in
which the semantics of the if-statement specifies that non-deterministic selection of
the guards takes place if more than one guard evaluates to true. Therefore, to avoid
ambiguity, guards have to be designed to be mutually exclusive. In each case, the
body then adjusts the counters according to the rules already given above.

Thus, it will be seen that if a final state is of multiple types, then the PTRE counter
(tn ptre) takes precedence, followed by the mismatch counter (n m), followed by the

147

Proceedings of the Prague Stringology Conference ’06

deletions counter (n d), followed by the insertion counter (n i). By this it is meant
that if a final state is encountered that is final for both PTRE’s and mismatches,
then the PTRE counter is incremented rather than the mismatch counter. Similarly,
mismatches are incremented rather than deletions, etc.

However, there are a few exceptions to be dealt with in the case of an insertions
final state being reached. Firstly, the insertions counter n i is only incremented if
the next state, R, is not also an insertion state. Secondly, suppose that the last
TRE encountered was a PTRE (indicated by the flag motif) and that the number of
transitions from this last PTRE state to this current insertion state (recorded in ℓ)
is less than or equal to ε. It is then assumed that an insertion has been encountered
instead of a motif ℓ transitions earlier. Consequently the tn ptre counter that was
previously incremented is now decremented.

Note that similar logic ought to be built in, to check that when arriving at a PTR
state, a deletion was not incorrectly recorded less than ε transitions earlier. If so, the
n d, tn atre and tn atreC ought to be decremented. The outline below leaves out this
logic in the interests of overall simplicity. However, it is built into the implemented
algorithm.

Note in passing that the semantics of GCL dictates that, if a condition arises
that does not fire a guard in an if-statement, then the if-statement should abort,
indicating that such a condition constitutes an error. Thus, for example, in the code
below, there is no guard to deal with a condition where a state is designated as final,
but it is not associated with a PTRE, nor with a mismatch, nor with a deletion, nor
with an insertion. Such a condition ought not to arise, and would indeed constitute
an error if it did.

R := nextState(Q,nextSymbol)
if isF inal(Q) →

if isPTRE(Q) →
tn ptre, tn atreC := tn ptre + 1, 0
; ℓ,motif := 0, true

[] (¬isPTRE(Q) ∧ isMis(Q)) →
tn atre, tn atreC, n m := tn atre + 1, tn areC + 1, n m + 1
; ℓ,motif := 0, false

[] (¬isPTRE(Q) ∧ ¬isMis(Q) ∧ isDel(Q)) →
tn atre, tn atreC, n d, := tn atre + 1, tn atreC + 1, n d + 1
; ℓ,motif := 0, false

[] (¬isPTRE(Q) ∧ ¬isMis(Q) ∧ ¬isDel(Q)) →
if (isIns(Q) ∧ ¬isIns(R)) →

if (ℓ ≤ ε ∧ motif) → tn ptre := tn ptre − 1 f i

; tn atre, tn atreC, n i := tn atre + 1, tn atreC + 1, n i + 1
; ℓ,motif := 0, false

[] (isIns(Q) ∧ isIns(R)) →
ℓ := ℓ + 1

f i

f i

[] ¬isF inal(Q) → ℓ := ℓ + 1
f i

148

FireµSat: An Algorithm to Detect Microsatellites in DNA

5 Conclusion

The above code indicates that counter and threshold values are only adjusted when-
ever a final state is reached in FATR. This gives FireµSat a certain Moore machine
character - Moore machines print output only in relation to the state that is reached—
irrespective of which arc was followed to get to that state. However, in this case, when
particular states are reached corresponding counters are adjusted, instead of printing
specific characters as would be required in a Moore machine.

If a dead-end state is reached or τ < σ or α < tn atreC, then the processing on
the applicable FATR will terminate, and the TR scanned up to that point will be
output, provided that β ≥ tn tre. Scanning will then continue in search of the next
TR.

The various parameters have already been discussed. They were derived in close
collaboration with molecular biologists with a view to enhancing the useability of the
algorithm. For example the software under construction allows the user to allocate
penalties in a very sensitive manner, which enables the user to predetermine relatively
easily at least what type of repeats will definitely be detected. It should be noted that
these useability features are a direct consequence of using FA technology.

The implementation of FireµSat, is in progress. Preliminary runtime results show
that FireµSat copes satisfactorily in searching for microsatellites with at most one
mutation. Runtime results of motifs with length four or five where two mutations are
allowed compares very well with STAR ([6]) but not that well with Tandem Repeats
Finder ([3]). However, it should be emphasised that FireµSat provides the user with
a degree of flexibility and usability does not appear to be available in the other
algorithms. Future initiatives are directed at the completion of the FireµSat software
and at reporting comparative results in more detail.

References

[1] C. Abajian: Sputnik. Online: http://espressosoftware.com/pages/sputnik.jsp.
[2] G. Benson: A space efficient algorithm for finding the best non-overlapping alignment score.

Theoretical Computer Science, 145 1995.
[3] G. Benson: Tandem repeats finder. Nucleic acids research, 27(2) November 1999, pp. 573 –

580.
[4] A. T. Castelo, W. Martins, and G. R. Gao: Troll: Tandem repeat occurrence locator.

Bioinformatics Applications Note, 18(4) 2002, pp. 634–636.
[5] E. Coward and F. Drablos: Detecting periodic patterns in biological sequences. Bioinfor-

matics, 14 1998.
[6] O. Delgrange and E. Rivals: Star: an algorithm to search for tandem approximate repeats.

Bioinformatics, 20(16) June 2004, pp. 2812–2820.
[7] S. Kannan and E. Myers: An algorithm for locating nonoverlapping regions of maximum

alignment score. SIAM Journal on Computing, 25(3) 1996, pp. 648–662.
[8] S. Karlin, M. Morris, G. Ghandour, and M. Leung: Efficient algorithms for molecular

sequence analysis. In: Proceedings of the National Academy of Sciences of the United States of
America, 85 1988.

[9] R. Kolpakov and G. Kucherov: Finding maximal repetitions in a word in linear time. In:
40th FOCS. IEEE Computer Society Press, 1999.

[10] R. Kolpakov and G. Kucherov: Finding approximate repetitions under hamming distance.
In: ESA: Annual European Symposium on Algorithms, Lecture Notes in Computer Science,
2161 2001.

149

Proceedings of the Prague Stringology Conference ’06

[11] G. Landau and J. Schmidt: An algorithm for approximate tandem repeats. In: Proceedings
of the 4th Combinatorial Pattern Matching Conference, Lecture Notes in Computer Science 648,
1993.

[12] G. Landau, J. Schmidt, and D. Sokol: An algorithm for approximate tandem repeats.
Journal of Computational Biology, 8(1) 2001, pp. 1–18.

[13] M. Main and R. Lorentz: An O(n log n) algorithm for finding all repetitions in a string.
Journal of Algorithms, 5 1984.

[14] A. Milosavljevic and J. Jurka: Discovering simple dna sequences by the algorithmic sig-

nificance method. Computer Applications in Biosciences, 9(4) 1993, pp. 407–411.
[15] G. Myers and M.-F. Sagot: Identifying satellites and periodic repetitions in biological

sequences. Journal of Computational Biology, 5(3) 1998, pp. 539–554.
[16] E. Rivals: Eric rivals’s homepage. Online: http://www.lirmm.fr/˜rivals/tete-en.html.
[17] E. Rivals, J. Delahaye, O. Delgrange, and M. Dauchet: A first step toward chro-

mosome analysis by compression algorithms. In: Proceedings of the First International IEEE
Symposium on Intelligence in Neural and Biological Systems (INBS ’95), 1995.

[18] E. Rivals, O. Delgrange, J.-P. Delahaye, M. Dauchet, M.-O. Delorme, A. Henaut,

and E. Ollivier: Detection of significant patterns by compression algorithms: the case of

approximate tandem repeats in dna sequences. CABIOS, 13 1997.
[19] J. Schmidt: All highest scoring paths in weighted grid graphs and its application to finding all

approximate repeats in strings. SIAM Journal on Computing, 27 1998.
[20] J. Stoye and D. Gusfield: Simple and flexible detection of contiguous repeats using a suffix

tree. Theoretical Computer Science, 27 2002.
[21] M. Thurston and D. Field: Msatfinder: detection and characterisation of microsatellites.

Online: http://www.genomics.ceh.ac.uk/˜milo/msatfinder/, 2005.
[22] N. Tran, B. Bharaj, E. Diamandis, M. Smith, B. Li, and H. Yu: Short tandem repeat

polymorphism and cancer risk: influence of laboratory analysis of epidemiologic findings. Cancer
Epidemiology Biomarkers and Prevention, 13 2004.

[23] I. Van den Bergh: Finding microsatellites in whole genomes, Master’s thesis, Technische
Universiteit Eindhoven, 2006.

[24] B. W. Watson: The design and implementation of the FIRE Engine: A C++ toolkit for

finite automata and regular expressions. Online: http://alexandra.tue.nl/extra1/wskrap/public
html/9411065.pdf.

150

