
On the Problem of Deciding If a Polyomino Tiles

the Plane by Translation⋆

Srečko Brlek and Xavier Provençal

Laboratoire de Combinatoire et d’Informatique Mathématique,
Université du Québec à Montréal,

CP 8888, Succ. Centre-ville, Montréal (QC) Canada H3C3P8
[brlek,provenca]@lacim.uqam.ca

Abstract. The words that tile the plane by translation are characterized by the
Beauquier-Nivat condition. By using the constant time algorithms for computing the
longest common extensions in two words, we provide a linear time algorithm in the case
of pseudo-square polyominoes, improving the previous quadratic algorithm of Gambini
and Vuillon. For pseudo-hexagon polyominoes not containing arbitrarily large square
factors we also have a linear algorithm.

Keywords: tiling polyominoes, plane tesselation, longest common extensions

1 Introduction

The way of tiling planar surfaces takes its roots in the ancient times for decorative
purposes. More recently, connections were established with computational theory,
mathematical logic and discrete geometry, where tilings are often regarded as basic
objects for proving undecidability results for planar problems. Tilings have been also
used in physics, as powerful tools for studying quasi-crystal structures: in particu-
lar these structures can be better understood by representing them as rigid tilings
decorated by atoms in a uniform fashion. Their long-range order can consequently
be investigated in a purely geometrical framework, after assigning to every tiling a
structural energy.

A classical result of Berger [2] states that given a set of tiles, it is not decidable
whether there exists a tiling of the plane which involves all its elements. This result has
been achieved by constructing an aperiodic set of tiles, and it has been strengthened
afterwards by Gurevich and Koriakov [12] to the periodic case.

It was therefore natural to seek manageable problems, and polyominoes appeared
as good candidates. Invented by Golomb [10] who coined the term polyomino, these
objects, also called n-ominoes or lattice animals, gained some interest after being
popularized by Gardner in mathematical games [9]. In statistical physics they ap-
pear as models for percolation theory and their combinatorial properties have been
extensively studied. These nowadays well studied combinatorial objects are still re-
lated to many challenging problems, such as tiling problems [5, 11], games [9], among
many others (see Weisstein [18] for more pointers). Their enumeration is also an open
problem despite the fact that restricted classes have been fully described.

There are different types of polyominoes and here we consider a polyomino as a
finite union of unit lattice closed squares (pixels) in the discrete plane whose boundary
consists of a simple closed polygonal path using 4-connectedness (Figure 2(a)). In
particular, polyominoes are simply connected (contain no holes), and have no multiple
points (Figure 1(a)).

⋆ with the support of NSERC (Canada)

Proceedings of the Prague Stringology Conference ’06

(a): (b):

Figure 1. (a) a polyomino; (b) not a polyomino

The problem of deciding if a given polyomino tiles the plane by translation goes
back to Wisjhoff and Van Leeuven [19] who coined the term exact polyomino for these,
and also provided a polynomial O(n4) algorithm for solving the problem. Polyominoes
may be coded by words on a 4-letter alphabet Σ = {a, a, b, b}, also known as the
Freeman chain codes [6, 7], coding their boundaries (see [3] for further reading). For

(b):(a):

Figure 2. (a) an exact polyomino; (b) the associated tiling

instance, the boundary b(P) of the polyomino in Figure 2 (a), in a counterclockwise
manner, is coded by the word w = a b a a b a b b a b a b a b a b.

Observe that we may consider the words as circular which avoids a fixed origin.
The perimeter of a polyomino P is the length of its boundary word b(P) and is
of even length 2n. Beauquier and Nivat [1] gave a characterization stating that the
boundary of such a polyomino P may be factorized (not necessarily in a unique way)
as

b(P) = A · B · C · Â · B̂ · Ĉ (1)

where at most one of the variables is possibly empty. The operation (̂) appearing

in (1) is defined by Û = Ũ , where (̃) is the usual reversal operation and () the
complement on Σ = {a, a, b, b}. For instance, the exact polyomino in Figure 2 (b) is
coded by the circular word

w = a a b a b a a b a b a b a b,

its semi-perimeter is 7, and its boundary may be factorized as

b(P) = A · B · Â · B̂ = a b a a · b a b · a a b a · b a b,

and for the exact polyomino P ′ below

(b):(a):

66

On the Problem of Deciding If a Polyomino Tiles the Plane by Translation

the boundary may be factorized as

b(P ′) ≡ a a b · a b a · b a b · b a a · a b a · b a b.

Determining if a given word w ∈ Σn is the boundary of a polyomino is com-
puted in O(n). Therefore the problem reduces to finding a factorization satisfying
the Beauquier and Nivat condition. Recently, Gambini and Vuillon [8] improved
the Wisjhoof-van Leeuven bound by designing an O(n2) algorithm that checks the
Beauquier-Nivat condition (1).

The underlying idea of our approach is to search efficiently the pairs of homo-

logue factors X, X̂. Our algorithms borrow from Lothaire [16] (for instance) that
the Longest-Common-Factor, the Longest-Common-Prefix and the Longest-Common-

Suffix in two words may be computed in linear time. The approach is also inspired
by the linear algorithm of Gusfield and Stoye [14] for detecting tandem repeats in a
word, and by the linear algorithm used to detect repetitions with gaps, as shown in
Lothaire [16]. More precisely, the computation of the Longest-Common-Left-Extension

(LCLE(u, v)) and Longest-Common-Right-Extension (LCRE(u, v)) is achieved in con-
stant time, provided a linear pre-processing is performed on u and v, by a clever
utilization of suffix-trees (see Gusfield [13]).

Taking advantage of these algorithms we provide a linear algorithm, with respect
to the length of words, for pseudo-square polyominoes (Theorem 8). We establish a
first step in order to provide a linear algorithm for pseudo-hexagons as well. Indeed,
for boundary words not having two large square repetitions there is a linear algorithm
to decide whether a polyomino tiles the plane by translation or not (Theorem 11).

2 Preliminaries

Let Σ be a finite alphabet whose elements are called letters. Finite words are sequences
of letters, that is, functions w : [0..n − 1] −→ Σ , and the set of words of length n

is denoted Σn. The free monoid Σ∗ = ∪∞
n=0Σ

n is the set of all finite words and the
empty word is denoted ǫ.

A morphism is a function σ : Σ∗ −→ Σ∗ such that σ(uv) = σ(u)σ(v). Clearly a
morphism is defined by the image of the letters. A factor f of w is a word f ∈ Σ∗

satisfying
∃x ∈ Σ∗, y ∈ Σ∗, w = xfy.

If x = ǫ (resp. y = ǫ) then f is called prefix (resp. suffix). The set of all factors of
w is denoted by F (w), and those of length n is Fn(w) = F (w)∩Σn. Finally Pref(w)
denotes the set of all prefixes of w. The length of a word w is |w|, and the number of
occurrences of a factor f ∈ Σ∗ is |w|f . A word is said to be primitive if it is not a power
of another word. If w = pu, and |w| = n, |p| = k, then p−1w = w[k + 1]..w[n− 1] = u

is the word obtained by erasing p. As a special case when |p| = 1 we have the shift
operator σ defined by σ(w) = w[1..(n − 1)]. Another useful operator is the circular
permutation ρ defined by ρ(w) = w[1..(n − 1)] · w[0].

Two words u and v are conjugate when there are words x, y such that u = xy and
v = yx. Equivalently, u and v are conjugate if and only if there exists an index k such
that v = ρk(v). Conjugation is an equivalence relation written u ≡ v. The reversal

ũ of u = u1u2 · · · un ∈ Σn is the word ũ = unun−1 · · ·u1. A palindrome is a word
p such that p = p̃ , and for a language L ⊆ Σ∞, we denote by Pal(L) the set of its
palindromic factors.

67

Proceedings of the Prague Stringology Conference ’06

Paths on the square lattice Z × Z are encoded on the alphabet Σ = {a, a, b, b}
identified with the unit steps {→,←, ↑, ↓}. Parallel paths always define a translation
and we say that two words are homologue when the corresponding paths define a
translation. More precisely, two words u and v are said to be homologue when either

(i) u = v, or
(ii) u = v̂.

An exact polyomino P whose boundary is b(P) = A · B · C · Â · B̂ · Ĉ is called
a pseudo-hexagon if none of the variables is empty and a pseudo-square otherwise. In

this factorization A (resp. B,C) and Â (resp. B̂, Ĉ) are homologue and define the
respective translations. For instance, the translations defined by the homologue sides
of the pseudo-square polyomino

b(P) = A · B · Â · B̂ = a b a a · b a b · a a b a · b a b

are shown in Figure 3 (a). In the case of a pseudo-hexagon, as in Figure 3(b), the

(a): (b):

Figure 3. Translations defined by homologue sides of a polyomino tile

translations are related by the relation t3 = t1 + t2. Moreover, the relative positions
of the starting and ending point of any path is completely determined by the sum
of the unit vectors corresponding to each letter. By abuse of notation we write for a
path w : [0..n − 1] → Σ

−→w =
n−1∑

k=0

−→wk.

Note that −→w = 0 if and only if w is a closed path, and that −→u = −−→̂
u .

3 Searching the homologue factors

Since polyominoes are coded by circular words w, in order to find the homologue
factors it is convenient to work with w ·w since a pair of homologue factors might be
split, depending on the starting point.

Therefore, finding the homologue factors amounts to look for the longest common

factor of ww and ŵw denoted LCF(ww, ŵw).
For instance the longest common factors of the polyomino-tile P in Figure 2 (b)

are
LCF(ww, ŵw) = {a b a a, a a b a}

and they are necessarily homologue sides(!). Indeed, since we know the positions i and
j of a b a a and a a ba in w, this is easy to check in linear time. Clearly the boundary
of P may be written as

b(P) = w = a b a a · u · a a b a · v

68

On the Problem of Deciding If a Polyomino Tiles the Plane by Translation

and then one easily checks that v = û. Unfortunately the situation is not always that
good. Indeed, let w = a a b b b a a b a a b a b b b a a b a b. Then the longest homologue
factors of w are (see Figure 4)

LCF(ww, ŵw) = {a a b b b a, a b b b a a},
but w = a a b b b a · a b a a b · a b b b a a · b a b does not satisfy the Beauquier-Nivat
condition. A good factorization is w ≡ b b ·b a a b ·a a b a ·b b ·b a a b ·a b a a. This means

(c):(a): (b):

Figure 4. (b) longest homologue factors; (c) a good factorization

that not all the homologue factors provide a factorization, and good candidates are
those separated by factors of same length.

Definition 1. Let w ≡ b(P) be the boundary word of a polyomino P . A factor A of

w is admissible if

(i) w ≡ AxÂy, for some x, y such that |x| = |y|;
(ii) A is saturated, that is, x0 6= xk−1 and y0 6= yk−1 where k = |x| = |y|.

Nevertheless, admissibility is ensured for words that code the boundary of poly-
ominoes. Indeed, Gambini and Vuillon established the following property ([8], section
3.1) by using a geometric result of Daurat and Nivat [5].

Lemma 2. Let w ≡ ABCÂB̂Ĉ be a Beauquier-Nivat factorization of the boundary

b(P) of an exact polyomino P . Then A,B and C are admissible.

Conversely, not all admissible factors lead to a Beauquier-Nivat factorization. For
instance, in the polyomino w ≡ a a a b a b a b a a a b a b a b shown below the factor aaa

(a): (b):

is admissible but does not provide a correct factorization of w. Indeed, A = aa is

the admissible factor (w = AxÂy with x = ababab, y = ababab) yielding a correct
factorization with B = aba and C = bab:

w ≡ a a · a b a · b a b · a a · a b a · b a b.

The following proposition establishes a useful property.

69

Proceedings of the Prague Stringology Conference ’06

Proposition 3. Let w = b(P) ∈ Σ2n be the contour of a polyomino P and let p

be any fixed position in w. Let X be the set of all admissible factors overlapping the

position p and X̂ be the set of their respective homologue factors. Then, there exist

at least one position in w that is not covered by any element of X ∪ X̂.

Proof. By contradiction, assume that there is no such point. Let A ∈ X be the factor
that starts at the leftmost position and B ∈ X be the one that ends at the righmost

position as shown below. The homologue factors A, Â and B, B̂ always define two

p1 S1

S2S2

A
w

B B

A

x y

S

symmetries denoted respectively by S1 and S2. Let x be the overlap between A and

B̂, and y be the overlap between A and B. Without loss of generality we may consider
that |y| ≥ |x|. If |x| = |y| the symmetry implies that x = ŷ and the factorization is

w ≡ xU x̂ V x Û x̂ V̂ . (2)

We use a property proved in Brlek et all. ([4], DLT2005) that simplifies a result of
Daurat and Nivat ([5], IWCIA’03) on the number of salient and reentrant points of
discrete sets: indeed, the number of right turns minus the number of left turns in a
closed and non-intersecting path on a square lattice is 4. In equation 2, notice that
all turns in a factor are cancelled by those of its homologue. Therefore we only have
to consider the turns between consecutive factors. Reading, the word w from left to
right, we see that each pair of consecutive factors is cancelled by its homologue: xU

is cancelled by Û x̂, U x̂ by x Û , x̂ V by V̂ x (the word w is circular), and V x by

x̂ V̂ . Hence the difference between right and left turns is 0, and w is self intersecting.
Contradiction.

If |x| 6= |y| we have the following situation where the factor y (thick line) propa-

y

A
S1 S1

V

BS2

y

y

S2

A

w
x V αβ

B

gates as shown by using the symmetries S1 and S2. In this case ŷ does not overlap Â

in B̂, so let V be the factor between Â and ŷ. We have the following factorization

w ≡ A V̂ β Â V α .

Passing to vectors, and using commutativity of addition, we have

−→w =
−→
A +

−→̂
A +

−→
V +

−→̂
V +

−→
β + −→α =

−→
β + −→α =

−→
0 .

70

On the Problem of Deciding If a Polyomino Tiles the Plane by Translation

w

A

B

y y

S1 S1

S2
S2

A

B

γ

y α
β

x

But ŷ = αx, so that β is followed by α in w. Therefore βα is a nonempty closed path
on the boundary of P . Contradiction.

In the case where ŷ does overlap Â in B̂ we have the following situation where
−→γ +

−→
β = 0 (by closure property −→w = 0 =

−→
A + −→γ +

−→̂
A +

−→
β). Moreover, ŷ = αβx,

so that y γ ŷ contains the nonempty factor α̂ γ α β corresponding to a closed path.
Contradiction. ⊓⊔

Proposition 3 specializes for pseudo-squares as follows. Assume that a pseudo-
square P has two factorizations

w = b(P) ≡ ABÂB̂ ≡ XY X̂Ŷ

where A = sXt. Then, by using the same argument as in the proof above, the
boundary of P contains a loop yielding a contradiction.

Corollary 4. If w = b(P) ≡ ABÂB̂ ≡ XY X̂Ŷ are two distinct factorizations of

the boundary of a pseudo-square P , then there exist α, β, γ such that A = αβ and

X = βγ.

As an exemple we have the following pseudo-square

aba · bab · aba · bab ≡ bab · aba · bab · aba,

showing two distinct factorizations. The problem of enumerating all the factorizations
of a given pseudo-square will be addressed in a forthcoming paper.

3.1 A linear time algorithm for detecting pseudo-squares

The main idea used to achieve linear time factorization, is to choose a position p in
w and then list all the admissible factors A that overlap this fixed position. The fol-
lowing auxiliary functions are useful. The Longest-Common-Right-Extension (LCRE)
and Longest-Common-Left-Extension (LCLE) of two words u and v at positions re-
spectively m and n are partial functions

LCRE, LCLE : Σ∗ × Σ∗ × N × N −→ N

defined as follows. For u, v ∈ Σ∗, let m and n be such that 0 ≤ m ≤ |u| and
0 ≤ n ≤ |v|, then

LCRE(u, v,m, n) = LCP(ρm(u), ρn(v))

LCLE(u, v,m, n) = LCS(ρ|u|−m(u), ρ|v|−n(v))

71

Proceedings of the Prague Stringology Conference ’06

Remark 5. It is clear from the definition above that LCRE and LCLE may be com-
puted in linear time. Their computation may also be performed directly by the follow-
ing formulas. Since we use circular words w, denote m = m mod |w|. If u[m] = v[n]
then

(i) LCRE(u, v,m, n) = max{k ∈ N | u[m..(m + k)] = v[n..(n + k)]} + 1,
(ii) LCLE(u, v,m, n) = max{k ∈ N | u[(m − k)..m] = v[(n − k)..n]} + 1,

and, otherwise, LCRE(u, v,m, n) = LCLE(u, v,m, n) = 0.

For example, if u = aabbbaabaababababa, v = babaabbbaabbabababb, i = 4 and
j = 7 then (note that the words all starts at position 0) we have

u = a a b bb a a b a a b a b a b a b a,

v = b a b a a b bb a a b b a b a b a b b,

and LCRE(u, v, 4, 7) = 4, LCLE(u, v, 4, 7) = 5. On the other hand LCRE(u,v,4,1) =
LCLE(u,v,4,1)=0.

Later we will need to perform these computations O(n) times. Fortunately, the
computation of LCLE and LCRE is achieved in constant time, provided a linear pre-
processing is performed on u and v, by a clever utilization of suffix-trees (see Gusfield
[13], section 9.1, or Gusfield and Stoye [14], page 531).

Lemma 6. Let w = b(P) be the boundary of P . For each occurrence of A in w and

each occurrence of A in ŵ, whether A is admissible or not is decidable in constant

time.

Proof. Given an occurrence of A in ŵ, one computes in constant time the correspond-

ing position of Â in w. If Â overlaps A in w is decidable in constant time. If Â and

A do not overlap then, u ≡ AxÂy and A is an admissible factor, by definition, if and
only if the three following conditions are verified : |x| = |y|, x0 6= xk−1 and y0 6= yk−1

where k = |x| = |y|. ⊓⊔

Lemma 7. Let w = b(P) ∈ Σ2n be the boundary of P . For any position p in w,

listing all the admissible factors overlapping p is computed in linear time.

Proof. The following algorithm lists all admissible factors containing the p-th letter w.
Since the longest common right and left extension problem can be solved in constant
time after linear time pre-processing.

Algorithm 1

Input: w = b(P) ∈ Σ2n

0 : Pre-process w and ŵ so that LCLE and LCRE take constant time

1 : For i := 0 to 2n − 1 do

2 : l := LCLE(w, ŵ, p, i) − 1
3 : r := LCRE(w, ŵ, p, i) − 1
4 : A := w[p − l, . . . , p + r]

5 : If w ≡ AxÂy with |x| = |y| then

6 : Add A to the list of admissible factors.

7 : end if

8 : end for

72

On the Problem of Deciding If a Polyomino Tiles the Plane by Translation

Using the modulo in managing the positions is superfluous because we may assume,
without loss of generality (since w is a circular word) that p = n. Note that, by def-
inition of LCRE and LCLE, the factor A in this algorithm is necessarily saturated.
As shown in Lemma 6, the condition can be tested in constant time by direct com-
putation of positions in w. Finally, the loop is performed exactly 2n times. ⊓⊔

This lemma implies that the number of admissible factors in a word is linear. To
determine a precise upper bound remains an open problem which is similar to the
problem of determining a tight upper bound for the number of distinct squares in a
word (see for instance Lothaire [16] or Ilie [15]).

Theorem 8. Let w = b(P) ∈ Σ2n be the boundary of P . Determining if w codes a

pseudo-square is decidable in linear time.

1

w

w

l r

AA

A

y x

A

i

ll r

x y

p

p+r+

i+r+n+1

Figure 5. An admissible factor A in w and ŵ

Proof. If w encodes an exact polyomino, any position belongs to some admissible
factor of the Beauquier-Nivat factorization. Therefore, it suffices to apply Lemma 7
to an arbitrary position p. Then, Algorithm 1 provides the list of all admissible factors
overlapping the position p, and it only remains to check, for each admissible factor, if
x = ŷ. Lemma 2 ensures that if w ≡ ABÂB̂ then B is saturated. As shown in Figure
5, it suffices now to replace step 6 in Algorithm 1 by:

6a : If LCRE(w, ŵ, p + r + 1, i + r + n + 1) = |x| then

6b : P is a pseudo-square.

6c : End if

Since LCRE is computed in constant time, the overall algorithm is linear. ⊓⊔

3.2 A linear algorithm for k-square-free pseudo-hexagons

Let w ≡ b(P) be the boundary word of an exact polyomino P . A factor f of a word
w is called a square if f = xx for some x ∈ Σ+. The set of squares of a word w is
Squares(w).

Definition 9. A word w is k-square-free ⇐⇒ max{|f | : f ∈ Squares(w)} < k.

The following technical lemma is useful.

Lemma 10. Let w = b(P) ∈ Σ2n a k-square-free word, and let p be any position in

w. Then, the number of admissible factors that overlap the position p in w is bounded

by 4k + 2 log(n).

73

Proceedings of the Prague Stringology Conference ’06

Proof. Let A1, A2, . . . , Ak be all the admissible factors that overlaps p in w. Since

w ≡ AixÂiy with |x| = |y| for all 1 ≤ i ≤ k, all their homologue occurrences Âi

overlaps the position p′ = p + n. Thus, there is a position q such that all Ai overlap q

in ŵ. In Algorithm 1, all the admissible factors overlapping p in w are listed through
a loop such that each iteration can detect at most one of them. Let i1, i2 be such that
0 ≤ i1 < i2 < q and assume that admissible factors are detected when i = i1 and
i = i2.

Let α1 = ŵ[i1, . . . , q] and α2 = ŵ[i2, . . . , q]. By definition of common extension we
also have that α1 = w[p, . . . , p + |α1| − 1] and α2 = w[p, . . . , p + |α2| − 1], as shown
below.

p α1

α
2

α
2

α1i1

i2

w

w

This implies that α2 is prefix and suffix of α1, so that Lothaire’s Proposition 1.3.4
[17] applies. It follows that there are two words u, v ∈ Σ∗ such that α1 = (uv)mu, for
some integer m with

m(|α1| − |α2|) ≥ |α2| ≥ (m − 1)(|α1| − |α2|). (3)

If |α1| < 2|α2|, equation (3) requires m to be greater than 1 and thus α1 contains a
square of length at least 1

2
|α1|. So, in Algorithm 1, as i goes from 0 to 2n − 1, the

number of admissible factors detected is bounded by :

- log n for i from 0 to q − 2k.
- 4k for i from q − 2k + 1 to q + 2k − 1.
- log n for i from q + 2k to 2n − 1.

Summing up all these provides the bound. ⊓⊔

Theorem 11. Let w = b(P) ∈ Σ2n be a k-square-free word, with k ∈ O(
√

n).
Determining if w codes a pseudo-hexagon is decidable in linear time.

Proof. The idea is to construct convenient, and not too long, lists of admissible factors
and then to use the constant time LCRE function.

Algorithm 2

Input : w = b(P) ∈ Σ2n

Build L1 : list of all admissible factors that overlap position p in w;

m := position of the rightmost letter of w included in a factor of L1;

Build L2 : list of all admissible factors that overlap position (m + 1) in w.

For all A ∈ L1 do

For all B ∈ L2 do

If w ≡ ABxÂB̂y then

Compute i : position of x in w;

Compute j : position of ŷ in ŵ;

If LCRE(w, ŵ, i, j) = |x| then

P is a pseudo-hexagon;

End if

74

On the Problem of Deciding If a Polyomino Tiles the Plane by Translation

End if

End for

End for

Since w is k-square-free, Lemma 10 ensures that L1 and L2 each contain less than
4k+2 log n elements. The nested loops perform at most (4k+2 log n)2 iterations, and
thus, the overall complexity is O(n + (4k + 2 log n)2) = O(n). ⊓⊔

4 Concluding remarks

The results above generalize to more general tilings. Indeed, since the Beauquier-Nivat
factorization involves path properties, there is no need for a tile to be a polyomino.
For instance, the tile T in Figure 6

(a): (b):
S

Figure 6. (a) An hexagonal tile with (b) the associated tiling

is hexagonal and its Beauquier-Nivat factorization is (starting from S)

b(T) = X · Y · Z · X̂ · Ŷ · Ẑ
= a a b a b a b a · b a a · b a b · a b a b a b a a · a a b · b a b .

The contour path is non-crossing, instead of self-avoiding as in the case of polyomi-
noes, and provides an instance of an 8-connected set of cells that tiles the plane by
translation. This leads naturally to the problem of characterizing the 8-connected sets
of cells that tile the plane by translation. On the other hand there is still a gap to fill.
A deeper analysis is needed to lift the condition on the number of square factors in the
contour word, in order to provide an optimal algorithm for deciding if a polyomino
tiles the plane by translation.

Acknowledgements The authors are grateful to the anonymous referees for their
careful reading and valuable comments.

75

Proceedings of the Prague Stringology Conference ’06

References

[1] D. Beauquier and M. Nivat: On translating one polyomino to tile the plane. Discrete
Comput. Geom., 6 1991, pp. 575–592.

[2] R. Berger: The undecidability of the domino problem. Mem. Amer. Math. Soc., 66 1966.
[3] J.-P. Braquelaire and A. Vialard: Euclidean paths: A new representation of boundary of

discrete regions. Graphical Models and Image Processing, 61 1999, pp. 16–43.
[4] S. Brlek, G. Labelle, and A. Lacasse: A note on a result of Daurat and Nivat, in Proc. DLT

2005, 9-th International Conference on Developments in Language Theory, C. de Felice and
A. Restivo, eds., no. 3572 in LNCS, Palermo, Italia, 4–8 July 2005, Springer-Verlag, pp. 189–
198.

[5] A. Daurat and M. Nivat: Salient and reentrant points of discrete sets, in Proc. IWCIA’03, In-
ternational Workshop on Combinatorial Image Analysis, A. del Lungo, V. di Gesu, and A. Kuba,
eds., Electronic Notes in Discrete Mathematics, Palermo, Italia, 14–16 May 2003, Elsevier Sci-
ence.

[6] H. Freeman: On the encoding of arbitrary geometric configurations. IRE Trans. Electronic
Computer, 10 1961, pp. 260–268.

[7] H. Freeman: Boundary encoding and processing, in Picture Processing and Psychopictorics,
B. Lipkin and A. Rosenfeld, eds., Academic Press, New York, 1970, pp. 241–266.

[8] I. Gambini and L. Vuillon: An algorithm for deciding if a polyomino tiles the plane by

translations, tech. rep., LAMA, 2003.
[9] M. Gardner: Mathematical games. Scientific American, 1958, Sept. pp. 182–192, Nov. pp.

136–142.
[10] S. W. Golomb: Checker boards and polyominoes. Amer. Math. Monthly, 61 1954, pp. 675–682.
[11] S. W. Golomb: Polyominoes: Puzzles, Patterns, Problems, and Packings, Princeton Academic

Press, 1996.
[12] Y. Gurevich and I. Koriakov: A remark on Berger’s paper on the domino problem. Siberian

Journal of Mathematics, 13 1972, pp. 459–463, (in Russian).
[13] D. Gusfield: Algorithms on Strings, Trees and Sequences, Cambridge University Press, Cam-

bridge (UK), 1997.
[14] D. Gusfield and J. Stoye: Linear time algorithms for finding and representing all the

tandem repeats in a string. Journal of Computer and System Sciences, 69 2004, pp. 525–546.
[15] L. Ilie: A note on the number of distinct squares in a word, in Proc. Words2005, 5-th Inter-

national Conference on Words, S. Brlek and C. Reutenauer, eds., vol. 36, Montreal, Canada,
13–17 Sept. 2005, Publications du LaCIM, pp. 289–294.

[16] M. Lothaire: Applied Combinatorics on Words, Cambridge University Press, Cambridge
(UK), 2005.

[17] M. Lothaire: Combinatorics on Words, Cambridge University Press, Cambridge (UK), 2005.
[18] E. Weisstein: Polyomino, from Wolfram Mathworld. Available electronically at

http://mathworld.wolfram.com/Polyomino.html, 2006.
[19] H. A. G. Wijshoff and J. van Leeuven: Arbitrary versus periodic storage schemes and

tesselations of the plane using one type of polyomino. Inform. Control, 62 1984, pp. 1–25.

76

