
Compressed Pattern Mathing in JPEG Images

Shmuel T. Klein

1

and Dana Shapira

2

1

Dept. of Computer Siene

Bar Ilan University

Ramat-Gan 52900, Israel

e-mail: tomi�s.biu.a.il

2

Dept. of Computer Siene

Ashkelon Aademi College

Ashkelon, Israel

e-mail: shapird�aad.ash-ollege.a.il

Keywords: Data Compression, JPEG, Hu�man

Abstrat. The possibility of applying ompressed mathing in JPEG enoded

images is investigated and the problems raised by the sheme are disussed. A

part of the problems an be solved by the use of some auxiliary data whih

yields various time/spae tradeo�s. Finally, approahes to deal with extensions

suh as allowing saling or rotations are suggested.

1 Introdution

The paradigm of ompressed pattern mathing has reently gotten a lot of attention.

The idea of the ompressed mathing was �rst introdued in the work of Amir and

Benson [1℄ as the task of performing pattern mathing in a ompressed text without

deompressing it. For a given text T and pattern P and omplementary enoding

and deoding funtions, E and D respetively, our aim is to searh for E(P) in E(T),

rather than the usual approah whih searhes for the pattern P in the deompressed

text D(E(T)). Amir and Benson deal with a run-length enoded two-dimensional

pattern, but most works address the problem of �nding one-dimensional patterns in

�les ompressed by various methods, suh as Hu�man oding [9℄, Lempel-Ziv [13℄, or

speially adapted methods [11, 8℄.

We onentrate here on two-dimensional ompressed mathing in whih the given

text is an image enoded by the standard JPEG baseline sheme [6℄ and the pattern

onsists of a given image fragment we are looking for. In a more general setting, a

olletion of images ould be given, and the subset of those inluding at least one opy

of the pattern is sought. An example for the former ould be an aerial photograph of

a ity in whih a ertain building is to be loated, an example for the more general

ase ould be a set of pitures of faes of potential suspets, whih have to be mathed

against some known identifying feature like a nose or an eyebrow.

Baseline JPEG uses a stati Hu�man ode, without whih ompressed mathing

would not always be possible, sine our underlying assumption is that all ourrenes

125

Proeedings of the Prague Stringology Conferene '05

of the pattern are enoded by the same binary sequene. This is not the ase for

dynami Hu�man oding or for arithmeti oding. Lempel-Ziv methods are also

adaptive, but for them ompressed mathing is possible beause all the fragments of

the pattern appear in the text, though not neessarily in the same order as in the

pattern.

In a �rst approah, we aept as simplifying assumption that only exat opies of

the pattern are to be found. Returning to the example of the aerial piture, it would

of ourse also be interesting to loate the given building if the pattern presents it in

a di�erent angle than it appears in the larger image, or at another sale, or even only

partially, beause it ould have been oluded by a loud when the piture has been

taken. The orresponding pattern mathing problems, allowing rotations, saling and

olusions, are more diÆult and have been treated in [2, 3℄.

In the next setion, we review the basi ingredients of the JPEG algorithm, then

turn in Setion 3 to the method we suggest for ompressed mathing in JPEG �les.

The main problem to be dealt with is one of synhronization and alignment, so we

explore in Setion 4 the possibility of using auxiliary �les to solve suh alignment

problems. The last setion deals with extensions to rotations and saling.

2 The JPEG standard

JPEG [6℄ is a lossy image ompression method. In a �rst step, the piture is split

into a sequene of bloks of size 8� 8 pixels. Eah blok is then ompressed by the

following sequene of transformations:

1. Applying a Disrete Cosine Transform (DCT) [14℄ to the set of 64 values of the

pixels in the blok;

2. Applying Quantization to the DCT oeÆients, thereby produing a set of 64

smaller integers. This step auses a loss of information but makes the data more

ompressible;

3. Applying an entropy enoder to the quantized DCT oeÆients. Baseline JPEG

uses Hu�man oding in this step, but the JPEG standard spei�es also arith-

meti oding as possible alternative.

The deompression proess just reverses the ations and their order. It �rst applies

Hu�man deoding, then dequantizes the oeÆients, and �nally uses an inverse DCT

to obtain a set of values. Beause of the quantization step, the reonstruted set

inludes only approximated values.

The oeÆient in position (0,0) (left upper orner) is alled the DC oeÆient and

the 63 remaining values are alled the AC oeÆients. In priniple, the DC oeÆient

should store a measure of the average of the 64 pixel values of the given blok, but

sine there is usually a strong orrelation between the DC oeÆients of adjaent

bloks, what is atually stored is the di�erene between the average in this blok and

the average in the previous one.

Baseline JPEG uses two di�erent Hu�man trees to enode the data. The �rst

enodes the lengths in bits (1 to 11) of the binary representations of the values in the

DC �elds. The seond tree enodes information about the sequene of AC oeÆients.

126

Compressed Pattern Mathing in JPEG Images

As many of them are zero, and most of the non-zero values are often onentrated in

the upper left part of the 8�8 blok, the AC oeÆients are sanned in a �xed zig-zag

order, proessing elements on a diagonal lose to the upper left orner before those

on suh diagonals further away from that orner; that is, the order is given by (0,1),

(1,0), (2,0), (1,1), (0,2), (0,3), (1,2), et. The seond Hu�man tree enodes pairs of

the form (n; `), where n (limited to the range 0 to 15) is the number of elements that

are 0, preeding a non-zero element in the given order, and ` is the length in bits (1

to 10) of the binary representation of the non-zero quantized AC value. The seond

tree inludes also odewords for End of Blok (EOB), whih is used when no non-zero

elements are left in the sanning order, and for a sequene of 16 onseutive 0s in the

AC sequene (ZRL). The Hu�man trees used in baseline JPEG are stati, and an

be found in [15℄.

Eah 8�8 blok is then enoded by an alternating sequene of Hu�man odewords

and binary integers (exept that the odewords for EOB and ZRL are not followed

by any integer), the �rst odeword belonging to the �rst tree and relating to the DC

value, the other odewords enoding the (n; `) pairs for the AC values, with the last

odeword in eah blok representing EOB. Figure 1(a) brings an example blok of

quantized values, with the DC value in boldfae in the upper left orner. The upper

part of Figure 1(b) shows the enoding of this blok, with elements to be Hu�man

enoded appearing in parentheses, and the elements orresponding to DC (the value

of whih we assume to be 5) bold faed; the binary translation of the enoding, with

framed Hu�man odewords, is shown underneath.

20 1 0 0 0 0 0 0

0 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0

-2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(a) Typial JPEG blok

(3) 5 (0,1) 1 (2,2) 3 (4,2) -2 (EOB)

100 101 00 1 11111001 11 1111111000 01 1010

(b) Enoding of JPEG blok

Figure 1: Example of JPEG blok and its enoding

JPEG enodes the bloks row by row, from left to right, and onatenates the

enoded bloks. A small header enodes the number of rows and olumns, so there

is no need to enode an end-of-row indiator spei�ally. Atually, to simplify the

disussion and the examples, our desription refers to only one omponent, the lumi-

nane, of JPEG enoding, whih orresponds to blak and white images. JPEG also

supports olor images, where eah olor pixel is split into several omponents (RGB

or YUV).

3 Pure ompressed mathing

We are given an image T of n � k pixels, in whih a two-dimensional pattern P of

size m � ` pixels should be found. Sine JPEG works with 8 � 8 pixel bloks, we

127

Proeedings of the Prague Stringology Conferene '05

assume that n and k are multiples of 8. The ompressed mathing starts by enoding

the pattern using the same JPEG algorithm as the one used for the original image.

Even then we annot assure that a pattern an be loated, as the 8 � 8 bloks of

the pattern are not neessarily aligned with those of the image. The searh proess

has therefore to be repeated 64 times, positioning, for eah mathing attempt, the

leftmost uppermost pixel of the �rst 8� 8 blok in the pattern at the ith pixel in the

jth row, 1 � i; j � 8. Figure 2 is an example of how the pattern ould be partitioned:

there will usually be a frame at the border of the pattern (the darker area in Figure 2)

orresponding to 8� 8 bloks that �t only partially. The pixels in this frame will not

partiipate in the mathing proess, so the pattern is atually restrited to an area of

full ontiguous 8� 8 bloks (the white area in Figure 2). For the rest of this paper,

let m and ` then represent the dimensions of the restrited pattern, that is, m and `

are also multiples of 8.

Figure 2: Example of partition of the pattern into 8� 8 bloks

The �rst blok is JPEG enoded, yielding one DC value and a sequene of AC

values. Sine DC elements are enoded relative to preeding bloks, the DC value

of this �rst blok annot be loated, so the mathing starts only from the beginning

of the sequene of AC values. These are alulated for eah blok independently,

therefore if the pattern-blok does appear as a blok in the image T , the enoded

sequene of AC values will appear in the enoded image E(T). The DC values of the

seond and subsequent bloks in the �rst row of 8� 8 bloks of P an be evaluated

based on the DC values of the preeding bloks, hene the �rst part of the enoded

pattern to be searhed for in E(T) onsists of the sequene of AC values followed by

the `=8� 1 enoded 8� 8 bloks of the �rst row.

The ompressed mathing paradigm raises then several problems. First, suppose

that the binary sequene enoding the �rst part of the pattern is indeed loated. This

does not neessarily mean that an ourrene of the enoded elements is found, as

the beginning of the Hu�man odewords might not be synhronized. Consider, for

example, the blok (2) 3 (0,2) �3 (EOB), to be loated in a sequene of several

bloks idential to those of the example in Figure 1(b). Figure 3 shows that the

pattern (after having stripped the DC values) will be found erroneously rossing the

blok boundaries in E(T).

The same problem was noted in [9℄, and in [10℄ in an appliation to parallel

deoding of a JPEG �le when several proessors are available. For long enough

patterns, the tendeny of Hu�man odes to resynhronize after errors may suggest

that false alarms as those in the above example might be rare, but in our appliation,

the rows of the pattern may be short. Moreover, the problem in the JPEG ase is

more severe than for plain Hu�man deoding. For the latter, one synhronization

has been regained, the remainder of the enoded �le is orret. In JPEG �les, on

128

Compressed Pattern Mathing in JPEG Images

�2 (EOB) (3) 5 (0,1)

� � � 0 1 1 0 1 0 1 0 0 1 0 1 0 0 � � �

(0,2) �3 (EOB)

Figure 3: Example of false alignment

the other hand, onsisting of both Hu�man odewords and integer enodings, the

fat that a given bit is the last in a odeword for both the orret and the erroneous

deoding does not imply that both deodings will ontinue identially. Referring again

to Figure 3, the odewords for (3) and �3 end at the same bit, whih is nevertheless

not a synhronization point.

The seond problem is that the enoded pattern does not appear onseutively

in the enoded image (unless k = `), but with gaps orresponding to the enoding

of (k� `)=8 bloks. The pattern is therefore partitioned into m=8 sub-patterns, eah

orresponding to a row of `=8 bloks, and with the �rst DC value of eah sub-pattern

eliminated. If the sub-patterns are loated using some pattern mathing algorithm,

we annot onlude with ertainty that the pattern has been found. In addition to

the above problem of possible false alignments, one annot know if eah of the gaps

are indeed the enoding of (k� `)=8 bloks, even if the sub-patterns are found in the

required order and even if all of them are true mathes.

One of the possible solutions ould be, one the �rst row of the pattern has been

found, to ontinue deompressing the image, keeping a ount of the deoded bloks.

In other words, pattern mathing would only be used for the �rst row of the pattern,

then the image would be deoded sequentially. In fat, one does not really need

full deoding: the Hu�man odewords in the JPEG �le indiate the length in bits

of the integers following the odewords, and for our purpose, these integers an be

simply skipped. This solution ould, however, not really be onsidered as ompressed

mathing, sine, depending on the position of the �rst ourrene of the pattern in the

enoded �le, large parts of it, possibly almost the whole original �le, are deompressed.

The third problem relates to the fat that there are possibly many ourrenes of

the pattern, perhaps even overlapping ones. In images this might be more frequent

than for plain texts, beause large areas ould represent some uniform bakground

(a blue sky, dark parts in the shadow, et.), and therefore onsist of many idential

bloks. If eah of the rows of the pattern is loated several times, we need to math

somehow their ourrenes to hek whether indeed we have an ourrene of the

whole pattern. This might be a diÆult task even if we ignore the problem of ertain

ourrenes being false mathes.

We therefore onlude that ompressed pattern mathing in JPEG �les is hard to

ahieve, unless we keep some auxiliary data, as suggested in the following setion.

4 Compressed mathing with auxiliary data

The task would be muh easier if one would know, for a given position in the JPEG

enoded �le, the index of the orresponding 8� 8 blok in the original �le. A step in

this diretion would be using synhronizing odewords (see [7℄), for example at the

129

Proeedings of the Prague Stringology Conferene '05

end of eah enoded row, but this would require a hange in the enoding standard, for

example to JPEG-2000 [12℄ whih has synhronizing odewords built-in. In fat, the

ode used in baseline JPEG is not really a Hu�man ode, beause it is not omplete:

there is, e.g., no odeword onsisting only of 1's. This an be exploited to devise a

synhronizing sequene: the longest sequene of 1's that an appear is of length 29,

in the enoding of (10,10) 1023 (15,10), whih is translated into 1111111111001111

1111111111 1111111111111110. Therefore a sequene of 30 onseutive 1's is synhro-

nizing. This synhronizing sequene ould be inserted at the end of eah row, whih

ould therefore be deteted without deoding. Alternatively, instead of wasting 30

bits for synhronization, one of the odewords ould be replaed by this string of 1's,

for example the odeword 1010 for EOB. This would inrease eah enoded blok by

26 bits, but false mathes are then easily deteted. Nevertheless, 26 bits for eah 8�8

blok, whih are generally enoded by a few hundred bits or less, might be too high

a prie to pay.

4.1 Building an index

Instead of modifying the JPEG �le, one ould onstrut a table S, ating as an index,

that would be stored in addition to the original ompressed �le. S(i) would be the

bit-position, within the JPEG image, of the beginning of the enoding of the AC

sequene in the ith blok, that is the index of the bit following the DC value. The

size of eah entry in S would be dlog

2

jE(T)je, where jxj refers to the size of x in bits,

so that a 3 byte entry ould aommodate a ompressed image of size up to 2MB.

The number of entries is S is nk=64, the number of 8� 8 bloks in T .

The onstrution of suh an index has to be done in a preproessing stage, and

it ould be argued that this ontradits the main idea of ompressed mathing, sine

while building the table S one atually deompresses the whole image. Nevertheless,

the preproessing an be justi�ed in ertain appliations, for example when one large

image will be used many times for searhes with di�erent patterns. This is similar to

regular pattern mathing with a �xed large text of size n and possibly many patterns

to be looked for. Some of the fastest algorithms are then based on onstruting a suÆx

tree [16, 4℄, the size of whih may often exeed that of the text itself. Constrution

time is linear in n, but one the suÆx tree is ready, the time to loate a pattern is

independent of the size of the text.

The index S an be used to solve some of the problems mentioned above. One the

enoding of the �rst row of the pattern image has been loated in E(T) at bit o�set

y, a binary searh for y in S an deide in dlogn + log ke � 6 omparisons whether

the math is a true one. Similar searhes for the following rows of the pattern an

loate all the rows, without deoding.

To get a feeling about the size of the required indies, we have applied this idea

on the three graysale sample JPEG �les in Figure 4: the lassial Lenna piture,

a hessboard with many idential sub-parts, and a rose. Table 1 shows the details,

giving the number of rows and olumns, r� , the size in bytes, s, of the ompressed

�le, and the absolute (in bytes) and relative size (in perent) of the index S. The size

is given by ((dr=8e � d=8e)(log

2

(s) + 3)) =8.

If the size of S is too large, a time/spae tradeo� an be obtained by �xing an

integer parameter d and storing only every dth entry of S. The storage overhead is

130

Compressed Pattern Mathing in JPEG Images

Lenna Chess Rose

Figure 4: Examples of JPEG �les

File pixels jpeg size index size %

Lenna 256 � 256 30,763 2304 7.5

Chess board 150 � 150 14,112 768 5.4

Rose 227 � 149 12,089 1171 9.7

Table 1: Details on sample �les

redued by a fator of d, at the ost of inreased searh time: the binary searh for

the bit o�set y now loates the largest value is S that is still smaller or equal to y;

from there, up to d bloks have to be deoded. For example, the index for the Lenna

piture an be redued to less than 1% if only every eighth blok is indexed, and if

one reords only the beginning of every row, the index redues to 72 bytes.

4.2 Dealing with multiple mathes

We now turn to the possibility of having found many mathes for eah of the rows of

the pattern. Using the table S, eah of the found o�sets is heked to orrespond to a

true math and then translated to a blok index. Sine the dimensions of the image T

are known, eah index an be translated into an (r;) pair, denoting the indies of the

orresponding row and olumn. Let (R

i

; C

i

) be the sequene of n

i

(true) ourrenes

of the ith row of the pattern,

(R

i

; C

i

) = f(r

i1

;

i1

); (r

i2

;

i2

); : : : ; (r

in

i

;

in

i

)g; 1 � i � m:

The sequenes an be kept in lexiographially inreasing order. We need to hek

whether onseutive rows of the pattern have appearanes in onseutive rows and

idential olumns of the image. Formally, we seek

m

\

i=1

(R

i

� i+ 1; C

i

) ;

where we use the notation A� x for a set of integers A = fa

1

; : : : ; a

n

g and an integer

x to stand for the set fa

1

� x; : : : ; a

n

� xg.

The following algorithm uses m pointers, one for eah of the sequenes, to �nd all

the ourrenes:

Repeat until one of the sequenes is exhausted

�nd the smallest element (r;) in (R

1

; C

1

) \ (R

2

� 1; C

2

) by sequential searh

for i 3 to m

searh for an ourrene of (r;) in (R

i

� i+ 1; C

i

)

if (r;) is ommon to all m sequenes, inrease all m pointers by 1

131

Proeedings of the Prague Stringology Conferene '05

The searh in the iterative step an be done by binary searh, sine the sequenes

are ordered, but this is not neessarily the best solution. Consider the speial

ase in whih all n

i

are equal to n

1

, and h elements are found in the intersetion

(R

1

; C

1

) \ (R

2

� 1; C

2

). Assume also that h > n

1

= logn

1

and that all h elements of

the intersetion belong to the �rst halves of both (R

1

; C

1

) and (R

2

� 1; C

2

). Then

performing the intersetion takes 2n

1

omparisons, and eah of the h searhes in eah

of the m�2 remaining sequenes requires logn

1

omparisons. To redue this number

even by 1, the length of the sequene has to be ut at least to half, so even reduing

the searh to the remaining sequene after eah loated element wouldn't help in our

ase. The total searh time would thus be 2n

1

+ h (m � 2) logn

1

> n

1

m. On the

other hand, sanning the m lists sequentially an be done in time n

1

m.

Note that it would pay to start the proess by interseting the two shortest lists,

rather than the two �rst, whih would tend to redue h. Moreover, the intersetion

ould be done by binary merge [5℄ rather than linearly.

In an experiment run on eah of the images of Figure 4, a random 15 byte long

fragment of the enoded �le was taken as pattern, orresponding to a part of a row

of the image, and ourrenes of this pattern were sought. In eah ase, only a single

ourrene was found, orresponding to the true math. This suggests that in many

real life JPEG �les, multiple mathes will not ause a problem. On the other hand,

we repeated the test with a pure blak bitmap �le, and found there many mathes,

as expeted.

5 Mathing with saling and rotations

Consider the problem of loating the pattern P after having saled it by a fator �

and/or rotated it by an angle . The one to one orrespondene between 8�8 bloks

of pattern and image might be lost, but sine the DCT transforms the full blok as

one indivisible entity, there is no way to detet the enoding of parts of the blok

in the JPEG �le. So instead of trying to transform the enoded pattern, one has to

transform the pattern �rst, and then apply the enoding.

For � < 1, both height and width of the ourrene of pattern P in the image T

should be � times smaller than in P . Sine it is the pattern that is enoded, we get

the requested e�et by enlarging the pattern by a fator of � = 1=� before applying

JPEG. If � is an integer, one ould dupliate eah pixel in eah row, as well as the

suh enlarged rows � times. The resulting pattern is of lower quality than a possible

ourrene in the given image, so some smoothing, taking neighboring pixels into

aount, ould improve the searh, but the DCT will take are, at least partially, of

the smoothing anyway. If � is not an integer, ertain rational fators an be obtained

by a proess similar to the one depited in Figure 5(a). For � = 1:5, transform eah

2� 2 blok into a 3� 3 blok, inserting the missing values (in grey) by interpolation.

If � > 1, the pattern has to be redued by a fator of � = 1=�. If � is an integer,

the simplest way to proeed is taking every �th pixel in both dimensions. A more

preise way would be to onsider some or all translations of suh subsets of the pattern

having their pixels � positions apart, and averaging among them the value for eah

pixel. For ertain non-integer values of �, one ould proeed similarly to the above

non-integer ase for �.

As to rotations, if is a multiple of a right angle, say 90

Æ

, 180

Æ

or 270

Æ

, eah

132

Compressed Pattern Mathing in JPEG Images

(a) (b) ()

Figure 5: Examples of possible rotations

8� 8 matrix an be transposed or reversed aordingly, thereby rede�ning the rows

and olumns of the pattern. If = 45

Æ

after a saling of � =

p

2, as in Figure 5(b),

eah pattern blok would have to math four halves of image bloks, but even if

there is no suh regularity and the pattern bloks might interset a varying number

of image bloks in various layouts, as for example in Figure 5(), one an deal with

it by rotating �rst the pattern by �, then partitioning into bloks and enoding.

Conlusion

Searhing diretly in JPEG enoded images seems to be a diÆult task beause the

bloking used, as well as the DCT applied to the bloks, does not allow any interation

between adjaent bloks. Using an index, the size of whih an be ontrolled in a

time/spae tradeo�, may alleviate some of the problems.

Referenes

[1℄ Amir A., Benson G., EÆient two-dimensional ompressed mathing, Pro.

Data Compression Conferene DCC{92 , Snowbird, Utah (1992) 279{288.

[2℄ Amir A., Butman A., Crohemore M., Landau G.M., Shaps M., Two

dimensional pattern mathing with rotations, Theoretial Computer Siene,

314(1{2) (2004) 173{187.

[3℄ Amir A., Butman A., Lewenstein M., Porat E., Real two dimensional

saled mathing, Pro. WADS (2003) 353{364.

[4℄ Apostolio A., The myriad virtues of subword trees, Combinatorial Algo-

rithms on Words, NATO ASI Series Vol F12, Springer Verlag, Berlin (1985)

85{96.

[5℄ Hwang F.K., Lin S., A simple algorithm for merging two disjoint linearly-

ordered sets, SIAM Journal of Computing 1 (1972) 31{39.

[6℄ ISO/IEC 10918-1 Information Tehnology - Digital Compression and Coding

of Continuous{Tone Still Images Requirements and Guidelines, International

Standard ISO/IEC, Geneva, Switzerland (1993).

133

Proeedings of the Prague Stringology Conferene '05

[7℄ Ferguson T.J., Rabinowitz J.H., Self-synhronizing Hu�man odes, IEEE

Trans. on Inf. Th. IT{30 (1984) 687{693.

[8℄ Klein S.T., Shapira D., A new ompression method for ompressed math-

ing, Pro. Data Compression Conferene DCC{2000, Snowbird, Utah (2000)

400{409.

[9℄ Klein S.T., Shapira D., Pattern Mathing in Hu�man Enoded Texts, In-

formation Proessing and Management 41 (2005) 829{841.

[10℄ Klein S.T., Wiseman Y., Parallel Hu�man Deoding with Appliations to

JPEG Files, The Computer Journal 46(5) (2003) 487{497.

[11℄ Manber U., A Text Compression Sheme That allows Fast Searhing Diretly

in the ompressed File, ACM Trans. on Inf. Sys. 15 (1997) 124{136.

[12℄ Marellin M.W., Gormish M.J., Bilgin A., Boliek M.P., An Overview

of JPEG-2000, Pro. Data Compression Conferene DCC-2000, Snowbird, Utah

(2000) 523{541.

[13℄ Navarro G., Raffinot M., A general pratial approah to pattern math-

ing over Ziv-Lempel ompressed text, Pro. 10th Symp. on Combinatorial Pat-

tern Mathing, Warwik, UK, July 22{24 1999, LNCS 1645, Springer Verlag,

Berlin(1999) 14{36.

[14℄ Rao K.R., Yip P., Disrete Cosine Transform Algorithms, Advatages, Ap-

pliations, Aademi Press In., London (1990).

[15℄ Wallae G.K., The JPEG Still Piture Compression Standard, Communi-

ation of the ACM 34 (1991) 30{44.

[16℄ Weiner P., Linear pattern mathing algorithms, Pro. 14th Annual IEEE

Symposium on Swithing and Automata Theory, Washington, DC, (1973) (1{

11).

134

