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Abstract. We propose new algorithms for (δ, γ, α)-matching. In this string matching
problem we are given a pattern P = p0p1 . . . pm−1 and a text T = t0t1 . . . tn−1 over
some integer alphabet Σ = {0 . . . σ−1}. The pattern symbol pi matches the text symbol
tj iff |pi − tj | ≤ δ. The pattern P (δ, γ)-matches some text substring tj . . . tj+m−1 iff
for all i it holds that |pi − tj+i| ≤ δ and

∑

|pi − tj+i| ≤ γ. Finally, in (δ, γ, α)-matching
we also permit at most α length gaps (text substrings) between each matching text
symbol. The only known previous algorithm runs in O(mn) time. We give several
algorithms that improve the average case up to O(n) for small α, and the worst case
to O(min{mn, |M|α}) or O(mn log γ/w), where M = {(i, j) | |pi − tj | ≤ δ} and w is
the number of bits in a machine word. We conclude with experimental results showing
that the algorithms are very efficient in practice.

Keywords: approximate string matching, music information retrieval, bit-parallelism,
sparse dynamic programming

1 Introduction

Background and problem setting. Many notions of approximateness have been
proposed in string matching literature, usually motivated by some real problems. One
of seemingly underexplored problems with applications in music information retrieval
and molecular biology is (δ, γ, α)-matching [4] and its variations. In this problem, the
pattern p0p1 . . . pm−1 is allowed to match a substring of the text t0t1 . . . tn−1 with α-
limited gaps, and the respective pairs of matching characters’ numerical values may
differ only by δ, and the total sum of differences is limited to γ. Translating this
model into a music (melody seeking) application, we can allow for small distortions
of the original melody because the (presumably unskilled) human user may sing or
whistle the melody imprecisely. The gaps, on the other hand, allow to skip over
ornamenting notes (e.g., arpeggios), which appear especially in classical music. Other
assumptions here, that is, monophonic melody and using pitch values only (without
note durations), are reasonable in most practical cases.

Previous work. There are many algorithms that solve some restricted variant of
(δ, γ, α)-matching, such as δ-matching [3], (δ, γ)-matching [5, 6] and (δ, α)-matching
[13, 1, 2, 8]. There are also algorithms that allow transpositions and insertions and
deletions of symbols simultaneously with (δ, γ) or (δ, α)-matching [11, 12]. However,
none of these algorithms can handle (δ, γ, α)-matching. We are aware of only one
algorithm for (δ, γ, α)-matching problem [4]. This is based on dynamic programming,
and runs in O(nm) time.
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Our results. We improve the basic dynamic programming based algorithm [4] to
run in O(nαδ/σ) average time. We develop a simple sparse dynamic programming
algorithm that runs in O(n) average time, and in O(min{mn, |M|α}) worst case
time, where M = {(i, j) | pi =δ tj}. Finally, we develop a bit-parallel dynamic
programming algorithm that runs in O(mn log(γ)/w + nδ) worst case time, where w
is the number of bits in computer word. The average time of this algorithm is close to
O(n log(γ)/w αδ/σ + n). The average case analyzes assume that α is small enough.

2 Preliminaries

Let the pattern P = p0p1p2 . . . pm−1 and the text T = t0t1t2 . . . tn−1 be numerical
strings, where pi, tj ∈ Σ for Σ = {0, 1, . . . , σ− 1}. The number of distinct symbols in
the pattern is denoted by σp.

In δ-approximate string matching the symbols a, b ∈ Σ match, denoted by a =δ b,
iff |a− b| ≤ δ. Pattern P (δ, α)-matches the text substring ti0ti1ti2 . . . tim−1

, if pj =δ tij
for j ∈ {0, . . . ,m − 1}, where 0 < ij+1 − ij ≤ α + 1. Finally, in (δ, γ, α)-matching we
require also that

∑

|pj − tij | ≤ γ. If string A (δ, γ, α)-matches string B, we sometimes
write A =α

δ,γ B.
In all our analysis we assume uniformly random distribution of characters in T

and P , and constant δ and σ. Note that γ < mδ, as otherwise (δ, γ, α)-matching
degenerates into (δ, α)-matching. It is also meaningless to have δ > γ.

For the bit-parallel algorithms we number the bits from the least significant bit (0)
to the most significant bit (w− 1). C–like notation is used for the bit-wise operations
of words; & is bit-wise and, | is or, ∼ negates all bits, << is shift to left, and >>
shift to right, both with zero padding.

3 Dynamic programming

A straight-forward solution to (δ, γ, α)-matching is to use dynamic programming. The
following recurrence can be used:

Di,j =

{

Di−1,j′ + |pi − tj|, pi =δ tj and 0 < j − j′ ≤ α + 1, minDi−1,j′ ≤ γ
γ + 1, otherwise.

(1)

If Dm−1,j ≤ γ, then P =α
δ,γ th . . . tj for some h. The matrix D is simple to compute in

O(αmn) time. As we are only interested in the matching text positions, the O(mn)
space complexity can be easily improved. Using row-wise computation only the cur-
rent and the previous rows need to be in memory, and hence the space complexity
is just O(n). For column-wise computation the space complexity is O(αm) as up to
α + 1 columns have to be stored.

As shown in [4] the time complexity can be improved to O(mn) using min-queue

data structures [9]. However, in practical MIR applications α is usually so small that
the simple brute-force evaluation is faster than using sophisticated data structures
that have large (constant) overhead. Instead, we propose a simple cut-off trick that
improves the average case.

3.1 Cut-off

We make the following observation: if Di...m−1,j−α...j > γ, for some i, j, then
Di+1...m−1,j+1 > γ. This is because there is no way the recurrence can introduce
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Alg. 1 DPCO(T, n, P,m, δ, γ, α).
1 for i ← 0 to α + 1 do for j ← 0 to m − 1 do D[i][j] ← γ + 1
2 for j ← 0 to m − 1 do C[j] ← −α − 1
3 D[0][0] ← |T [0] − P [0]|
4 if D[0][0] > δ then D[0][0] ← γ + 1
5 if D[0][0] ≤ γ then C[0] ← 0
6 top ← m − 1
7 for i ← 1 to n − 1 do

8 C′ ← C[0]
9 k ← i % (α + 2)
10 D[k][0] ← |T [i] − P [0]|
11 if D[k][0] > δ then D[k][0] ← γ + 1
12 if D[k][0] ≤ γ then C[0] ← i
13 for j ← 1 to top do

14 d ← |T [i] − P [j]|
15 min ← γ + 1
16 if d ≤ δ and i − C′ ≤ α + 1 then

17 k′ ← (i − 1) % (α + 2)
18 min ← D[k′][j − 1]
19 for h ← max{0, i − α − 1} to i − 2 do

20 k′ ← h % (α + 2)
21 if D[k′][j − 1] < min then min ← D[k′][j − 1]
22 D[k][j] ← min + d
23 C′ ← C[j]
24 if D[k][j] ≤ γ then

25 C[j] ← i
26 if j = m − 1 then report match
27 while top ≥ 0 and i − C[top] > α + 1 do top ← top − 1
28 if top < m − 1 then top ← top + 1

any other value for those matrix cells. In other words, if p0 . . . pi does not (δ, γ, α)-
match th . . . tj−k for any k = 0 . . . α, then the match at the position j + 1 cannot
be extended to p0 . . . pi+1. This can be utilized by keeping track of the highest row
number top of the current column j such that Dtop+1...m−1,j−α...j > γ, and computing
the next column only up to row top + 1. For this sake we maintain an array C so
that C[i] gives the largest j such that p0 . . . pi =α

δ,γ th . . . tj. This is easy to do in O(1)
time per accessed matrix cell. Alg. 1 shows the complete pseudo code.

Now consider the average time of this algorithm. Computing a single cell Di,j

costs O(α) in the worst case. However, this happens only if p0 . . . pi−1 =α
δ,γ th . . . tj′

and pi =δ tj for some j′ ≥ j − α − 1, and otherwise the cost is just O(1). Therefore
on average each cell is computed in O(αδ/σ) time. Maintaining top costs only O(n)
time in total, since it can be incremented only by one per text character, and the
number of decrements cannot be larger than the number of increments. The average
time of this algorithm also depends on the average value of top, i.e. the total time is

O(n avg(top) αδ/σ). For γ = ∞ it can be shown that avg(top) = O
(

δ
σ(1−δ/σ)α+1

)

[2].

This is O(αδ/σ) for δ/σ < 1−α−1/(α+1), so the average time is at most O(n(αδ/σ)2).
We have neglected the effect of γ, but by forcing the γ condition the time can only
improve, hence our analysis is pessimistic. In the worst case the time is O(αmn), but
this can be improved to O(mn) as in [4], the only difference being that we need m
queues, since we are computing column-wise (as opposed to row-wise in [4]).

4 Simple algorithm

In this section we will develop a variant of the Simple algorithm for (δ, α)-matching
[7]. This performs very well on small (δ, γ, α).
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Alg. 2 Simple(T, n, P,m, δ, γ, α).
1 h ← 0
2 for i ← 0 to n − 1 do

3 M [i] ← γ + 1
4 d ← |T [i] − P [0]|
5 if d ≤ δ then

6 L1[h] ← i
7 G[h] ← d
8 h ← h + 1
9 for j ← 1 to m − 1 do

10 pn ← h; h ← 0;
11 for i ← 0 to pn − 1 do

12 g ← G[i]
13 for k ← L1[i] + 1 to min(L1[i] + α + 1, n − 1) do

14 d ← |T [k] − P [j]|
15 if d ≤ δ and g + d ≤ γ then

16 if M [k] ≤ γ then

17 if g + d < M [k] then M [k] ← g + d
18 else

19 L2[h] ← k
20 h ← h + 1
21 M [k] ← g + d
22 if j = m − 1 and M [k] ≥ 0 then

23 report match
24 M [k] ← −1
25 if j < m − 1 then for i ← 0 to h − 1 do

26 k ← L2[i]
27 G[i] ← M [k]
28 M [k] ← γ + 1
29 Lt ← L1; L1 ← L2; L2 ← Lt;

The algorithm begins by computing a list L of δ-matches for p0:

L0 = {j | tj =δ p0}. (2)

This takes O(n) time (and solves the (δ, γ, α)-matching problem for patterns of length
1). The matching prefixes are then iteratively extended, subsequently computing lists:

Li = {j | pi =δ tj and Di−1,j′+|pi−tj| ≤ γ and j′ ∈ Li−1 and 0 < j−j′ ≤ α+1}. (3)

List Li can be easily computed by linearly scanning list Li−1, and checking if any of
the text characters tj′+1 . . . tj′+α+1, for j′ ∈ Li−1 δ-matches pi, and if so whether the
sum of errors is still at most γ. When some j is appended into Li, the corresponding
matrix cell Di,j is also updated to hold the sum of errors for the matching pattern
prefix p0 . . . pi. Note that we put each j only once into Li, but there can be up to
α +1 different j′ ∈ Li−1 that may cause it. In the case that j is already in Li we only
update Di,j if the new sum is smaller. This takes O(α|Li−1|) time. Alg. 2 shows the
code.

Clearly, in the worst case the total length of all the lists is
∑

i |Li| = |M|, where
M = {(i, j) | pi =δ tj}, and hence the algorithm runs in O(α|M|) worst case time.
Consider now the average case. List L0 is computed in O(n) time. The length of this
list is O(nδ/σ) on average. Hence the list L1 is computed in O(αnδ/σ) average time,
resulting in a list L1, whose average length is O(nδ/σ×αδ/σ). In general, computing
the list Li takes

O(α|Li−1|) = O(nαi(δ/σ)i) = O(n(αδ/σ)i) (4)

average time. This is exponentially decreasing if αδ/σ < 1, i.e. if α < σ/δ, and hence,
summing up, the total average time is O(n). Note that we did not use γ in this
analysis, making it pessimistic.
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4.1 Improving the worst case

As a theoretical option, we can improve the worst case of this algorithm to
O(min{mn,α|M|}). The idea is to avoid brute force handling of overlapping win-
dows of size α + 1. We make use of the min-queue data structure [9], similarly to the
concept from [4] where the min-queue was used with plain dynamic programming.

For the current cell Di+1,j, the keys in the queue are the values of Di,j′ , where
j′ ∈ {Li | 0 < j−Li < α+1}. For calculating Di+1,j it is enough to add its individual
error to the minimum sum of errors from the queue. An algorithmic challenge is
to update the queue quickly. For each processed cell only 0 or 1 values have to be
inserted to the front of the queue and from 0 to α + 1 deleted from the tail. Note
however that only O(1) cells (amortized) are inserted or deleted at each step. All the
operations can then be done in O(1) time with the min-queue data structure. This
gives O(min{mn,α|M|}) worst case time.

Finally, the O(α) factor can be removed by precomputing M. This can be done in
O(min{|M|+n, δn}) worst case time and O(n(δσp/σ+1)) average case time for inte-
ger alphabets (see Sec. 5). Having M available, we can avoid the brute force scanning
for δ-matches. M can be stored e.g. in Johnson’s data structure [10] which supports
a homogeneous sequence of insertions and successor searches in O(log log(mn/|M|))
time. This gives O(|M| log log(mn/|M|)) worst case time, but destroys the good av-
erage case because of the costly precomputation. Note that O(|M| + n) worst case
algorithm is easy to obtain by simply scanning M linearly, but this then becomes
also the average case.

5 Bit-parallel dynamic programming

We now show how the basic dynamic programming algorithm can be bit-parallelized.
The algorithm is based on the bit-parallel dynamic programming algorithm for (δ, α)-
matching [8]. All the interesting values in the matrix D are at most γ, and all other
values can be represented as any value greater than γ. Hence O(log γ) bits per ma-
trix cell is sufficient, and we can compute O(w/ log γ) cells in parallel, where w is
the number of bits in a machine word. Moreover, we show how to handle α up to
O(w/ log γ) efficiently. We obtain O(mn log γ/w) worst case time algorithm.

Each matrix cell is represented with

ℓ = ⌈log2(2γ + 1)⌉ (5)

bits, and number zero is represented (using ℓ bits) as 2ℓ−1−(γ+1). This representation
has been used before e.g. for (δ, γ)-matching [5]. We still need an additional bit per
cell, and hence each machine word packs

C = ⌊w/(ℓ + 1)⌋ (6)

cells, or counters. This representation solves three problems we are going to face
shortly: (i) counter overflows can be handled in parallel; (ii) it is easy to check in
parallel if some of the counters have exceeded γ; (iii) thanks to the additional bit it
is easy to compute pair-wise minima over two sets of counters in parallel.

Assume then that in the preprocessing phase we have computed a helper matrix
(whose efficient computation we will consider later) V :

Vi,j =

{

|pi − tj|, pi =δ tj
γ + 1, otherwise.

(7)
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Figure 1. Tiling the dynamic programming matrix with C = ⌊w/(ℓ + 1)⌋ × 1 vectors (C = 8). The
dark gray cell of the current tile depends on the light gray cells of the two tiles in the previous row
(α = 4).

The computation of D will proceed column-wise, C columns at once. We adopt the
notation DC

i,j = Di,jC...(j+1)C−1, and analogously V C for V , to make the parallelism

explicit. Assume now that α < C. The goal is then to produce DC
i,j from V C

i,j , D
C
i−1,j and

DC
i−1,j−1. DC

i,j does not depend on any other DC element, according to the definition
of D, and given our assumption that α < C. Fig. 1 illustrates.

Now, according to the recurrence, the kth counter in DC
i,j is the sum of (i) the kth

counter of V C
i,j (i.e. |pi−tjC+k|) and (ii) the minimum of the counters k−α−1 . . . k−1

in DC
i−1,j and the counter k + C − α − 1 . . . C − 1 in DC

i−1,j−1 (i.e. the gap length to
the previous match is at most α), see Fig. 1.

To compute item (ii) efficiently we assume that we have available function M(x),
that replaces each counter in x with the minima of the α + 1 previous counters in x.
The recurrence for DC then becomes:

DC
i,j = V C

i,j + (M((DC
i−1,j << w) | (DC

i−1,j−1 << (w − w % C))) >> w), (8)

where for simplicity we have assumed that M(x) can handle words of length 2w.
However, the above equation may cause counter overflow. To prevent this we use

DC
i,j = (V C

i,j + (M ′ & ∼hmsk)) | (M ′ & hmsk), (9)

instead, where

M ′ = M((DC
i−1,j << w) | (DC

i−1,j−1 << (w − w % C))) >> w, (10)

and hmsk selects the ℓth bit of each counter. That is, M ′ & ∼hmsk clears the high-
est bit of each counter, so that the result can be safely added to V C

i,j , and then
| (M ′ & hmsk) restores the highest bit. This works correctly, as if the highest bit

was set, then the sum is certainly greater than γ, and its exact value is not interesting
anymore. The (ℓ + 1)th bit is not affected by the summation as the maximum value
added is γ + 1.

Finally, to detect the possible pattern occurrences we must add our representation
of zero (2ℓ−1−(γ+1)) to each counter. If some of the counters have still not overflowed,
the corresponding text positions match. This can be detected as

q = ∼(((DC
m−1,j & ∼hmsk) + zeromsk) | DC

m−1,j) & hmsk, (11)

where zeromsk has the value 2ℓ−1 − (γ + 1) in each counter position. Each set bit in
q then indicates a pattern occurrence.
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Alg. 3 vmin(x, y,msk).
1 F ← ((x | msk) − y) & msk
2 F ← F − (F >> ℓ)
3 return (x & ∼F ) | (y & F )

Alg. 4 M(x, y, α,msk).
1 x ← (x << w) | (y << (w − w % C))
2 while α 6= 0 do

3 r ← α % 2
4 α ← ⌊α/2⌋
5 x ← vmin(x, x << ((ℓ + 1)α), msk)
6 if r = 0 then continue

7 x ← vmin(x, x << (ℓ + 1), msk)
8 return (x << (ℓ + 1)) >> w

Consider now the computation of M(x). One possible solution is to use table look-
ups to compute it in constant time. Since w can be too large to make this approach
feasible, we can precompute the answers e.g. to only w/2 or w/4 bit numbers, and
correspondingly compute M(x) in 2 or 4 pieces without affecting the time complexity
(in our tests we used at most w/2 = 16 bit numbers for computing M(x)).

Another solution is to use repeated shifting and minimization. That is, assuming
that vmin(x, y) computes pair-wise minima of the counter sets x and y, we compute
x ← vmin(x, (x << (ℓ+1)) | (γ +1)) and repeat that α times, and then perform the
final shift x ← x << (ℓ+1), which gives the desired result. The minimization can be
done in O(1) time [14], see Alg. 3. The total time for computing M(x) is then O(α).
This can be easily improved to O(log α). Without loss of generality assume that α is
a power of two. Instead of shifting one counter position at a time we first shift by α/2
counter positions, then α/4 counter positions, and so on log2 α times, performing the
minimization at each step. Alg. 4 shows the code, handling the general case as well.
This algorithm takes the counter sets DC

i−1,j and DC
i−1,j−1, that can affect the current

counters DC
i,j, as parameter. For simplicity these are handled as a concatenated single

word of 2w bits. Eq. (10) then becomes

M ′ = M(DC
i−1,j, D

C
i−1,j−1, α,msk), (12)

where msk has every (ℓ + 1)th bit set, needed at the counter minimization.
We also need to compute V efficiently. This is easy with table look-ups as we

have an integer alphabet. We first compute a table L, such that for all c ∈ Σ the list
L[c] contains all the distinct characters pi that satisfy pi =δ c. Using this table we
build a table V ′, which we will use as a terse representation of V , namely we have
that V ′[pi] = Vi. This can be done by scanning through the text, and setting the
jth counter of V ′[c] to |c − tj| for each c ∈ L[tj]. This process takes O(⌈n/C⌉σp +
m + σ + δσp + δn) = O(⌈n/C⌉σp + δn) worst case time. The probability that two
characters δ-match is at most (2δ+1)/σ, and hence the expected number of matching
pattern characters for each text character is O(δσp/σ). Therefore, the average case
complexity of the preprocessing is O(⌈n/C⌉σp +n(δσp/σ+1)). Searching clearly takes
only O(⌈n/C⌉m) = O(⌈n log γ/w⌉m) time if table look-ups are used for computing
M(x), and O(⌈n log α log γ/w⌉m) if Alg. 4 is used. For α larger than O(w/ log γ) the
search time must be multiplied by O(⌈α log γ/w⌉).

Extended patterns. We note that this algorithm can be easily adapted to handle
character classes, both in the pattern and the text. I.e. the pattern and text symbols
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can be subsets of the alphabet, that is, pi, tj ⊆ Σ. The search algorithm does not
change, we just change the definition (and preprocessing) of V :

Vi,j =

{

min |p − t|, p =δ t and p ∈ pi, t ∈ tj
γ + 1, otherwise.

(13)

5.1 Cut-off

The cut-off trick used in Sec. 3.1 obviously works for the bit-parallel algorithm as
well. More formally, we define (for DC) the maximum row topC

j for the column j as:

topC
j = argmaxi{ (MatchMsk(DC

i−1,j−1) >> ((C − α − 1)(ℓ + 1))) 6= 0 or (14)

(MatchMsk(DC
i−1,j) << (ℓ + 1)) 6= 0 }, (15)

where

MatchMsk(x) = ∼(((x & ∼hmsk) + zeromsk) | x) & hmsk. (16)

Consider first the part (14). The rationale is as follows. When we are computing DC
i,j,

only the last α + 1 counters of DC
i−1,j−1 that are at most γ can affect the counters in

DC
i,j. We therefore select the corresponding counter bits that indicate whether or not

the sum have exceeded γ. However, since we are computing C columns in parallel,
the C − 1 first counters that have a value of at most γ in DC

i−1,j (15), i.e. in the

previous row of the current set of columns, can affect the counters in DC
i,j as well.

Obviously, this second part cannot be computed at column j−1. We solve this simply
by computing the first part of topC

j after the column j − 1 have been computed, and

when processing the column j, we increase topC
j if needed according to the second

part (15).
Alg. 5 gives the pseudo code. It uses the O(log α) time algorithm for the M(·)

function. The average case running time of this algorithm depends on what is the
average value of topC . For C = 1 and γ = ∞ avg(top1) = O( δ

σ(1−δ/σ)α+1 ), see Sec. 3.1.

We are not able to analyze avg(topC) exactly, but we have trivially that avg(top1) ≤
avg(topC) ≤ avg(top1)+C−1, and hence the amortized average search time of Alg. 5
is at most O((⌈n/C⌉⌈αδ/σ⌉ + n) log α). The log α factor can be easily removed with
precomputation.

5.2 Lazy preprocessing

This can be still improved by interweaving the preprocessing and search phases, so
that we initialize and preprocess V C only for topC

j length prefixes of the pattern for

each j. At the time of processing the column j, we only know topC
j−1, so we use an

estimate ε × topC
j−1 for topC

j , where ε > 1 is a small constant. If this turns out to be
too small, we just increase the estimate and re-preprocess for the current column. The
total preprocessing cost on average then becomes only O(⌈n/C⌉σtopCδ/σ + n), where
σtopC is the alphabet size of topC length prefix of the pattern. Hence the initialization
time is at most O(⌈n/C⌉⌈αδ/σ⌉ + n) on average. This matches the search time, and
together with the preprocessing the total is O(⌈n/C⌉⌈αδ/σ⌉ + n⌈αδ/σ⌉δ/σ + n) on
average.
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Alg. 5 BPCO(T, n, P,m, δ, γ, α).
1 ℓ ← ⌈log2(2γ + 1)⌉
2 f ← (w/(ℓ + 1))
3 Qb ← (f/2)(ℓ + 1)
4 zmsk ← (1 << (ℓ + 1)) − 1
5 for i ← 0 to σ − 1 do A[i] ← 0
6 for i ← 0 to m − 1 do

7 if A[P [i]] then continue

8 A[P [i]] ← 1
9 for j ← max{0, P [i] − δ} to min{P [i] + δ, σ − 1} do

10 Lt[j] ← Lt[j] ∪ {P [i]}
11 zero ← (1 << (l − 1)) − (γ + 1)
12 hhmsk ← 0
13 for i ← 0 to f − 1 do hhmsk ← hhmsk | (1 << ((i + 1)(ℓ + 1) − 1))
14 hmsk ← hhmsk >> 1
15 b ← (n + f − 1)/f
16 for i ← 0 to σ − 1 do

17 V [i] ← 0
18 if A[i] 6= 0 then

19 for j ← 0 to b − 1 do V [i][j] ← hmsk
20 for i ← 0 to n − 1 do

21 for j ← 0 to |Lt[T [i]]| − 1 do

22 c ← Lt[T [i]][j]
23 V [c][i/f ] ← V [c][i/f ] & ∼(zmsk << ((i % f)(ℓ + 1)))
24 V [c][i/f ] ← V [c][i/f ] | (|c − T [i]| << ((i % f)(ℓ + 1)))
25 top ← m − 1
26 D1[0] ← V [P [0]][0]
27 for i ← 1 to top do

28 x ← M(D1[i − 1], hmsk, α, hhmsk)
29 D1[i] ← (V [P [i]][0] + (x & ∼hmsk)) | (x & hmsk)
30 zeromsk ← 0
31 for i ← 0 to f − 1 zeromsk ← zeromsk | (zero << (i(ℓ + 1)))
32 x ← ∼(((D1[m − 1] & ∼hmsk) + zeromsk) | D1[m − 1]) & hmsk
33 if x 6= 0 then report matches
34 k ← ((f − α − 1)(ℓ + 1))
35 for j ← 1 to b − 1 do

36 D2[0] ← V [P [0]][j]
37 if top = 0 then

38 if (∼(((D2[0] & ∼hmsk) + zeromsk) | D2[0]) & hmsk) 6= 0 then D1[0] ← hmsk; top ← top + 1
39 for i ← 1 to top do

40 x ← M(D2[i − 1], D1[i − 1], α, hhmsk)
41 D2[i] ← (V [P [i]][j] + (x & ∼hmsk)) | (x & hmsk)
42 x ← ∼(((D2[i] & ∼hmsk) + zeromsk) | D2[i]) & hmsk
43 if i = top and top < m − 1 and (x << (ℓ + 1)) 6= 0 then D1[i] ← hmsk; top ← top + 1
44 if top = m − 1 and x 6= 0 then report matches
45 do x ← (∼(((D2[top] & ∼hmsk) + zeromsk) | D2[top]) & hmsk) >> k
46 if x = 0 then top ← top − 1
47 while top ≥ 0 and x = 0
48 if top < m − 1 top ← top + 1
49 Dt ← D1; D1 ← D2; D2 ← Dt

5.3 Multiple patterns

The algorithm has relatively high preprocessing cost O(δn + σp⌈n/C⌉) in the worst
case. However, if we want to search a set of r patterns, instead of only one pattern,
the preprocessing remains essentially the same, since it depends only on the text
and the pattern alphabet. The total (worst case) preprocessing time increase only
O(δn+σp⌈n/C⌉+rm), where we have pessimistically considered that m is the length
of the longest pattern in the set, and that σp is the number of distinct symbols in the
whole pattern set. The search times have to be multiplied by r, but the amortized
preprocessing cost per pattern is considerably reduced. If r is small as compared to
σ/δ, the search cost can be reduced by “superimposing” the patterns, that is we
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define

Vi,j =

{

min |p − tj|, p =δ tj and p ∈ ph
i , h ∈ 0 . . . r − 1

γ + 1, otherwise,
(17)

where we use the notation ph
i to denote the ith symbol of the hth pattern. We then

need only one search, but the potential matches must be verified. Superimposing
works for the other algorithms as well.

5.4 Filtering

Alg. 5 is substantially more complex than its ancestor, the (δ, α)-matching algorithm
[8]. In addition to being simpler, the previous algorithm achieves greater parallelism,
the worst case search time being only O(⌈n/w⌉m). However, we note that this algo-
rithm (as any (δ, α)-matching algorithm) can be used as a filter, since it implicitly
assumes that γ = ∞. The potential occurrences have to verified, which can be done
using any of the algorithms given in this paper. The worst case time then becomes
that of the verification algorithm.

6 Experimental results

We have run experiments to evaluate the performance of our algorithms. The ex-
periments were run on Pentium4 2.4GHz with 512Mb of RAM, running GNU/Linux
2.4.20 operating system. We have implemented all the algorithms in C, and compiled
with icc 9.0.

For the text we used a concatenation of 7543 music pieces, obtained by extracting
the pitch values from MIDI files. The total length is 1,828,089 bytes. The pitch values
are in the range [0 . . . 127]. This data is far from random; the six most frequent pitch
values occur 915,082 times, i.e. they cover about 50% of the whole text, and the
total number of different pitch values is just 55. We also repeated the experiments on
uniformly random data, with σ = 128. A set of 100 patterns were randomly extracted
from the text. Each pattern was then searched for separately, and we report the
average user times.

We experimented with the following algorithms:

BP Cut-off Bit-parallel dynamic programming with cut-off, Alg. 5 (without the lazy
preprocessing);

BP Filter The (δ, α)-matching version of BP Cut-off [8] used as a filter, and Alg. 1
used for the verifications;

DP Cut-off Dynamic programming with cut-off, Alg. 1;
Simple Simple sparse dynamic programming, Alg. 2.

We omitted the results for basic dynamic programming based algorithms, since these
are orders of magnitude slower. Fig. 2 shows the timings. Simple is the clear winner
in most of the cases. BP Cut-off suffers from the large preprocessing cost, especially
if the pattern alphabet is large. The same is true for the BP Filter, but this is more
competitive in MIDI data, where the pattern alphabet is effectively very small.
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Figure 2. Execution times in seconds for m = 8 . . . 32. Note the logarithmic scale.
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7 Conclusions

We have presented new efficient algorithms for (δ, γ, α)-matching. Our algorithms
are based on aborting the computation early where the match cannot be extended
and on bit-parallelism. Besides having theoretically good worst and average case
complexities, the algorithms are shown to work well in practice.
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[11] V. Mäkinen: Parameterized approximate string matching and local-similarity-based point-

pattern matching, PhD thesis, Department of Computer Science, University of Helsinki, Aug.
2003.
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