
A Missing Link in Root-to-Frontier Tree Pattern

Mat
hing

Loek G. W. A. Cleophas, Kees Hemerik and Gerard Zwaan

Department of Mathemati
s and Computer S
ien
e,

Te
hnis
he Universiteit Eindhoven,

P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

e-mail: loek�loek
leophas.
om,
.hemerik�tue.nl, g.zwaan�tue.nl

Abstra
t. Tree pattern mat
hing (tpm) algorithms play an important role in

pra
ti
al appli
ations su
h as
ompilers and XML do
ument validation. Many

tpm algorithms based on tree automata have appeared in the literature. For

reasons of eÆ
ien
y, these automata are preferably deterministi
. Deterministi

root-to-frontier tree automata (drftas) are less powerful than nondeterministi

ones, and no root-to-frontier tpm algorithm using drftas has appeared so far.

Ho�mann & O'Donnell [HO82℄ presented a root-to-frontier tpm algorithm based

on an Aho-Corasi
k automaton re
ognizing tree stringpaths, but no relationship

between this algorithm and algorithms using tree automata has been des
ribed.

In this paper, we show that a spe
i�
 drfta
an be used for stringpath mat
hing

in a root-to-frontier tpm algorithm. This algorithm has not appeared in the

literature before, and provides a missing link between tpm algorithms using

stringpath automata and those using tree automata.

1 Introdu
tion

Tree pattern mat
hing (tpm) is an important problem from regular tree theory. It
an

be des
ribed as �nding all o

urren
es of one or more given pattern trees (patterns)

in a given subje
t tree. Algorithms solving this problem form the basis for tree

a

eptan
e and tree parsing algorithms, whi
h play an important role in pra
ti
al

appli
ations su
h as
ompilers and XML do
ument validation.

The problems of pattern mat
hing, a

eptan
e and parsing for trees are related,

and so are the algorithms solving them (referred to as tree algorithms from this point

onward). Either impli
itly or expli
itly, many use some form of tree or string au-

tomata,
ombined with a frontier-to-root (bottom-up) or root-to-frontier (top-down)

tree traversal [FSW94, HK89, AGT89, vdM88, vD87, Cha87, HC86, AG85, HO82,

Kro75℄. For eÆ
ien
y reasons, the automata used should preferably be deterministi
.

In frontier-to-root tree algorithms, deterministi
 frontier-to-root tree automata

an be and indeed often are used [FSW94, HK89, Cha87, HC86, HO82℄.

Deterministi
 root-to-frontier tree automata (drftas) however have not been

used in root-to-frontier tree algorithms, sin
e it is known from regular tree the-

ory that in general they are less powerful than their nondeterministi

ounterparts

(nrftas) [Eng75, GS97℄. Su
h algorithms therefore use nrftas [vD87℄.

216

A Missing Link in Root-to-Frontier Tree Pattern Mat
hing

Ho�mann & O'Donnell [HO82℄ and Aho, Ganapathi & Tjiang [AGT89, AG85℄

presented root-to-frontier tree algorithms based on deterministi
 string automata in-

stead. These algorithms use a deterministi
 Aho-Corasi
k (a
) automaton [AC75℄

and its output fun
tion to re
ognize tree stringpaths. Sin
e a tree is uniquely deter-

mined by its stringpaths, this automaton
an be used to dete
t tree mat
hes. The

presentation in those papers is somewhat informal and
ompli
ated by optimizations,

but van de Meerakker [vdM88℄ gave a stepwise a

ount of how to obtain the al-

gorithms. Unfortunately, no relationship between tree algorithms using stringpath

automata and those using tree automata seems to have appeared in the literature.

In this paper, we show that even though a drfta
annot be used as a tree a

eptor

or mat
her by itself, a spe
i�
 drfta
an be used (together with an output fun
tion)

for stringpath mat
hing in a root-to-frontier tree traversal. We present a version of

Ho�mann & O'Donnell's root-to-frontier tpm algorithm that uses an a
 automaton

and output fun
tion, and then present a modi�ed tpm algorithm that uses this drfta

and asso
iated output fun
tion. To the best of our knowledge, this algorithm has not

appeared in the literature before. It provides a missing link between tpm algorithms

using stringpath automata and those using tree automata.

Our algorithm is not ne
essarily eÆ
ient. It has the same worst-
ase bound of

O(m � n) as the other papers mentioned (where m and n are the pattern and subje
t

tree size). In re
ent years, many papers providing algorithms with better worst-
ase

bounds have appeared [Kos89, DGM94, CH97, CHI99℄. These algorithms improve

the worst-
ase bound at the
ost of somewhat more elaborate algorithms and/or the

onstru
tion of larger auxiliary data stru
tures. It is un
lear (and a potential subje
t

of future resear
h) what the pra
ti
al performan
e of the algorithms is.

Se
tion 2 introdu
es basi
 de�nitions and notations. Tree pattern mat
hing is

introdu
ed in Se
tion 3. In Se
tion 4 we present a version of Ho�mann & O'Donnell's

root-to-frontier tpm algorithm, while Se
tion 5 shows that a parti
ular kind of drfta

an be
onstru
ted and used for stringpath mat
hing, and presents a root-to-frontier

tpm algorithm using this drfta. Se
tion 6 gives some
on
lusions as well as sugges-

tions for future work, in parti
ular a more detailed
omparison of the two algorithms

and automata kinds.

2 Preliminaries

We use B ;N and N

+

to denote the domain of the booleans, the natural numbers and

the natural numbers ex
luding 0 respe
tively.

A basi
 understanding of the meaning of quanti�
ations is assumed. We use

the notation h�a : R(a) : E(a)i where � is the asso
iative and
ommutative quan-

ti�
ation operator (with unit e

�

), a is the quanti�ed variable introdu
ed, R is the

range predi
ate on a, and E is the quanti�ed expression. By de�nition, we have

h�a : false : E(a)i = e

�

. The following table lists some of the most
ommonly

quanti�ed operators, their quanti�ed symbols, and their units:

Operator _ ^ [

Symbol 9 8

S

Unit false true ?

We use

Set a : R(a) : E(a)

�

for

S

a : R(a) : fE(a)g

�

.

217

Pro
eedings of the Prague Stringology Conferen
e '05

2.1 Trees

De�nition 1. An ordered tree domain is a �nite non-empty subset D of N

�

+

su
h

that

� pref(D) � D, i.e. D is pre�x-
losed, and

� for all n 2 D and i 2 N

+

, n � i 2 D)

8 j : j < i : n � j 2 D

�

.

Note that we use � to separate elements of N

+

in tree domain elements. Tree domain

elements are
alled nodes. Root node " 2 D for any D.

Example 2. Set f"; 1; 1 � 1; 2g is an ordered tree domain.

De�nition 3. Let D be an ordered tree domain, V a �nite non-empty set of symbols

(alphabet) and r 2 V ! N a ranking fun
tion. An ordered ranked tree t is a fun
tion

t 2 D ! V for whi
h for every node n 2 D, r(t(n)) equals the number of i 2 N

+

su
h

that n � i 2 D.

For a tree t, we will use D

t

to refer to the tree domain underlying t. Given an

alphabet V and ranking fun
tion r, we
all the pair (V; r) a ranked alphabet. For

any a 2 V , we
all r(a) the rank of a. In this paper, we assume (V; r) to be the �xed

ranked alphabet f(a; 2); (b; 1); (
; 0)g, i.e. with symbols a; b;
 of rank 2; 1; 0.

We denote the set of all ordered ranked trees over (V; r) by Tree(V; r). For t 2

Tree(V; r) and n 2 D

t

, t�n is t's subtree starting at n. Note that t�" = t.

We may represent a tree by a set of pairs of tree domain values and symbols,

graphi
ally, or using a term representation, as in the following example.

Example 4 (Tree). Given (V; r), set t = f("; a); (1; b); (1 � 1;
); (2; a); (2� 1; b); (2 �

1 � 1;
); (2 � 2; a); (2 � 2 � 1;
); (2 � 2 � 2;
)g forms an ordered, ranked tree. It
an be

represented as a term by a(b(
); a(b(
); a(
;
))), while tree t�(2 � 2) for example
or-

responds to set f("; a); (1;
); (2;
)g and term a(
;
). Graphi
ally, t is represented as

a

b

a

b

a

2.2 Tree automata

De�nition 5. A tree automaton (ta) M is a 6-tuple (Q; V; r; R;Q

ra

; Q

la

) su
h that

� Q is a �nite set, the state set

� (V; r) is a ranked alphabet

� R =

Set a : a 2 V : R

a

�

is the set of transition relations, where R

a

�

Q�Q

r (a)

for all a 2 V

� Q

ra

� Q, the root a

epting states

218

A Missing Link in Root-to-Frontier Tree Pattern Mat
hing

� Q

la

� Q, the leaf a

epting states,

de�ned by Q

la

=

Set a; q : a 2 V ^ r(a) = 0 ^ (q; ()) 2 R

a

: q

�

Remark 6. An expli
it set Q

la

for leaf a

epting states is not needed, but is in
luded

to fa
ilitate notation. Note that for a 2 V with r(a) = 0, R

a

� Q � Q

0

, i.e. the

se
ond
omponent
orresponds to a domain whose single element is the empty tuple

(). Some de�nitions of tree automata use R

a

� Q�Q for su
h symbols a instead.

De�nition 7. An nrfta (nondeterministi
 root-to-frontier tree automaton) M =

(Q; V; r; R;Q

ra

; Q

la

) is a ta where R

a

2 Q ! P(Q

r (a)

) for all a 2 V , i.e. R

a

is

onsidered to be dire
ted.

Considering the relations R

a

in this way is not a restri
tion, and therefore the

lasses of nrfta and ta are equivalent. By dire
ting the relations, the root a

ept-

ing states be
ome start states. By restri
ting the relations R

a

of the nrfta to be

fun
tions yielding a single state tuple instead of a set of su
h tuples, we obtain the

deterministi
 root-to-frontier tree automata:

De�nition 8. A drfta M = (Q; V; r ; R;Q

ra

; Q

la

) is an nrfta where R

a

2 Q !

Q

r(a)

for all a 2 V|i.e. the R

a

are fun
tions|and Q

ra

= fq

ra

g|i.e. there is a

unique root a

epting state (start state).

We de�ne tree a

eptan
e using tree state assignments, i.e. assignments of a

state to ea
h tree node. Consider the set of tree state assignments that respe
t the

automaton transition relations (or fun
tions in
ase of dire
ted automata) and that

assign a (the, for drftas) root a

epting state to the subje
t tree root. A subje
t

tree is a

epted by an automaton if and only if this set is non-empty.

Lemma 9. There are nrftas for whi
h no drfta a

epting the same language
an

be
onstru
ted.

Proof. We give an example of a language whi
h is not re
ognizable by a drfta.

Let L = fa(
; d); a(d;
)g. We try to
onstru
t a drfta a

epting L. There must

be exa
tly one pair of states (q

1

; q

2

) su
h that R

a

(q

ra

) = (q

1

; q

2

). To re
ognize both

trees, R

(q

1

) = R

d

(q

2

) = R

d

(q

1

) = R

(q

2

) = () must hold, but this means that

trees a(
;
) and a(d; d) are a

epted as well. A drfta a

epting L therefore
annot

exist, but an nrfta for L
an be
onstru
ted (see Figure 1, the notation of whi
h is

explained below).

Finite string automata are often represented visually by a state diagram. We

adapt this notation to �nite tree automata. Ea
h state is represented by a
ir
le,

with double
ir
les indi
ating root a

epting states, while a transition relating state

q and states q

1

: : : q

n

on a symbol a is represented by

1. a (dire
ted) edge
onne
ting q to a small unlabeled
ir
le, labeled by a and

2. n (dire
ted) edges
onne
ting the unlabeled
ir
le to q

i

(for 1 � i � n)

Finally, we introdu
e dotted trees, whi
h are used in Se
tion 5. A dotted tree is

a tree with a distinguished position, as in the following de�nition.

219

Pro
eedings of the Prague Stringology Conferen
e '05

q

ra

q

1

q

2

q

3

q

4

a

1

2

a

1

2

d

d

Figure 1: nrfta a

epting L = fa(
; d); a(d;
)g

De�nition 10. Let t 2 Tree(V; r) and n 2 D

t

, then the pair (t; n) is a dotted tree.

We use DT (t) to indi
ate the set of all dotted trees for a tree t.

Example 11. Let u = a(b(
);
), then set DT (u)
orresponds to f(u; "); (u; 1); (u; 1 �

1); (u; 2)g.

3 Tree pattern mat
hing

The leaves of trees in Tree(V; r) always have symbols of rank 0, but for pattern

mat
hing, something more general is needed. We extend the alphabet with a spe
ial

variable or `wild
ard' symbol, indi
ating a mat
h of any tree from Tree(V; r). We

extend (V; r) into (V

0

; r

0

) by adding symbol � with r

0

(�) = 0, and letting r

0

(a) = r(a)

for all a 2 V . Trees in Tree(V

0

; r

0

) are
alled pattern trees or patterns. Note that �
an

only label leaf nodes. Notation t�n and DT (t) are extended to trees in Tree(V

0

; r

0

).

We
an now de�ne what it means for a subtree of a tree to mat
h a pattern,

de�ning a fun
tion Mat
h as follows.

De�nition 12. Fun
tion Mat
h 2 Tree(V

0

; r

0

) � Tree(V; r) � D ! B is de�ned

for every pattern p 2 Tree(V

0

; r

0

), subje
t t 2 Tree(V; r) and node n 2 D

t

by

Mat
h(p; t; n) =

9 s

1

; : : : ; s

k

: s

1

; : : : ; s

k

2 Tree(V; r) : p[s

1

; : : : ; s

k

℄ = t�n

�

where p[s

1

; : : : ; s

k

℄ is the tree obtained by substituting s

1

; : : : ; s

k

respe
tively for the

k instan
es of � in p.

Example 13. Given trees t = a(b(
); a(b(
); a(
;
))) and p = a(b(
); �),Mat
h(p; t; n)

holds for n = " and n = 2 (and not for any other nodes). Mat
h(p; t; ") holds sin
e

t�" = p[a(b(
); a(
;
))℄. Mat
h(p; t; 2) holds sin
e t�2 = p[a(
;
)℄.

Apart from the tree domain, term and graphi
al notations used before, a tree is

also uniquely
hara
terized by its set of stringpaths, whi
h represent all its root to

leaf paths.

De�nition 14 (Tree stringpaths). Let t 2 Tree(V

0

; r

0

), then fun
tion SPaths 2

Tree(V

0

; r

0

)! P((V

0

� N

+

)

�

� V

0

) is de�ned by

SPaths(t) = ft(")g if r(t(")) = 0

SPaths(t) = ft(")g

�

S

i : 1 � i � r(t(")) : fig � SPaths(t�i)

�

if r(t(")) > 0

(where string
on
atenation operator � is extended to operate on sets of strings).

220

A Missing Link in Root-to-Frontier Tree Pattern Mat
hing

Example 15. For t = a(b(
); a(b(
); a(
;
))), SPaths(t�2) = fa1b1
; a2a1
; a2a2
g

and SPaths(t) = fa1b1
; a2a1b1
; a2a2a1
; a2a2a2
g.

A stringpath of a pattern p mat
hes in a given subje
t tree t starting at n if and

only if either the stringpath is in SPaths(t�n) or the stringpath ends in � and the

stringpath minus this � is a pre�x of some stringpath in SPaths(t�n). It follows that

p mat
hes in t at node n if and only if ea
h stringpath in SPaths(p) mat
hes in t

starting at n.

We introdu
e in�x operators � and � (right take and right drop). For any string s

of length � m 2 N

+

, s�m equals the rightmost m symbols of s, while s�m equals s

ex
ept its rightmost m symbols.

Example 16. Given tree t = a(b(
); a(b(
); a(
;
))) and pattern p = a(b(
); �),

Mat
h(p; t; n) holds for n = " and n = 2 only. Mat
h(p; t; ") holds sin
e a1b1
 2

SPaths(t�") and a2��1 = � ^ a2��1 2 pref(SPaths(t�")). Mat
h(p; t; 2) holds

sin
e a1b1
 2 SPaths(t�2) and a2��1 = � ^ a2��1 2 pref(SPaths(t�2)).

To solve the tpm problem using a root-to-frontier approa
h, stringpath mat
hing

an be used. Stringpath mat
hes are most easily registered at their endpoints, but

algorithms
an be adapted to register stringpath mat
hes at their beginpoints, and

by doing so, tree pattern mat
hes
an be determined. In the rest of this paper, we

onsider tree pattern mat
hing as stringpath mat
hing.

Related to the de�nition of stringpaths, we de�ne a fun
tion representing the

rootpath to a given node, i.e. the labeled path from the tree root to the given node:

De�nition 17. Fun
tion RPath 2 Tree(V

0

; r

0

)�D! (V

0

� N

+

)

�

� V

0

is de�ned by

RPath(t; ") = t(")

RPath(t; n � i) = RPath(t; n) � i � t(n � i) for n � i 2 D

t

Note that a rootpath RPath(t; n) always ends with symbol t(n).

For every pattern p, there is a
orresponden
e between dotted trees and rootpaths:

RPath(p; n) is de�ned if and only if (p; n) 2 DT (p).

4 Using a
 stringpath automata

The basi
 idea of Ho�mann & O'Donnell's root-to-frontier tpm algorithm [HO82℄ is

to use an optimal a
 automaton for mat
hing pattern stringpaths,
ombined with a

root-to-frontier traversal of the subje
t tree.

An optimal a
 automaton is a version of the a
 automaton without failure tran-

sitions. Constru
tion algorithms for a
 automata have been des
ribed in numerous

referen
es [CR03, NR02, Wat95, AC75℄, and we do not dis
uss any in detail.

Given the state rea
hed by the a
 automaton by pro
essing an input string upto a

given position, the output fun
tion determines the set of keyword o

urren
es ending

at this position.

The a
 automaton built from stringpath set SPaths(p) for a given pattern p 2

Tree(V

0

; r

0

) is a 5-tuple M

AC

= (Q; V

0

[N

+

; Æ; q

0

; output) in whi
h Q is the state set,

221

Pro
eedings of the Prague Stringology Conferen
e '05

V

0

[N

+

the alphabet, Æ 2 Q � (V

0

[N

+

) ! Q the transition fun
tion, q

0

the start

state, and output 2 Q! P(SPaths(p)) the output fun
tion.

On a high level, the
onstru
tion of this automaton
an be des
ribed as follows:

1. Constru
t a trie re
ognizing the set of stringpaths

2. For every state
orresponding to a stringpath mat
h, de�ne the output of the

state equal to the stringpath; for other states, the output is empty

3. Add a `self-loop' transition on every alphabet symbol to the start state

4. Determinize the resulting automaton and adapt the output fun
tion a

ordingly

The resulting optimal a
 automaton for the set of pattern stringpaths
an be used

in a root-to-frontier subje
t tree traversal to �nd all pattern stringpath mat
hes.

Example 18 (a
 stringpath automaton for pattern p). The trie with `self-

loop'
onstru
ted for pattern p = a(b(
); �) by steps 1{3 of the above
onstru
tion

is depi
ted in Figure 2. The output fun
tion values
orresponding to �nal states are

de�ned as output(q

) = a1b1
; output(q

d

) = a2�.

q

0

q

a

q

1

q

2

q

b

q

3

q

q

d

a; b;
; �; 1; 2

a

1

2

�

b

1

Figure 2: Trie with `self-loop' for p

Applying step 4 of the above
onstru
tion leads to the a
 stringpath automaton

depi
ted in Figure 3 (in whi
h transitions not shown lead to q

0

). The output fun
tion

values
orresponding to �nal states are de�ned as output(q

) = fa1b1
g; output(q

d

) =

fa2�g. Note that states in the a
 automaton are di�erent from those in the trie with

`self-loop', sin
e states of the a
 automaton
orrespond to sets of states of the trie

with `self-loop'.

q

0

q

a

q

1

q

2

q

b

q

3

q

q

d

b;
; �; 1; 2

a

1

2

�

b

1

a

a

a

a

a

a

Figure 3: a
 stringpath automaton for p.

4.1 An a
-based tpm algorithm

In this se
tion, we present a version of Ho�mann & O'Donnell's root-to-frontier

tpm algorithm. The algorithm presentation is similar to that by van de Meer-

akker [vdM88℄. It uses expli
it re
ursion instead of a sta
k as in the original al-

gorithm. As an invariant, when visiting a node n of the given subje
t tree t, the a

222

A Missing Link in Root-to-Frontier Tree Pattern Mat
hing

automaton is in the state rea
hed on input equal to the rootpath RPath(t; n) ex
ept

its last symbol, t(n), i.e. on input RPath(t; n)�1.

To traverse the tree, the algorithm should be
alled on every
hild node i of the

urrent node, if any. To maintain the invariant, the a
 automaton should be in the

state rea
hed from the
urrent state by a transition on t(n) followed by one on i, the

number of the bran
h leading to the
hild node.

When visiting a node, the algorithm should register mat
hes indi
ated by the

a
 automaton after a transition on symbol t(n), but also mat
hes indi
ated after a

transition on symbol �, sin
e � mat
hes any subtree. This results in:

f Pre: q = Æ

�

(q

0

; RPath(t; n)�1) g

pro
 Traverse(q : Q; n : D) =

j[var q

next

: Q; i : N

+

; sp : (V � N

+

)

�

� V

j for i : 1 � i � r

0

(t(n))!

q

next

: = Æ(Æ(q; t(n)); i);

Traverse(q

next

; n � i)

rof ;

for sp : sp 2 output(Æ(q; t(n)))!

\register sp mat
h at its endpoint n";

rof

for sp : sp 2 output(Æ(q; �))!

\register sp mat
h at its endpoint n";

rof

℄j;

f Post: every stringpath mat
h in t whose endpoint is in the subtree t�n

has been registered at its endpoint g

f Pre: M

a

= (Q; V

0

[N

+

; Æ; q

0

; output) is the a
 automaton

built on the stringpaths of the pattern tree g

Traverse(q

0

; ")

f Post: every stringpath mat
h in t has been registered at its endpoint g

a

b

a

b

a

q

0

q

a

q

1

q

b

q

3

fa1b1
g q

q

2

q

a

, q

d

! fa2�g

q

1

q

b

q

3

fa1b1
g q

q

2

q

a

, q

d

! fa2�g

q

1

q

0

q

2

q

0

, q

d

! fa2�g

Figure 4: a
 automaton state assignment and stringpath mat
hes

Example 19. As an example, Figure 4 shows the states asso
iated with every node

and mat
hes dete
ted by the algorithm for subje
t tree t = a(b(
); a(b(
); a(
;
))).

223

Pro
eedings of the Prague Stringology Conferen
e '05

Note that even though the a
 automaton used is deterministi
, two states may be

asso
iated with a tree node n: the states
orresponding to Æ(q; t(n)) and to Æ(q; �).

States
orresponding to stringpath mat
hes are framed.

The algorithm
an be extended to deal with multiple patterns as well, and
an be

used as the basis for tree a

eptan
e and tree parsing algorithms [vdM88, AGT89℄.

5 Using stringpath drftas

In this se
tion, we present our new tpm algorithm. It uses a parti
ular drfta and

asso
iated output fun
tion,
ombined with a root-to-frontier subje
t tree traversal.

On a high level, the drfta and output fun
tion
onstru
tion works as follows:

1. Constru
t a drfta re
ognizing the pattern tree

2. For every state and alphabet symbol indi
ating a stringpath mat
h, de�ne the

output of the state and symbol equal to this stringpath; for other
ombinations

of state and alphabet symbol, de�ne the output to be empty

3. Add `self-loop' transitions on every symbol of rank > 0 to the start state

4. Determinize the resulting automaton and adapt the output fun
tion a

ordingly

The
onstru
tion bears a lot of resemblan
e to the a
 automaton
onstru
tion pro
ess

enumerated in the pre
eding se
tion. A detailed investigation of the
orresponden
e

between the two
onstru
tions will be the subje
t of future work.

We dis
uss the above
onstru
tion in more detail and show that the results
an be

used for root-to-frontier tpm, before presenting the new algorithm. Steps 1{3 result

in a tpm nrfta and are dis
ussed �rst. In Se
tion 5.2, step 4 is applied to obtain a

drfta. Although this automaton
annot be used as a tpm automaton by itself, we

show that it
an be used for stringpath mat
hing.

5.1 tpm nrfta
onstru
tion

Given a pattern, we
an
onstru
t a drfta M a

epting this pattern, in whi
h the

set of states is the set of dotted trees:

Constru
tion 20. Let p 2 Tree(V

0

; r

0

), then M = (Q; V

0

; r

0

; R;Q

ra

; Q

la

) where

Q = DT (p)

Q

ra

= f(p; ")g

R

a

=

*

Set n : (p; n) 2 Q

^ p(n) = a

: ((p; n);

((p; n � 1);

: : : ;

(p; n � r(a))))

+

for all a 2 V

0

This
onstru
tion results in a deterministi
 root-to-frontier tree automaton, but

when extending it to deal with multiple patterns this may no longer be the
ase.

Note that for n su
h that p(n) has rank 0, elements of R

a

have the form ((p; n); ())

i.e. relate a state (a dotted tree) to the empty tuple of states.

224

A Missing Link in Root-to-Frontier Tree Pattern Mat
hing

Example 21 (drfta a

epting pattern p). Applying the
onstru
tion to pattern

p = a(b(
); �) leads to the drfta depi
ted in Figure 5.

q

0

q

1

q

2

q

3

a

1

2

�

b

1

Figure 5: drfta resulting from Constru
tion 20

The
orresponden
e between the state labels used and the dotted trees they rep-

resent is as follows:

q

0

= (p; ") q

2

= (p; 2)

q

1

= (p; 1) q

3

= (p; 1 � 1)

The state assignment for every node of p in an a

epting
omputation is shown

in Figure 6. Tree p is a

epted sin
e R

(q

3

) = () and R

�

(q

2

) = ().

a

�

b

q

0

q

1

q

2

q

3

Figure 6: State assignment leading to a

eptan
e of pattern tree p

Note how the drfta
onstru
ted for a tree pattern is similar to a trie
onstru
ted

for the
orresponding set of stringpaths.

Theorem 22. Given a subje
t tree t, pattern tree p, nodes m 2 D

t

and n 2 D

p

, and

a drfta as in Constru
tion 20,

(p; n) is assigned to node m by

the drfta
omputation

^ (t(m) = p(n) _ � = p(n))

)

RPath(p; n) mat
hes

ending at node m

Proof : We prove this theorem by stru
tural indu
tion on n.

Case n = ": t(m) = p(") _ � = p(") implies that p(") = RPath(p; ") mat
hes

ending at node m.

Case n = l � i: Using the de�nition of the drfta's transition relation, (p; n)

is assigned to node m by the drfta
omputation ^ (t(m) = p(n) _ � = p(n))

implies that (p; l) is assigned to node m�1 and t(m�1) = p(l). Using the indu
tion

hypothesis, RPath(p; l) mat
hes ending at node m�1. Sin
e t(m) = p(n) _ � = p(n),

RPath(p; n) = RPath(p; l) � i � p(n) mat
hes ending at node m.

Sin
e stringpaths are rootpaths ending in symbols of rank 0, mat
hes
an only

end in su
h symbols, and using Theorem 22 we obtain the following de�nition:

225

Pro
eedings of the Prague Stringology Conferen
e '05

De�nition 23. For automata as in Constru
tion 20, partial fun
tion output 2 Q �

V

0

! (V

0

�N

+

)

�

�V

0

is de�ned for (p; n) 2 Q and a 2 V

0

su
h that a = p(n) ^ r(a) = 0

by output((p; n); a) = RPath(p; n).

Note that fun
tion output is used with the symbol t(m) for m the node of t that a

state is assigned to, and with symbol �. The inverse of the impli
ation in Theorem 22

does not hold; the automaton is a tree a

eptor, and
an only be used to dete
t a

pattern mat
h that starts at the subje
t tree root. To enable pattern mat
hes starting

at other input tree nodes to be dete
ted, an extension similar to the addition of the

`self-loop' transitions of the a
 automaton is ne
essary, as follows:

Constru
tion 24. Let p 2 Tree(V

0

; r

0

), then M

0

= (Q; V

0

; r

0

; R

0

; Q

ra

; Q

la

) where

R

0

a

= R

a

[

�

f((p; "); ((p; ")

r(a)

))g for all a 2 V

0

with r(a) > 0

? for all a 2 V

0

with r(a) = 0

The result is an nrfta a

epting all trees ending in pattern o

urren
es.

Example 25 (Stringpath nrfta for pattern p). The nrfta with `self-loops'

onstru
ted for pattern p = a(b(
); �) by Constru
tion 24|
orresponding to steps 1{3

of the high-level
onstru
tion at the beginning of Se
tion 5|is depi
ted in Figure 7.

The output fun
tion is de�ned by output(q

3

;
) = a1b1
, output(q

2

; �) = a2� and

unde�ned for other input range values.

q

0

q

1

q

2

q

3

a

1

2

�

b

1

b

a

1

1

2

Figure 7: nrfta with `self-loops' resulting from Constru
tion 24

Theorem 26. Given a subje
t tree t, pattern tree p, nodes m 2 D

t

and n 2 D

p

, and

an nrfta as in Constru
tion 24,

(p; n) is assigned to node m by an

nrfta
omputation

^ (t(m) = p(n) _ � = p(n))

�

RPath(p; n) mat
hes

ending at node m

Proof :): As in the proof of Theorem 22. (: By stru
tural indu
tion on n.

Case n = ": RPath(p; ") = p(") mat
hes ending at node m implies that t(m) =

p(") _ � = p("). From the de�nition of the nrfta's transition fun
tion, (p; ") is

assigned to any given node in some
omputation of the nrfta.

Case n = l � i: RPath(p; n) mat
hes ending at node m implies that RPath(p; l)

mat
hes ending at node m�1 and t(m) = p(n) _ � = p(n). Using the indu
tion

hypothesis, (p; l) is assigned to node m�1 by a
omputation of the nrfta ^ (t(m�1) =

p(l) _ � = p(l)). Sin
e r(�) = 0, the se
ond
onjun
t redu
es to t(m�1) = p(l), and

using the transition fun
tion de�nition we have that (p; l � i) = (p; n) is assigned to

node m by a
omputation of the nrfta. Sin
e we already had t(m) = p(n) _ � = p(n)

this
ompletes the proof of this
ase.

226

A Missing Link in Root-to-Frontier Tree Pattern Mat
hing

5.2 Determinization

Similarly to the determinization of the trie with `self-loops' to obtain a deterministi

a
 automaton, the nrfta resulting from steps 1{3
an be determinized. The subset

onstru
tion for nrftas is a straightforward generalization of that for string automata

and is not elaborated here. It is known from regular tree theory however that the

resulting drfta in general re
ognizes a superset of the nrfta's language: the set

of trees of whi
h every stringpath o

urs as a stringpath in a tree from the nrfta's

language. We aim at using the resulting drfta for tree stringpath pattern mat
hing

however, and it turns out to be suitable for this purpose.

Example 27 (Stringpath drfta for pattern p). Applying the subset
onstru
tion

to the nrfta of Example 25 (
orresponding to step 4 at the beginning of Se
tion 5)

leads to the stringpath drfta depi
ted in Figure 8. Output fun
tion values for this

example drfta are singleton set versions of the values for the nrfta of Example 25.

As in Example 18, states of the automaton are di�erent from those with the same

label in the automaton of Example 25.

q

0

q

1

q

2

q

3

a

1

2

�

b

1

b

1

a

1

2

a

1

2

a

1

2

Figure 8: Stringpath drfta for p. Missing transitions on symbols of rank > 0 lead

to (tuples of size equal to the symbol's rank of) state q

0

Using Theorem 26 and the subset
onstru
tion, we obtain:

Corollary 28. Given a subje
t tree t, pattern tree p, nodes m 2 D

t

and n 2 D

p

, and

a drfta obtained from Constru
tion 24 by a subset
onstru
tion,

(p; n) is part of the state assigned

to node m by the drfta
omputation

^ ((t(m) = p(n)) _ (� = p(n)))

�

RPath(p; n) mat
hes

ending at node m

In other words, the state assigned to a node and the symbol at that node and

� together determine the set of all mat
hing stringpaths ending at that node. As

indi
ated before, the drfta and asso
iated output fun
tion
an thus be used in a

root-to-frontier subje
t tree traversal to dete
t all stringpath mat
hes.

5.3 A drfta-based tpm algorithm

As an invariant, when visiting a node n of the given subje
t tree t, the drfta is in

the state assigned to the node based on the symbols on the rootpath RPath(t; n)

with the ex
eption of the last symbol of this rootpath|symbol t(n).

227

Pro
eedings of the Prague Stringology Conferen
e '05

As in the previous algorithm, the re
ursive pro
edure is
alled on every
hild i

of the
urrent node, with a state obtained by proje
ting away all ex
ept the ith

omponent of the state tuple rea
hed by a transition from the
urrent state on t(n).

When visiting a node, the algorithm should register any mat
hes indi
ated by the

drfta's output fun
tion for the
urrent state and either symbol t(n) or �, sin
e �

mat
hes any subtree. This leads to the following algorithm:

f Pre: q = p

n

where n = jnj ^ p

0

= q

0

^

8 i : 1 � i � n : p

i

= �

RPath(t;n)

2i

(R

RPath(t;n)

2i�1

(p

i�1

))

�

g

pro
 Traverse(q : Q; n : D) =

j[var q

next

: Q; i : N

+

; sp : (V � N

+

)

�

� V

j for i : 1 � i � r

0

(t(n))!

q

next

: = �

i

(R

t(n)

(q));

Traverse(q

next

; n � i)

rof ;

for sp : sp 2 output(q; t(n))!

\register sp mat
h at its endpoint n";

rof

for sp : sp 2 output(q; �)!

\register sp mat
h at its endpoint n";

rof

℄j;

f Post: every stringpath mat
h in t whose endpoint is in the subtree t�n

has been registered at its endpoint g

f Pre: M

drfta

= (Q; V

0

; r

0

; R; q

0

; Q

la

) is the drfta built on the

pattern tree, and output is the asso
iated output fun
tion g

Traverse(q

0

; ")

f Post: every stringpath mat
h in t has been registered at its endpoint g

a

b

a

b

a

q

0

q

1

fa1b1
g q

3

q

2

� ! fa2�g

q

1

fa1b1
g q

3

q

2

� ! fa2�g

q

1

q

2

� ! fa2�g

Figure 9: drfta state assignment and stringpath mat
hes

Example 29. Figure 9 shows the states asso
iated with every node and mat
hes

dete
ted by the algorithm for t = a(b(
); a(b(
); a(
;
))). Combinations of states and

symbols
orresponding to stringpath mat
hes are framed. Note that symbol � is only

expli
itly depi
ted for nodes at whi
h it o

urs in a stringpath mat
h.

228

A Missing Link in Root-to-Frontier Tree Pattern Mat
hing

6 Con
luding remarks

We presented two algorithms for stringpath-based tree pattern mat
hing. One of

these, based on a root-to-frontier tree traversal and using an Aho-Corasi
k automaton,

is already well known from the literature [HO82, AGT89, vdM88, AG85℄. The other,

based on a root-to-frontier tree traversal and using a drfta, is new. By presenting

the two in a similar style, we highlighted their similarities and provided a missing link

between tpm algorithms using tree automata and those using stringpath automata.

The two tpm algorithms are very similar, their di�eren
e being restri
ted to the

di�erent automata and output fun
tions used. As future work, we intend to
ompare

the automata in more detail. We
onje
ture that they are in some sense equivalent,

i.e.
an be transformed into one another.

We intend to extend the new algorithm to multiple tree patterns and from there

to a tree a

eptan
e and a tree parsing algorithm, providing related solutions to

the related problems of tree a

eptan
e and tree parsing. The result will likely be

similar to the Aho-Corasi
k-based tree a

eptan
e and tree parsing algorithms of Aho,

Ganapathi & Tjiang [AGT89, vdM88, AG85℄.

Finally, it would be interesting to investigate the use of di�erent keyword pattern

mat
hing automata or algorithms|su
h as those in [CWZ04, Wat95℄|to obtain new

tree pattern mat
hing algorithms that are based on stringpath mat
hing. One su
h

algorithm, using Boyer-Moore pattern mat
hing, was presented in [Wat97℄.

Referen
es

[AC75℄ A.V. Aho and M.J. Corasi
k. EÆ
ient string mat
hing: an aid to biblio-

graphi
 sear
h. Communi
ations of the ACM, 18:333{340, 1975.

[AG85℄ A.V. Aho and M. Ganapathi. EÆ
ient tree pattern mat
hing: An aid to

ode generation. In Pro
eedings of the 12th ACM Symposium on Prin
iples

of Programming Languages, pages 334{340, 1985.

[AGT89℄ A.V. Aho, M. Ganapathi, and S.W.K. Tjiang. Code generation using tree

mat
hing and dynami
 programming. ACM Transa
tions on Programming

Languages and Systems, 11(4):491{516, 1989.

[CH97℄ R. Cole and R. Hariharan. Tree pattern mat
hing and subset mat
hing in

randomized o(n log3 m) time. In Pro
eedings of the ACM Symposium on

Theory of Computing, pages 66{75, 1997.

[Cha87℄ David R. Chase. An improvement to bottom-up tree pattern mat
hing. In

Conferen
e Re
ord of the Fourteenth Annual ACM Symposium on Prin
i-

ples of Programming Languages, pages 168{177. ACM, 1987.

[CHI99℄ R. Cole, R. Hariharan, and P. Indyk. Tree pattern mat
hing and subset

mat
hing in deterministi
 o(nlog

3

n) time. In Pro
eedings of the 10th ACM-

SIAM Symposium on Dis
rete Algorithms, pages 245{254, 1999.

[CR03℄ Maxime Cro
hemore and Woj
ie
h Rytter. Jewels of Stringology - Text

Algorithms. World S
ienti�
 Publishing, 2003.

229

Pro
eedings of the Prague Stringology Conferen
e '05

[CWZ04℄ Loek Cleophas, Bru
e W. Watson, and Gerard Zwaan. Automaton-based

sublinear keyword pattern mat
hing. In Pro
eedings of the 11th interna-

tional
onferen
e on String Pro
essing and Information REtrieval (SPIRE

2004), volume 3246 of LNCS. Springer, O
tober 2004.

[DGM94℄ M. Dubiner, Z. Galil, and E. Magen. Faster tree pattern mat
hing. Journal

of the ACM, 41(2):205{213, 1994.

[Eng75℄ Joost Engelfriet. Tree Automata and Tree Grammars. Le
ture Notes

DAIMI FN-10, Aarhus University, April 1975.

[FSW94℄ Christian Ferdinand, Helmut Seidl, and Reinhard Wilhelm. Tree automata

for
ode sele
tion. A
ta Informati
a, 31:741{760, 1994.

[GS97℄ Feren
 G�e
seg and Magnus Steinby. Tree Languages, volume 3 of Handbook

of Formal Languages, pages 1{68. Springer, 1997.

[HC86℄ Philip J. Hat
her and Thomas W. Christopher. High-quality
ode gener-

ation via bottom-up tree pattern mat
hing. In Conferen
e Re
ord of the

Thirteenth Annual ACM Symposium on Prin
iples of Programming Lan-

guages, pages 119{130. ACM, 1986.

[HK89℄ C. Hemerik and J.P. Katoen. Bottom-up tree a

eptors. S
ien
e of Com-

puter Programming, 13(1):51{72, 1989.

[HO82℄ C.M. Ho�mann and M.J. O'Donnell. Pattern mat
hing in trees. Journal

of the ACM, 29(1):68{95, January 1982.

[Kos89℄ S.R. Kosaraju. EÆ
ient tree pattern mat
hing. In Pro
eedings of the 30th

annual IEEE Symposium on Foundations of Computer S
ien
e, FOCS'89,

pages 178{183. IEEE Computer So
iety Press, 1989.

[Kro75℄ H. Kron. Tree templates and subtree transformational grammars. PhD

thesis, University of California, Santa Cruz, 1975.

[NR02℄ Gonzalo Navarro and Mathieu RaÆnot. Flexible pattern mat
hing in

strings: pra
ti
al on-line sear
h algorithms for texts and biologi
al se-

quen
es. Cambridge University Press, 2002.

[vD87℄ Yolanda van Dinther. De systematis
he a
eiding van a

eptoren en ont-

leders voor boom-grammati
a's. Master's thesis, Fa
ulteit Wiskunde en

Informati
a, Te
hnis
he Universiteit Eindhoven, August 1987. (In Dut
h).

[vdM88℄ H.J.A. van de Meerakker. Een parsing algoritme voor boomgrammati
a's.

Master's thesis, Fa
ulteitWiskunde en Informati
a, Te
hnis
he Universiteit

Eindhoven, May 1988. (In Dut
h).

[Wat95℄ Bru
e W. Watson. Taxonomies and Toolkits of Regular Language Algo-

rithms. PhD thesis, Te
hnis
he Universiteit Eindhoven, September 1995.

[Wat97℄ Bru
e W. Watson. A Boyer-Moore (or Watson-Watson) Type Algorithm

for Regular Tree Pattern Mat
hing. In Pro
eedings of the Prague Stringol-

ogy Club Workshop '97, pages 33{38, 1997.

230

