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Abstra
t. We design a su

in
t full-text index based on the idea of Hu�man-


ompressing the text and then applying the Burrows-Wheeler transform over

it. The resulting stru
ture 
an be sear
hed as an FM-index, with the bene�t

of removing the sharp dependen
e on the alphabet size, �, present in that

stru
ture. On a text of length n with zero-order entropy H

0

, our index needs

O(n(H

0

+ 1)) bits of spa
e, without any dependen
e on �. The average sear
h

time for a pattern of length m is O(m(H

0

+1)), under reasonable assumptions.

Ea
h position of a text o

urren
e 
an be reported in worst 
ase time O((H

0

+

1) log n), while any text substring of length L 
an be retrieved in O((H

0

+1)L)

average time in addition to the previous worst 
ase time. Our index provides

a relevant spa
e/time tradeo� between existing su

in
t data stru
tures, with

the additional interest of being easy to implement. Our experimental results

show that, although not among the most su

in
t, our index is faster than the

others in many aspe
ts, even letting them use signi�
atively more spa
e.

1 Introdu
tion

A full-text index is a data stru
ture that enables to determine the o

 o

urren
es

of a short pattern P = p

1

p

2

: : : p

m

in a large text T = t

1

t

2

: : : t

n

without a need of

s
anning over the whole text T . Text and pattern are sequen
es of 
hara
ters over

an alphabet � of size �. In pra
ti
e one wants to know not only the value o

, i.e.,

how many times the pattern appears in the text (
ounting query) but also the text

positions of those o

 o

urren
es (reporting query), and usually also a text 
ontext

around them (display query).

A 
lassi
 example of a full-text index is the suÆx tree [20℄ rea
hing O(m + o

)

time 
omplexity for 
ounting and reporting queries. Unfortunately, it takes O(n logn)

bits,

1

and also the 
onstant fa
tor is large. A smaller spa
e 
omplexity fa
tor is

a
hieved by the suÆx array [13℄, rea
hing O(m logn + o

) or O(m + logn + o

) in

�
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time (depending on a variant), but still the spa
e usage may rule out this stru
ture

from some appli
ations, e.g. in 
omputational biology.

The large spa
e requirement of traditional full-text indexes has raised a natural

interest in su

in
t full-text indexes that a
hieve good tradeo�s between sear
h time

and spa
e 
omplexity [12, 3, 10, 19, 8, 15, 18, 16, 9℄. A truly ex
iting perspe
tive

has been originated in the work of Ferragina and Manzini [3℄; they showed a full-text

index may dis
ard the original text, as it 
ontains enough information to re
over the

text. We denote a stru
ture with su
h a property with the term self-index.

The FM-index of Ferragina and Manzini [3℄ was the �rst self-index with spa
e


omplexity expressed in terms of kth order (empiri
al) entropy and pattern sear
h

time linear only in the pattern length. Its spa
e 
omplexity, however, 
ontains an

exponential dependen
e on the alphabet size; a weakness eliminated in a pra
ti
al

implementation [4℄ for the pri
e of not a
hieving the optimal sear
h time anymore.

Therefore, it has been interesting both from the point of theory and pra
ti
e to


onstru
t an index with ni
e bounds both in spa
e and time 
omplexities, preferably

with no (or mild) dependen
e on the alphabet size.

In this paper we 
on
entrate on improving the FM-index, in parti
ular its large

alphabet dependen
e. This dependen
e shows up not only in the spa
e usage, but

also in the time to show an o

urren
e position and display text substrings. The

FM-index needs up to 5H

k

n + O

�

(� log � + log logn)

n

log n

+ n




�

�+1

�

bits of spa
e,

where 0 < 
 < 1. The time to sear
h for a pattern and obtain the number of its

o

urren
es in the text is the optimal O(m). The text position of ea
h o

urren
e


an be found in O

�

� log

1+"

n

�

time, for some " > 0 that appears in the sublinear

terms of the spa
e 
omplexity. Finally, the time to display a text substring of length

L is O

�

� (L + log

1+"

n)

�

. The last operation is important not only to show a text


ontext around ea
h o

urren
e, but also be
ause a self-index repla
es the text and

hen
e it must provide the fun
tionality of retrieving any desired text substring.

The 
ompressed suÆx array (CSA) of Sadakane [19℄ 
an be seen as a tradeo�

with larger sear
h time but mu
h milder dependen
e on the alphabet size. The CSA

needs (H

0

=" + O(log log�))n bits of spa
e. Its sear
h time (�nding the number of

o

urren
es of a pattern) is O(m logn). Ea
h o

urren
e 
an be reported in O (log

"

n)

time, and a text substring of length L 
an be displayed in O (L + log

"

n) time.

In this paper we present a simple stru
ture based on the FM-index 
on
ept. We

Hu�man-
ompress the text and then apply the Burrows-Wheeler transform over it,

as in the FM-index. The obtained stru
ture 
an be regarded as an FM-index built

over a binary sequen
e. As a result, we remove any dependen
e on the alphabet size.

We show that our index 
an operate using n(2H

0

+3+")(1+o(1)) bits, for any " > 0.

No alphabet dependen
e is hidden in the sublinear terms.

At sear
h time, our index �nds the number of o

urren
es of the pattern in

O(m(H

0

+ 1)) average time. The text position of ea
h o

urren
e 
an be reported in

worst 
ase time O

�

1

"

(H

0

+ 1) logn

�

. Any text substring of length L 
an be displayed

in O ((H

0

+ 1) L) average time, in addition to the mentioned worst 
ase time to �nd

a text position. In the worst 
ase all the H

0

be
ome logn.

This index was �rst presented in a poster [5℄, where we only gave its rough idea.

Now we present it in full detail and explore its empiri
al e�e
tiveness in 
ounting,

reporting and displaying, for a broad s
ope of real-world data (English text, DNA

and proteins). We also in
lude a k-ary Hu�man variant. We show that our index,
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A Simple Alphabet-Independent FM-Index

Algorithm FM Sear
h(P ,T

bwt

)

(1) i = m;

(2) sp = 1; ep = n;

(3) while ((sp � ep) and (i � 1)) do

(4) 
 = P [i℄;

(5) sp = C[
℄ +O

(T

bwt

; 
; sp� 1)+1;

(6) ep = C[
℄ +O

(T

bwt

; 
; ep);

(7) i = i� 1;

(8) if (ep < sp) then return \not found" else return \found (ep� sp+ 1) o

s".

Figure 1: Algorithm for 
ounting the number of o

urren
es of P [1 : : :m℄ in T [1 : : : n℄.

albeit not among the most su

in
t indexes, is faster than the others in many 
ases,

even if we give the other indexes mu
h more spa
e to work.

2 The FM-index Stru
ture

The FM-index [3℄ is based on the Burrows-Wheeler transform (BWT) [1℄, whi
h

produ
es a permutation of the original text, denoted by T

bwt

= bwt(T ). String T

bwt

is the result of the following forward transformation: (1) Append to the end of T

a spe
ial end marker $, whi
h is lexi
ographi
ally smaller than any other 
hara
ter;

(2) form a 
on
eptual matrix M whose rows are the 
y
li
 shifts of the string T$,

sorted in lexi
ographi
 order; (3) 
onstru
t the transformed text L by taking the last


olumn of M. The �rst 
olumn is denoted by F .

The suÆx array (SA) A of text T$ is essentially the matrix M: A[i℄ = j i� the

ith row of M 
ontains string t

j

t

j+1

� � � t

n

$t

1

� � � t

j�1

. The o

urren
es of any pattern

P = p

1

p

2

� � � p

m

form an interval [sp; ep℄ in A, su
h that suÆxes t

A[i℄

t

A[i℄+1

� � � t

n

,

sp � i � ep, 
ontain the pattern as a pre�x. This interval 
an be sear
hed for by

using two binary sear
hes in time O(m logn).

The suÆx array of text T is represented impli
itly by T

bwt

. The novel idea of

the FM-index is to store T

bwt

in 
ompressed form, and to simulate the sear
h in the

suÆx array. To des
ribe the sear
h algorithm, we need to introdu
e the ba
kward

BWT that produ
es T given T

bwt

: (i) Compute the array C[1 : : : �℄ storing in C[
℄

the number of o

urren
es of 
hara
ters f$; 1; : : : ; 
 � 1g in the text T . Noti
e that

C[
℄ + 1 is the position of the �rst o

urren
e of 
 in F (if any). (ii) De�ne the LF-

mapping LF [1 : : : n+ 1℄ as LF [i℄ = C[L[i℄℄ +O

(L; L[i℄; i), where O

(X; 
; i) equals

the number of o

urren
es of 
hara
ter 
 in the pre�x X[1; i℄. (iii) Re
onstru
t T

ba
kwards as follows: set s = 1 and T [n℄ = L[1℄ (be
ause M[1℄ = $T ); then, for ea
h

n� 1; : : : ; 1 do s LF [s℄ and T [i℄ L[s℄.

We are now ready to des
ribe the sear
h algorithm given in [3℄ (Fig. 1). It �nds

the interval of A 
ontaining the o

urren
es of the pattern P . It uses the array C and

fun
tion O

(X; 
; i) de�ned above. Using the properties of the ba
kward BWT, it is

easy to see that the algorithm maintains the following invariant [3℄: At the ith phase,

with i from m to 1, the variable sp points to the �rst row of M pre�xed by P [i;m℄

and the variable ep points to the last row of M pre�xed by P [i;m℄. The 
orre
tness

of the algorithm follows from this observation.
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Ferragina and Manzini [3℄ des
ribe an implementation of O

(T

bwt

; 
; i) that uses

a 
ompressed form of T

bwt

. They show how to 
ompute O

(T

bwt

; 
; i) for any 
 and i

in 
onstant time. However, to a
hieve this they need exponential spa
e (in the size of

the alphabet). In a pra
ti
al implementation [4℄ this was avoided, but the 
onstant

time guarantee for answering O

(T

bwt

; 
; i) was no longer valid.

The FM-index 
an also show the text positions where P o

urs, and display any

text substring. The details are deferred to Se
tion 4.

3 First Hu�man, then Burrows-Wheeler

We fo
us now on our index representation. Imagine that we 
ompress our text T$

using Hu�man. The resulting bit stream will be of length n

0

< (H

0

+ 1)n, sin
e

(binary) Hu�man poses a maximum representation overhead of 1 bit per symbol

2

.

We 
all T

0

this sequen
e, and de�ne a se
ond bit array Th, of the same length of T

0

,

su
h that Th[i℄ = 1 i� i is the starting position of a Hu�man 
odeword in T

0

. Th is

also of length n

0

. (We will not represent T

0

nor Th in our index.)

The idea is to sear
h the binary text T

0

instead of the original text T . Let us

apply the Burrows-Wheeler transform over text T

0

, so as to obtain B = (T

0

)

bwt

. In

order to have a binary alphabet, T

0

will not have its own spe
ial terminator 
hara
ter

\$" (yet that of T is en
oded in binary at the end of T

0

).

More pre
isely, let A

0

[1 : : : n

0

℄ be the suÆx array for text T

0

, that is, a permutation

of the set 1 : : : n

0

su
h that T

0

[A

0

[i℄ : : : n

0

℄ < T

0

[A

0

[i + 1℄ : : : n

0

℄ in lexi
ographi
 order,

for all 1 � i < n

0

. In a lexi
ographi
 
omparison, if a string x is a pre�x of y, assume

x < y. SuÆx array A

0

will not be expli
itly represented. Rather, we represent bit

array B[1 : : : n

0

℄, su
h that B[i℄ = T

0

[A

0

[i℄� 1℄ (ex
ept that B[i℄ = T [n

0

℄ if A

0

[i℄ = 1).

We also represent another bit array Bh[1 : : : n

0

℄, su
h that Bh[i℄ = Th[A

0

[i℄℄. This

tells whether position i in A

0

points to the beginning of a 
odeword.

Our goal is to sear
h B exa
tly like the FM-index. For this sake we need array C

and fun
tion O

. Sin
e the alphabet is binary, however, O

 
an be easily 
omputed:

O

(B; 1; i) = rank(B; i) and O

(B; 0; i) = i � rank(B; i), where rank(B; i) is the

number of 1's in B[1 : : : i℄, rank(B; 0) = 0. This fun
tion 
an be 
omputed in 
onstant

time using only o(n) extra bits [11, 14, 2℄. The solution, as well as its more pra
ti
al

implementation variants, are des
ribed in [7℄.

Also, array C is so simple for the binary text that we 
an do without it: C[0℄ = 0

and C[1℄ = n

0

� rank(B; n

0

), that is, the number of zeros in B (of 
ourse value

n

0

� rank(B; n

0

) is pre
omputed). Therefore, C[
℄ + O

(T

bwt

; 
; i) is repla
ed in our

index by i� rank(B; i) if 
 = 0 and n

0

� rank(B; n

0

) + rank(B; i) if 
 = 1.

There is a small twist, however, due to the fa
t that we are not putting a termina-

tor to our binary sequen
e T

0

and hen
e no terminator appears in B. Let us 
all \#"

the terminator of the binary sequen
e so that it is not 
onfused with the terminator

\$" of T$. In the position p

#

su
h that A

0

[p

#

℄ = 1, we should have B[p

#

℄ = #.

Instead, we are setting B[p

#

℄ to the last bit of T

0

. This is the last bit of the Hu�man


odeword assigned to the terminator \$" of T$. Sin
e we 
an freely swit
h left and

right siblings in the Hu�man 
ode, we will ensure that this last bit is zero. Hen
e the

2

Note that these n and H

0

refer to T$, not T . However, the di�eren
e between both is only

O(log n), and will be absorbed by the o(n) terms that will appear later.
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Algorithm Hu�-FM Sear
h(P

0

,B,Bh)

(1) i = m

0

;

(2) sp = 1; ep = n

0

;

(3) while ((sp � ep) and (i � 1)) do

(4) if P

0

[i℄ = 0 then

sp = (sp� 1)� rank(B; sp� 1) + 1 + [sp� 1 < p

#

℄;

ep = ep� rank(B; ep) + [ep < p

#

℄;

else sp = n

0

� rank(B; n

0

) + rank(B; sp� 1) + 1;

ep = n

0

� rank(B; n

0

) + rank(B; ep);

(7) i = i� 1;

(8) if ep < sp then o

 = 0 else o

 = rank(Bh; ep)� rank(Bh; sp� 1);

(9) if o

 = 0 then return \not found" else return \found (o

) o

s".

Figure 2: Algorithm for 
ounting the number of o

urren
es of P

0

[1 : : :m

0

℄ in

T

0

[1 : : : n

0

℄.


orre
t B sequen
e would be of length n

0

+ 1, starting with 0 (whi
h 
orresponds to

T

0

[n

0

℄, the 
hara
ter pre
eding the o

urren
e of \#", sin
e # < 0 < 1), and it would

have B[p

#

℄ = #. To obtain the right mapping to our binary B, we must 
orre
t

C[0℄ + O

(B; 0; i) = i � rank(B; i) + [i < p

#

℄, that is, add 1 to the original value

when i < p

#

. The 
omputation of C[1℄ + O

(B; 1; i) remains un
hanged.

Therefore, by prepro
essing B to solve rank queries, we 
an sear
h B exa
tly as

the FM-index. The extra spa
e required by the rank stru
ture is o(H

0

n), without

any dependen
e on the alphabet size. Overall, we have used at most n(2H

0

+ 2)(1 +

o(1)) bits for our representation. This will grow slightly in the next se
tions due to

additional requirements.

Our sear
h pattern is not the original P , but its binary 
oding P

0

using the

Hu�man 
ode we applied to T . If we assume that the 
hara
ters in P have the same

distribution of T , then the length of P

0

is < m(H

0

+ 1). This is the number of steps

to sear
h B using the FM-index sear
h algorithm.

The answer to that sear
h, however, is di�erent from that of the sear
h of T for

P . The reason is that the sear
h of T

0

for P

0

returns the number of suÆxes of T

0

that

start with P

0

. Certainly these in
lude the suÆxes of T that start with P , but also

other super
uous o

urren
es may appear. These 
orrespond to suÆxes of T

0

that

do not start a Hu�man 
odeword, yet they start with P

0

.

This is why we have marked the suÆxes that start a Hu�man 
odeword in Bh.

In the range [sp; ep℄ found by the sear
h for P

0

in B, every bit set in Bh[sp : : : ep℄

represents a true o

urren
e. Hen
e the true number of o

urren
es 
an be 
omputed

as rank(Bh; ep)� rank(Bh; sp� 1). Figure 2 shows the sear
h algorithm.

Therefore, the sear
h 
omplexity is O(m(H

0

+ 1)), assuming that the zero-order

distributions of P and T are similar. Next we show that the worst 
ase sear
h 
ost is

O(m logn). This mat
hes the worst 
ase sear
h 
ost of the original CSA (while our

average 
ase is better).

For the worst 
ase, we must determine whi
h is the maximum height of a Hu�man

tree with total frequen
y n. Consider the longest root-to-leaf path in the Hu�man

tree. The leaf symbol has frequen
y at least 1. Let us traverse the path upwards

and 
onsider the (sum of) frequen
ies en
ountered in the other bran
h at ea
h node.
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These numbers must be, at least: 1, 1, 2, 3, 5, : : :, that is, the Fibona

i sequen
e

F (i). Hen
e, a Hu�man tree with depth d needs that the text is of length at least

n � 1 +

P

d

i=1

F (i) = F (d + 2) [21, pp. 397℄. Therefore, the maximum length of a


ode is F

�1

(n)� 2 = log

�

(n)� 2 + o(1), where � = (1 +

p

5)=2.

Therefore, the en
oded pattern P

0


annot be longer than O(m logn) and this is

also the worst 
ase sear
h 
ost, as promised. An ex
eption to the above argument

o

urs when P 
ontains a 
hara
ter not present in T . This is easier, however, as we

immediately know that P does not o

ur in T .

A
tually, it is possible to redu
e the worst-
ase sear
h time to O(m log�), without

altering the average sear
h time nor the spa
e usage, by for
ing the Hu�man tree to

be
ome balan
ed after level (1 + x) log�. For details see [6℄.

4 Reporting O

urren
es and Displaying the Text

Up to now we have fo
used on the sear
h time, that is, the time to determine the

suÆx array interval 
ontaining all the o

urren
es. In pra
ti
e, one needs also the

text positions where they appear, as well as a text 
ontext. Sin
e self-indexes repla
e

the text, in general one needs to extra
t any text substring from the index.

Given the suÆx array interval that 
ontains the o

 o

urren
es found, the FM-

index reports ea
h su
h position in O(� log

1+"

n) time, for any " > 0 (whi
h appears

in the sublinear spa
e 
omponent). The CSA 
an report ea
h in O(log

"

n) time, where

" is paid in the nH

0

=" spa
e. Similarly, a text substring of length L 
an be displayed

in time O(�(L + log

1+"

n)) by the FM-index and O(L + log

"

n) by the CSA.

In this se
tion we show that our index 
an do better than the FM-index, although

not as well as the CSA. Using (1 + ")n additional bits, we 
an report ea
h o

urren
e

position in O(

1

"

(H

0

+1) logn) time and display a text 
ontext in time O(L log�+logn)

in addition to the time to �nd an o

urren
e position. On average, assuming that

random text positions are involved, the overall 
omplexity to display a text interval

be
omes O((H

0

+ 1)(L +

1

"

logn)).

4.1 Reporting O

urren
es

A �rst problem is how to extra
t, in O(o

) time, the o

 positions of the bits set

in Bh[sp : : : ep℄. This is easy using sele
t fun
tion: sele
t(Bh; j), gives the position

of the j-th bit set in Bh. This is the inverse of fun
tion rank and it 
an also be

implemented in 
onstant time using o(n) additional spa
e [11, 14, 2, 7℄. A
tually we

need a simpler version, sele
tnext(Bh; j), whi
h gives the �rst 1 in Bh[j; n℄.

Let r = rank(Bh; sp�1). Then, the positions of the bits set in Bh are sele
t(Bh; r+

1), sele
t(Bh; r + 2), : : :, sele
t(Bh; r + o

). We re
all that o

 = rank(Bh; ep) �

rank(Bh; sp�1). This 
an be expressed using sele
tnext: The positions pos

1

: : : pos

o




an be found as pos

1

= sele
tnext(Bh; sp), and pos

i+1

= sele
tnext(Bh; pos

i

+ 1).

We fo
us now on how to �nd the text position of a valid o

urren
e.

We 
hoose some " > 0 and sample b

"n

2 log n


 positions of T

0

at regular intervals,

with the restri
tion that only 
odeword beginnings 
an be 
hosen. For this sake, pi
k

positions in T

0

at regular intervals of length ` = d

2n

0

"n

logne, and for ea
h su
h position

1 + `(i� 1), 
hoose the beginning of the 
odeword being represented at 1 + `(i� 1).

Re
all from Se
tion 3 that no Hu�man 
odeword 
an be longer than log

�

n�2+o(1)
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bits. Then, the distan
e between two 
hosen positions in T

0

, after the adjustment,


annot ex
eed

`+log

�

n�2+o(1) �

2

"

(H

0

+1) logn+log

�

n�1+o(1) = O

�

1

"

(H

0

+ 1) logn

�

Now, store an array TS with the b

"n

2 log n


 positions of A

0

pointing to the 
hosen

positions of T

0

, in in
reasing text position order. More pre
isely, TS[i℄ refers to

position 1+`(i�1) in T

0

and hen
e TS[i℄ = j su
h that A

0

[j℄ = sele
t(Th; rank(Th; 1+

`(i � 1))). Array TS requires

"n

2

(1 + o(1)) bits, sin
e ea
h entry needs logn

0

�

log(n log min(n; �)) = logn + O(log log min(n; �)) bits.

The same A

0

positions are now sorted and the 
orresponding T positions (that

is, rank(Th;A

0

[i℄)) are stored in array ST , for other

"n

2

bits. Finally, we store an

array S of n bits so that S[i℄ = 1 i� A

0

[sele
t(Bh; i)℄ is in the sampled set. That is,

S[i℄ tells whether the i-th entry of A

0

pointing to beginning of 
odewords, points to

a sampled text position. S is further pro
essed for rank queries.

Overall, we spend (1 + ")n(1 + o(1)) bits for these three arrays, raising our �nal

spa
e requirement to n(2H

0

+ 3 + ")(1 + o(1)).

Let us fo
us �rst in how to determine the text position 
orresponding to an entry

A

0

[i℄ for whi
h Bh[i℄ = 1. Use bit array S[rank(Bh; i)℄ to determine whether A

0

[i℄

points or not to a 
odeword beginning in T

0

that has been sampled. If it does, then �nd

the 
orresponding T position in ST [rank(S; rank(Bh; i))℄ and we are done. Other-

wise, just as with the FM-index, determine position i

0

whose value is A

0

[i

0

℄ = A

0

[i℄�1.

Repeat this pro
ess, whi
h 
orresponds to moving ba
kward bit by bit in T

0

, until a

new 
odeword beginning is found, that is, Bh[i

0

℄ = 1. Now determine again whether

i

0


orresponds to a sampled 
hara
ter in T : Use S[rank(Bh; i

0

)℄ to determine whether

A

0

[i

0

℄ is present in ST . If it is, report text position 1 +ST [rank(S; rank(Bh; i

0

))℄ and

�nish. Otherwise, 
ontinue with i

00

trying to report 2 + ST [rank(S; rank(Bh; i

00

))℄,

and so on. The pro
ess must �nish after O

�

1

"

(H

0

+ 1) logn

�

ba
kward steps in T

0

be
ause we are 
onsidering 
onse
utive positions of T

0

and that is the maximum

distan
e among 
onse
utive samples.

We have to spe
ify how we determine i

0

from i. In the FM-index, this is done

via the LF-mapping, i

0

= C[T

bwt

[i℄℄ + O

(T

bwt

; T

bwt

[i℄; i). In our index, the LF-

mapping over A

0

is implemented as i

0

= i � rank(B; i) if B[i℄ = 0 and i

0

= n

0

�

rank(B; n

0

)+rank(B; i) if B[i℄ = 1. This LF-mapping moves us from position T

0

[A

0

[i℄℄

to T

0

[A

0

[i℄� 1℄.

Overall, an o

urren
e 
an be reported in worst 
ase time O(

1

"

(H

0

+ 1) logn).

Figure 3 gives the pseudo
ode.

4.2 Displaying Text

In order to display a text substring T [l : : : r℄ of length L = r � l + 1, we start by

binary sear
hing TS for the smallest sampled text position larger than r. Given

value TS[j℄, we know that S[rank(Bh; TS[j℄)℄ = 1 as it is a sampled A

0

entry, and

the 
orresponding T position is simply ST [rank(S; rank(Bh; TS[j℄))℄. On
e we �nd

the �rst sampled text position that follows r, we have its 
orresponding position

i = TS[j℄ in A

0

. From there on, we perform at most O

�

1

"

(H

0

+ 1) logn

�

steps going

ba
kward in T

0

(via the LF-mapping over A

0

), position by position, until rea
hing
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Algorithm Hu�-FM Position(i,B,Bh,ST )

(1) d = 0;

(2) while S[rank(Bh; i)℄ = 0 do

(3) do if B[i℄ = 0 then i = i� rank(B; i) + [i < p

#

℄;

else i = n

0

� rank(B; n

0

) + rank(B; i);

(4) while Bh[i℄ = 0;

(5) d = d+ 1;

(6) return d+ ST [rank(S; rank(Bh; i))℄;

Figure 3: Algorithm for reporting the text position of the o

urren
e at B[i℄. It is

invoked for ea
h i = sele
t(Bh; r + k), 1 � k � o

, r = rank(Bh; sp� 1).

Algorithm Hu�-FM Display(l,r,B,Bh,TS)

(1) j = minfk; ST [rank(S; rank(Bh; TS[k℄))℄ > rg; // binary sear
h

(2) i = TS[j℄;

(3) p = ST [rank(S; rank(Bh; i))℄;

(4) L = h i;

(5) while p � l do

(6) do L = B[i℄ � L;

(7) if B[i℄ = 0 then i = i� rank(B; i) + [i < p

#

℄;

else i = n

0

� rank(B; n

0

) + rank(B; i);

(8) while Bh[i℄ = 0;

(9) p = p� 1;

(10) Hu�man-de
ode the �rst r � l + 1 
hara
ters from list L;

Figure 4: Algorithm for extra
ting T [l : : : r℄.

the �rst bit of the 
odeword for T [r + 1℄. Then, we obtain the L pre
eding positions

of T , by further traversing T

0

ba
kwards, 
olle
ting all its bits until rea
hing the �rst

bit of the 
odeword for T [l℄. The reversed bit stream 
olle
ted is Hu�man-de
oded

to obtain T [l : : : r℄.

Ea
h of those L 
hara
ters 
osts us O(H

0

+ 1) on average be
ause we obtain the


odeword bits one by one. In the worst 
ase they 
ost us O(logn). The overall time


omplexity is O((H

0

+ 1)(L+

1

"

logn)) on average and O(L logn+ (H

0

+ 1)

1

"

logn) in

the worst 
ase. Figure 4 shows the pseudo
ode.

5 K-ary Hu�man

The purpose of the idea of 
ompressing the text before 
onstru
ting the index is to

remove the sharp dependen
e of the alphabet size of the FM index. This 
ompression

is done using a binary alphabet. In general, we 
an use Hu�man over a 
oding

alphabet of k > 2 symbols and use dlog ke bits to represent ea
h symbol. Varying

the value of k yields interesting time/spa
e tradeo�s. We use only powers of 2 for k

values, so ea
h symbol 
an be represented without wasting spa
e.

The spa
e usage varies in di�erent aspe
ts. Array B in
reases its size sin
e the


ompression ratio gets worse. B has length n

0

< (H

(k)

0

+ 1)n symbols, where H

(k)

0

is

the zero order entropy of the text 
omputed using base k logarithm, that is, H

(k)

0

=

238



A Simple Alphabet-Independent FM-Index

�

P

�

i=1

n

i

n

log

k

�

n

i

n

�

= H

0

= log

2

k. Therefore, the size of B is bounded by n

0

log k =

(H

0

+ log k)n bits. The size of Bh is redu
ed sin
e it needs one bit per symbol, and

hen
e its size is n

0

. The total spa
e used by these stru
tures is then n

0

(1 + log k) <

n(H

(k)

0

+ 1)(1 + log k), whi
h is not larger than the spa
e requirement of the binary

version, 2n(H

0

+ 1), for 1 � log k � H

0

.

The rank stru
tures also 
hange their size. The rank stru
tures for Bh are 
om-

puted in the same way of the binary version, and therefore they redu
e their size,

using o(H

(k)

0

n) bits. For B, we 
an no longer use the rank fun
tion to simulate

O

. Instead, we need to 
al
ulate the o

urren
es of ea
h of the k symbols in B.

For this sake, we pre
al
ulate sublinear stru
tures for ea
h of the symbols, in
luding

k tables that 
ount the o

urren
es of ea
h symbol in a 
hunk of b = dlog

k

(n)=2e

symbols. Hen
e, we need o(kH

(k)

0

n) bits for this stru
tures. In total, we need

n(H

(k)

0

+ 1)(1 + log k) + o(H

(k)

0

n(k + 1)) bits.

Regarding the time 
omplexities, the pattern has length < m(H

(k)

0

+ 1) symbols,

so this is the sear
h 
omplexity, whi
h is redu
ed as we in
rease k. For reporting

queries and displaying text, we need the same additional stru
tures TS, ST and S

that for the binary version. The k-ary version 
an report the position of an o

urren
e

in O

�

1

�

(H

(k)

0

+ 1) logn

�

time, whi
h is the maximum distan
e between two sampled

positions. Similarly, the time to display a substring of length L be
omes O((H

(k)

0

+

1)(L +

1

�

logn)) on average and O(L logn + (H

(k)

0

+ 1)

1

�

logn) in the worst 
ase.

6 Experimental Results

In this se
tion we show experimental results on 
ounting, reporting and displaying

queries and 
ompare the eÆ
ien
y to existing indexes. The indexes used for the

experiments were the FM-index implemented by Navarro [18℄, Sadakane's CSA [19℄,

the RLFM index [17℄, the SSA index [17℄, and the LZ index [18℄. Other indexes,

like the Compressed Compa
t SuÆx Array (CCSA) of M�akinen and Navarro [16℄, the

Compa
t SA of M�akinen [15℄ and the implementation of Ferragina and Manzini of

the FM-index were not in
luded be
ause they are not 
omparable to the FM Hu�man

index due either to their large spa
e requirement (Compa
t SA) or their high sear
h

times (CCSA and original FM index).

We 
onsidered three types of text for the experiments: 80 MB of English text

obtained from the TREC-3 
olle
tion

3

(�les WSJ87-89), 60 MB of DNA and 55 MB

of protein sequen
es, both obtained from the BLAST database of the NCBI

4

(�les

month.est_others and swissprot respe
tively).

Our experiments were run on an Intel(R) Xeon(TM) pro
essor at 3.06 GHz, 2

GB of RAM and 512 KB 
a
he, running Gentoo Linux 2.6.10. We 
ompiled the 
ode

with g

 3.4.2 using optimization option -O9.

Now we show the results regarding the spa
e used by our index and later the

results of the experiments 
lassi�ed by query type.

3

Text Retrieval Conferen
e, http://tre
.nist.gov

4

National Center for Biote
hnology Information, http://www.n
bi.nlm.nih.gov
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6.1 Spa
e results

Table 1 (left) shows the spa
e that the index takes as a fra
tion of the text for di�erent

values of k and the three types of �les 
onsidered. These values do not in
lude the

spa
e required to report positions and display text.

We 
an see that the spa
e requirements are lowest for k = 4. For higher values

this spa
e in
reases, although staying reasonable until k = 16. With higher values

the spa
es are too high for these indexes to be 
omparable to the rest.

We did not 
onsider the version of the index with k = 8 in the other experiments

be
ause we do not expe
t an improvement in the query time, sin
e log k is not a power

of 2 and then the 
omputation of O

 is slower (reasons omitted for la
k of spa
e).

The version with k = 16 
an lead to a redu
tion in query time, but the a

ess to 4

ma
hine words for the 
al
ulation of O

 (reasons omitted for la
k of spa
e) 
ould

negatively a�e
t it. It is important to say that these values are only relevant for the

English text and proteins, sin
e it does not make sense to use them for DNA.

It is also interesting to see how the spa
e requirement of the index is divided

among its di�erent stru
tures. Table 1 (right) shows the spa
e used by ea
h of the

stru
tures for the index with k = 2 and k = 4 for the three types of texts 
onsidered.

k Fra
tion of text

English DNA Proteins

2 1,68 0,76 1,45

4 1,52 0,74 1,30

8 1,60 0,91 1,43

16 1,84 | 1,57

32 2,67 | 1,92

64 3,96 | |

FM-Hu�man k = 2 FM-Hu�man k = 4

Stru
ture Spa
e [MB℄ Spa
e [MB℄

English DNA Proteins English DNA Proteins

B 48:98 16:59 29:27 49:81 18:17 29:60

Bh 48:98 16:59 29:27 24:91 9:09 14,80

Rank(B) 18,37 6,22 10,97 37,36 13,63 22,20

Rank(Bh) 18,37 6,22 10,97 9,34 3,41 5,55

Total 134,69 45,61 80,48 121,41 44,30 72,15

Text 80,00 60,00 55,53 80,00 60,00 55,53

Fra
tion 1:68 0:76 1:45 1:52 0:74 1:30

Table 1: On top, spa
e requirement of our index for di�erent values of k. The value


orresponding to the row k = 8 for DNA a
tually 
orresponds to k = 5, sin
e this is

the total number of symbols to 
ode in this �le. Similarly, the value of row k = 32

for the protein sequen
e 
orresponds to k = 24. On the bottom, detailed 
omparison

of k = 2 versus k = 4. We omit the the spa
es used by the Hu�man table, the


onstant-size tables for Rank, and array C, sin
e they are negligible.
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For higher values of k the spa
e used by B will in
rease sin
e the use of more

symbols for the Hu�man 
odes in
reases the resulting spa
e. On the other hand, the

size of Bh de
reases at a rate of log k and so do its rank stru
tures. However, the

spa
e of the rank stru
tures of B in
reases rapidly, as we need k stru
tures for an

array that redu
es its size at a rate of log k, whi
h is the reason of the large spa
e

requirement for high values of k.

6.2 Counting queries

For the three �les, we show the sear
h time as a fun
tion of the pattern length, varying

from 10 to 100, with a step of 10. For ea
h length we used 1000 patterns taken from

random positions of ea
h text. Ea
h sear
h was repeated 1000 times. Figure 5 (left)

shows the time for 
ounting the o

urren
es for ea
h index and for the three �les


onsidered. As the CSA index needs a parameter to determine its spa
e for this type

of queries, we adjusted it so that it would use approximately the same spa
e of the

binary FM-Hu�man index.

We show in Figure 5 (right) the average sear
h time per 
hara
ter along with the

minimum spa
e requirement of ea
h index to 
ount o

urren
es. Unlike the CSA,

the other indexes do not need a parameter to spe
ify their size for 
ounting queries.

Therefore, we show a point as the value of the spa
e used by the index and its sear
h

time. For the CSA index we show a line to resemble the spa
e-time tradeo� for


ounting queries.

6.3 Reporting queries

We measured the time that ea
h index took to sear
h for a pattern and report the

positions of the o

urren
es found. From the English text and the DNA sequen
e

we took 1000 random patterns of length 10. From the protein sequen
e we used

patterns of length 5. We measured the time per o

urren
e reported varying the

spa
e requirement for every index ex
ept the LZ, whi
h has a �xed size. For the

CSA we set the two parameters, namely the size of the stru
tures to report and the

stru
tures to 
ount, to the same value, sin
e this turns out to be optimal. Figure 6

(left) shows the times per o

urren
e reported for ea
h index as a fun
tion of its size.

6.4 Displaying text

We measured the time to display a 
ontext per 
hara
ter displayed. That is, we

sear
hed for the 1000 patterns and displayed 100 
hara
ters around ea
h of the po-

sitions of the o

urren
es found. Figure 6 (right) shows this time along with the

minimum spa
e required for ea
h index for the 
ounting fun
tionality, sin
e the dis-

play time per 
hara
ter does not depend on the size of the index. This is not true for

the CSA index, whose display time does depend on its size. For this index we show

the time measured as a fun
tion of its size.

6.5 Analysis of Results

We 
an see that our FM-Hu�man k = 16 index is the fastest for 
ounting queries

for English and proteins and that the version with k = 4 is, together with the SSA,
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Figure 5: On the left, sear
h time as a fun
tion of the pattern length over, English

(80 MB), DNA (60 MB), and a proteins (55 MB). The times of the LZ index do not

appear on the English text plot, as they range from 0:5 to 4:6 ms. In the DNA plot,

the time of the LZ index for m = 10 is 0:26. The reason of this in
rease is the large

number of o

urren
es of these patterns, whi
h in
uen
es the 
ounting time for this

index. On the right, average sear
h time per 
hara
ter as a fun
tion of the size of the

index.
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Figure 6: On the left, time to report the positions of the o

urren
es as a fun
tion of

the size of the index. On the right, time per 
hara
ter to display text passages. We

show the results of sear
hing on 80 MB of English text, 60 MB of DNA and �nally

55 MB of proteins.
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the fastest for DNA. The binary FM-Hu�man index takes the same time that k = 4

version for DNA and it is a little bit slower that the FM-index for the other two

�les. As expe
ted, the three versions are faster than CSA, RLFM and LZ, the latter

not being 
ompetitive for 
ounting queries. Regarding the spa
e usage, the SSA is

an attra
tive tradeo� alternative for the three �les, sin
e it uses less spa
e than our

index and has low sear
h times (although not as good as our index ex
ept on DNA).

The same happens with the FM-index, although not for DNA, where it uses more

spa
e and time than our index.

For reporting queries, our index loses to the FM-index for English and proteins,

mainly be
ause of its large spa
e requirement. Also, it only surpasses the RLFM and

CSA, and barely the SSA, for large spa
e usages. For DNA, however, our index, with

k = 2 and k = 4, is better than the FM-index, although it loses to the SSA for low

spa
e usage. This redu
tion in spa
e in our index is due to the low zero-order entropy

of the DNA, whi
h makes our index 
ompa
t and fast.

Regarding display time, our index variants are again the fastest. On English text,

however, the LZ is equally fast and smaller (version k = 16 is the relevant one here).

On DNA, the k = 4 version is faster than any other, requiring also little spa
e. Those

taking (at best 20%) less spa
e are about 3 times slower. Finally, on proteins, the

version k = 16 is 
learly the fastest. The best 
ompetitor, the FM-index, uses 30%

less spa
e but it is twi
e as slow.

The versions of our index with k = 4 improved the spa
e and time of the binary

version. The version with k = 16 in
reased the spa
e usage, but resulted in the fastest

of the three for 
ounting and display queries. In general, our index is not the smallest

but it is the fastest among those using the same spa
e.

7 Con
lusions

We have fo
used in this paper on a pra
ti
al data stru
ture inspired by the FM-index

[3℄, whi
h removes its sharp dependen
e on the alphabet size �. Our key idea is to

Hu�man-
ompress the text before applying the Burrows-Wheeler transform over it.

Over a text of n 
hara
ters, our stru
ture needs O(n(H

0

+1)) bits, being H

0

the zero-

order entropy of the text. It 
an sear
h for a pattern of length m in O(m(H

0

+ 1))

average time. Our stru
ture has the advantage over the FM-index of not depending at

all on the alphabet size, and of having better 
omplexities to report text o

urren
es

and displaying text substrings. In 
omparison to the CSA [19℄, it has the advantage

of having better sear
h time.

Furthermore, our stru
ture is simple and easy to implement. Our experimental

results show that our index is 
ompetitive in pra
ti
e against other implemented

alternatives. In most 
ases it is not the most su

in
t, but it is the fastest, even if we

let the other stru
tures use signi�
atively more spa
e.
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