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Abstract. Tree pattern matching (TPM) algorithms play an important role in
practical applications such as compilers and XML document validation. Many
TPM algorithms based on tree automata have appeared in the literature. For
reasons of efficiency, these automata are preferably deterministic. Deterministic
root-to-frontier tree automata (DRFTAs) are less powerful than nondeterministic
ones, and no root-to-frontier TPM algorithm using DRFTAs has appeared so far.
Hoffmann & O’Donnell [HO82] presented a root-to-frontier TPM algorithm based
on an Aho-Corasick automaton recognizing tree stringpaths, but no relationship
between this algorithm and algorithms using tree automata has been described.
In this paper, we show that a specific DRFTA can be used for stringpath matching
in a root-to-frontier TPM algorithm. This algorithm has not appeared in the
literature before, and provides a missing link between TPM algorithms using
stringpath automata and those using tree automata.

1 Introduction

Tree pattern matching (TPM) is an important problem from regular tree theory. It can
be described as finding all occurrences of one or more given pattern trees (patterns)
in a given subject tree. Algorithms solving this problem form the basis for tree
acceptance and tree parsing algorithms, which play an important role in practical
applications such as compilers and XML document validation.

The problems of pattern matching, acceptance and parsing for trees are related,
and so are the algorithms solving them (referred to as tree algorithms from this point
onward). Either implicitly or explicitly, many use some form of tree or string au-
tomata, combined with a frontier-to-root (bottom-up) or root-to-frontier (top-down)
tree traversal [FSW94, HK89, AGTS89, vdM88, vD87, Cha87, HC86, AG85, HO82,
Kro75]. For efficiency reasons, the automata used should preferably be deterministic.

In frontier-to-root tree algorithms, deterministic frontier-to-root tree automata
can be and indeed often are used [FSW94, HK89, Cha87, HC86, HO82].

Deterministic root-to-frontier tree automata (DRFTAs) however have not been
used in root-to-frontier tree algorithms, since it is known from regular tree the-
ory that in general they are less powerful than their nondeterministic counterparts
(NRFTAS) [Eng75, GS97]. Such algorithms therefore use NRFTAs [vD87].

216



A Missing Link in Root-to-Frontier Tree Pattern Matching

Hoffmann & O’Donnell [HO82] and Aho, Ganapathi & Tjiang [AGT89, AGS85]
presented root-to-frontier tree algorithms based on deterministic string automata in-
stead. These algorithms use a deterministic Aho-Corasick (AC) automaton [ACT5]
and its output function to recognize tree stringpaths. Since a tree is uniquely deter-
mined by its stringpaths, this automaton can be used to detect tree matches. The
presentation in those papers is somewhat informal and complicated by optimizations,
but van de Meerakker [vdM88] gave a stepwise account of how to obtain the al-
gorithms. Unfortunately, no relationship between tree algorithms using stringpath
automata and those using tree automata seems to have appeared in the literature.

In this paper, we show that even though a DRFTA cannot be used as a tree acceptor
or matcher by itself, a specific DRFTA can be used (together with an output function)
for stringpath matching in a root-to-frontier tree traversal. We present a version of
Hoffmann & O’Donnell’s root-to-frontier TPM algorithm that uses an AC automaton
and output function, and then present a modified TPM algorithm that uses this DRFTA
and associated output function. To the best of our knowledge, this algorithm has not
appeared in the literature before. It provides a missing link between TPM algorithms
using stringpath automata and those using tree automata.

Our algorithm is not necessarily efficient. It has the same worst-case bound of
O(m - n) as the other papers mentioned (where m and n are the pattern and subject
tree size). In recent years, many papers providing algorithms with better worst-case
bounds have appeared [Kos89, DGM94, CH97, CHI99]. These algorithms improve
the worst-case bound at the cost of somewhat more elaborate algorithms and/or the
construction of larger auxiliary data structures. It is unclear (and a potential subject
of future research) what the practical performance of the algorithms is.

Section 2 introduces basic definitions and notations. Tree pattern matching is
introduced in Section 3. In Section 4 we present a version of Hoffmann & O’Donnell’s
root-to-frontier TPM algorithm, while Section 5 shows that a particular kind of DRFTA
can be constructed and used for stringpath matching, and presents a root-to-frontier
TPM algorithm using this DRFTA. Section 6 gives some conclusions as well as sugges-
tions for future work, in particular a more detailed comparison of the two algorithms
and automata kinds.

2 Preliminaries

We use B, N and N, to denote the domain of the booleans, the natural numbers and
the natural numbers excluding 0 respectively.

A basic understanding of the meaning of quantifications is assumed. We use
the notation (®a : R(a) : E(a)) where @ is the associative and commutative quan-
tification operator (with unit eg), a is the quantified variable introduced, R is the
range predicate on a, and E is the quantified expression. By definition, we have
(®a : false : E(a)) = eg. The following table lists some of the most commonly
quantified operators, their quantified symbols, and their units:

Operator Vv AN | U
Symbol 3 v U
Unait false | true | @

We use (Seta: R(a) : E(a) )for (Ja: R(a) : {E(a)} ).
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2.1 Trees

Definition 1. An ordered tree domain is a finite non-empty subset D of N such
that

e pref(D) C D, i.e. D is prefix-closed, and
e forallneDandie N, n-ieD=(Vj: j<i :n-jeD).

Note that we use - to separate elements of N, in tree domain elements. Tree domain
elements are called nodes. Root node € € D for any D. O

Example 2. Set {¢,1,1-1,2} is an ordered tree domain. O

Definition 3. Let D be an ordered tree domain, V' a finite non-empty set of symbols
(alphabet) and r € V' — N a ranking function. An ordered ranked tree t is a function
t € D — V for which for every node n € D, r(t(n)) equals the number of i € N} such
that n-7 € D. O

For a tree t, we will use D; to refer to the tree domain underlying ¢. Given an
alphabet V' and ranking function r, we call the pair (V,r) a ranked alphabet. For
any a € V', we call r(a) the rank of a. In this paper, we assume (V) to be the fixed
ranked alphabet {(a,2), (b, 1), (c,0)}, i.e. with symbols a, b, ¢ of rank 2,1, 0.

We denote the set of all ordered ranked trees over (V,r) by Tree(V,r). For t €
Tree(V,r) and n € Dy, t@n is t’s subtree starting at n. Note that Qe = ¢.

We may represent a tree by a set of pairs of tree domain values and symbols,
graphically, or using a term representation, as in the following example.

Example 4 (Tree). Given (V,r), set t = {(,a), (1,0),(1-1,¢),(2,a), (2- 1,b), (2 -
1-1,¢),(2-2,a),(2-2-1,¢),(2-2-2,¢)} forms an ordered, ranked tree. It can be
represented as a term by a(b(c), a(b(c),a(c, c))), while tree t@Q(2 - 2) for example cor-
responds to set {(£,a), (1,¢),(2,¢)} and term a(c, c). Graphically, ¢ is represented as

a
b/ \a
VRN
c ) a
L /\
c ¢ ¢
2.2 Tree automata
Definition 5. A tree automaton (TA) M is a 6-tuple (Q,V, r, R, Qq, Qia) such that
e () is a finite set, the state set
e (V,r) is a ranked alphabet

e R = <Seta: aeV : R, > is the set of transition relations, where R, C
QxQ ' forallaeV

e (Do C Q, the root accepting states
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e Qs C Q, the leaf accepting states,
defined by Qi = (Seta,q: a € VAr(a) =0A(q,()) €ERy : q )

0

Remark 6. An explicit set )y, for leaf accepting states is not needed, but is included
to facilitate notation. Note that for a € V with r(a) = 0, R, C Q x Q°, i.e. the
second component corresponds to a domain whose single element is the empty tuple
(). Some definitions of tree automata use R, C @ x @ for such symbols a instead. [

Definition 7. An NRFTA (nondeterministic root-to-frontier tree automaton) M =
(Q,V,r,R,Qra, Qia) is a TA where R, € Q — P(Q"@) for all @ € V, i.e. R, is
considered to be directed. O

Considering the relations R, in this way is not a restriction, and therefore the
classes of NRFTA and TA are equivalent. By directing the relations, the root accept-
ing states become start states. By restricting the relations R, of the NRFTA to be
functions yielding a single state tuple instead of a set of such tuples, we obtain the
deterministic root-to-frontier tree automata:

Definition 8. A DRFTA M = (Q,V,r, R, Qy4, Qi) is an NRFTA where R, € Q@ —
Q"™ for all a € V—i.e. the R, are functions—and Q,, = {g,} —i.e. there is a
unique root accepting state (start state). O

We define tree acceptance using tree state assignments, i.e. assignments of a
state to each tree node. Consider the set of tree state assignments that respect the
automaton transition relations (or functions in case of directed automata) and that
assign a (the, for DRFTAS) root accepting state to the subject tree root. A subject
tree is accepted by an automaton if and only if this set is non-empty.

Lemma 9. There are NRFTAs for which no DRFTA accepting the same language can
be constructed.

Proof. We give an example of a language which is not recognizable by a DRFTA.

Let L = {a(e,d),a(d,c)}. We try to construct a DRFTA accepting L. There must
be exactly one pair of states (¢, ¢2) such that R,(¢r.) = (¢1,¢2). To recognize both
trees, Re(q1) = Ra(q2) = Ra(qi) = Re(q2) = () must hold, but this means that
trees a(c, c) and a(d, d) are accepted as well. A DRFTA accepting L therefore cannot
exist, but an NRFTA for L can be constructed (see Figure 1, the notation of which is
explained below). O

Finite string automata are often represented visually by a state diagram. We
adapt this notation to finite tree automata. FEach state is represented by a circle,
with double circles indicating root accepting states, while a transition relating state
g and states ¢; ...q, on a symbol a is represented by

1. a (directed) edge connecting ¢ to a small unlabeled circle, labeled by a and
2. n (directed) edges connecting the unlabeled circle to ¢; (for 1 <i < n)

Finally, we introduce dotted trees, which are used in Section 5. A dotted tree is
a tree with a distinguished position, as in the following definition.
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Figure 1: NRFTA accepting L = {a(c, d),a(d,c)}

Definition 10. Let ¢ € Tree(V,r) and n € Dy, then the pair (f,n) is a dotted tree.
We use DT(t) to indicate the set of all dotted trees for a tree t. O

Example 11. Let u = a(b(c), ¢), then set DT'(u) corresponds to {(u,¢), (u,1), (u,1-
1), (u,2)}. 0

3 Tree pattern matching

The leaves of trees in Tree(V,r) always have symbols of rank 0, but for pattern
matching, something more general is needed. We extend the alphabet with a special
variable or ‘wildcard’ symbol, indicating a match of any tree from Tree(V,r). We
extend (V,r) into (V' 7') by adding symbol v with r'(v) = 0, and letting r’(a) = r(a)
foralla € V. Trees in Tree(V', r') are called pattern trees or patterns. Note that v can
only label leaf nodes. Notation t@n and DT(t) are extended to trees in Tree(V', r').

We can now define what it means for a subtree of a tree to match a pattern,
defining a function Match as follows.

Definition 12. Function Match € Tree(V',r') x Tree(V,r) x D — B is defined
for every pattern p € Tree(V',r"), subject t € Tree(V,r) and node n € D, by
Match(p,t,n) =

(3s1,.... 86 S1,...,8, € Tree(V,r) : plsi,..., ] =t@n )

where p[sy, ..., sg] is the tree obtained by substituting s, ..., si respectively for the
k instances of v in p. O

Example 13. Given trees t = a(b(c), a(b(c), a(c, ¢))) and p = a(b(c), v), Match(p,t,n)
holds for n = ¢ and n = 2 (and not for any other nodes). Match(p,t,e) holds since
t@Qe = pla(b(c),ale, c))]. Match(p,t,2) holds since t@Q2 = pla(c, c)]. O

Apart from the tree domain, term and graphical notations used before, a tree is
also uniquely characterized by its set of stringpaths, which represent all its root to
leaf paths.

Definition 14 (Tree stringpaths). Let ¢t € Tree(V', '), then function SPaths €
Tree(V', 1"y — P((V'- N4 )*- V') is defined by

SPaths(t) = {t(c)} if 7(t(c)) =0
SPaths(t) = {t(e)}
(Ui 1<i<r(t(e) : {i} - SPaths(t@i) ) if r(t(z)) >0

(where string concatenation operator - is extended to operate on sets of strings). [
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Example 15. For t = a(b(c), a(b(c),a(c, ¢))), SPaths(t@2) = {alblc, a2alc, a2a2c}
and SPaths(t) = {alble, a2alble,a2a2ale, a2a2a2c¢}. O

A stringpath of a pattern p matches in a given subject tree ¢ starting at n if and
only if either the stringpath is in SPaths(t@n) or the stringpath ends in v and the
stringpath minus this v is a prefix of some stringpath in SPaths(t@n). It follows that
p matches in ¢ at node n if and only if each stringpath in SPaths(p) matches in ¢
starting at n.

We introduce infix operators | and | (right take and right drop). For any string s
of length > m € N, , sm equals the rightmost m symbols of s, while s|m equals s
except its rightmost m symbols.

Example 16. Given tree t = a(b(c), a(b(c),a(c,c))) and pattern p = a(b(c),v),
Match(p,t,n) holds for n = ¢ and n = 2 only. Match(p,t, ) holds since alblc €
SPaths(t@e) and a2v]l = v A a2v|1 € pref(SPaths(tQe)). Match(p,t,2) holds
since alblc € SPaths(t@2) and a2v[1 = v A a2v|1 € pref(SPaths(t@2)). O

To solve the TPM problem using a root-to-frontier approach, stringpath matching
can be used. Stringpath matches are most easily registered at their endpoints, but
algorithms can be adapted to register stringpath matches at their beginpoints, and
by doing so, tree pattern matches can be determined. In the rest of this paper, we
consider tree pattern matching as stringpath matching.

Related to the definition of stringpaths, we define a function representing the
rootpath to a given node, i.e. the labeled path from the tree root to the given node:

Definition 17. Function RPath € Tree(V', ") x D — (V' - Ny )* - V" is defined by

RPath(t,e) = t(e)
RPath(t,n-i) = RPath(t,n)-i-t(n-i)forn-ie€ D,

O

Note that a rootpath RPath(t,n) always ends with symbol ¢(n).
For every pattern p, there is a correspondence between dotted trees and rootpaths:
RPath(p,n) is defined if and only if (p,n) € DT'(p).

4 Using AC stringpath automata

The basic idea of Hoffmann & O’Donnell’s root-to-frontier TPM algorithm [HO82] is
to use an optimal AC automaton for matching pattern stringpaths, combined with a
root-to-frontier traversal of the subject tree.

An optimal ACc automaton is a version of the AC automaton without failure tran-
sitions. Construction algorithms for AC automata have been described in numerous
references [CR03, NR02, Wat95, AC75], and we do not discuss any in detail.

Given the state reached by the AC automaton by processing an input string upto a
given position, the output function determines the set of keyword occurrences ending
at this position.

The Ac automaton built from stringpath set SPaths(p) for a given pattern p €
Tree(V',r") is a b-tuple Mac = (Q, V' UN,, 6, qo, output) in which @ is the state set,
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V' UN, the alphabet, § € @ x (V' UN,) — @ the transition function, gy the start
state, and output € QQ — P(SPaths(p)) the output function.
On a high level, the construction of this automaton can be described as follows:

1. Construct a trie recognizing the set of stringpaths

2. For every state corresponding to a stringpath match, define the output of the
state equal to the stringpath; for other states, the output is empty

3. Add a ‘self-loop’ transition on every alphabet symbol to the start state

4. Determinize the resulting automaton and adapt the output function accordingly

The resulting optimal AC automaton for the set of pattern stringpaths can be used
in a root-to-frontier subject tree traversal to find all pattern stringpath matches.

Example 18 (AcC stringpath automaton for pattern p). The trie with ‘self-
loop’ constructed for pattern p = a(b(c),v) by steps 1-3 of the above construction
is depicted in Figure 2. The output function values corresponding to final states are
defined as output(q.) = alble, output(qq) = a2v.

a,b,c,v,1,2

Figure 2: Trie with ‘self-loop’ for p

Applying step 4 of the above construction leads to the Ac stringpath automaton
depicted in Figure 3 (in which transitions not shown lead to gy). The output function
values corresponding to final states are defined as output(q.) = {alblc}, output(qy) =
{a2v}. Note that states in the AC automaton are different from those in the trie with
‘self-loop’, since states of the AC automaton correspond to sets of states of the trie
with ‘self-loop’. O

b,c,v,1,2

Figure 3: AC stringpath automaton for p.

4.1 An Ac-based TPM algorithm

In this section, we present a version of Hoffmann & O’Donnell’s root-to-frontier
TPM algorithm. The algorithm presentation is similar to that by van de Meer-
akker [vdM88]. It uses explicit recursion instead of a stack as in the original al-
gorithm. As an invariant, when visiting a node n of the given subject tree ¢, the AC
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automaton is in the state reached on input equal to the rootpath RPath(t,n) except
its last symbol, ¢(n), i.e. on input RPath(t,n)|1.

To traverse the tree, the algorithm should be called on every child node i of the
current node, if any. To maintain the invariant, the AC automaton should be in the
state reached from the current state by a transition on ¢(n) followed by one on i, the
number of the branch leading to the child node.

When visiting a node, the algorithm should register matches indicated by the
Ac automaton after a transition on symbol #(n), but also matches indicated after a
transition on symbol v, since ¥ matches any subtree. This results in:

{ Pre: ¢ = 0*(qo, RPath(t,n)|1) }
proc Traverse(q: Q,n: D) =
|[ Var Qpeqt - Q; 1 Nyjsp: (V : N+)* -V
| fori:1<i<7r'(t(n)) —
Gneat © = 0(0(q,t(n)), 7);
Traverse(quest, N+ 1)
rof;
for sp : sp € output(d(q,t(n))) —
“register sp match at its endpoint n”;
rof
for sp : sp € output(d(q,v)) —
“register sp match at its endpoint n”;
rof
II;
{ Post: every stringpath match in ¢ whose endpoint is in the subtree t@n
has been registered at its endpoint }

{Pre: M,.=(Q,V'UN,,J, qo,output) is the AC automaton
built on the stringpaths of the pattern tree }
Traverse(qo, )
{ Post: every stringpath match in ¢ has been registered at its endpoint }

qo
a
q1 / \12
b a
Qb qa\4d |~ {a2v}
il 2
b

q3
¢ a
{alblc} + b

Qaa - {GQV}
q3 q1 g2
c

& C

{alble} + o qo, — {a2v}

Figure 4: AC automaton state assignment and stringpath matches

Example 19. As an example, Figure 4 shows the states associated with every node
and matches detected by the algorithm for subject tree t = a(b(c),a(b(c),a(c,c))).
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Note that even though the Ac automaton used is deterministic, two states may be
associated with a tree node n: the states corresponding to d(q,#(n)) and to 6(q, v).
States corresponding to stringpath matches are framed. O

The algorithm can be extended to deal with multiple patterns as well, and can be
used as the basis for tree acceptance and tree parsing algorithms [vdM88, AGT89].

5 Using stringpath DRFTAS

In this section, we present our new TPM algorithm. It uses a particular DRFTA and
associated output function, combined with a root-to-frontier subject tree traversal.
On a high level, the DRFTA and output function construction works as follows:

1. Construct a DRFTA recognizing the pattern tree

2. For every state and alphabet symbol indicating a stringpath match, define the
output of the state and symbol equal to this stringpath; for other combinations
of state and alphabet symbol, define the output to be empty

3. Add ‘self-loop’ transitions on every symbol of rank > 0 to the start state

4. Determinize the resulting automaton and adapt the output function accordingly

The construction bears a lot of resemblance to the AC automaton construction process
enumerated in the preceding section. A detailed investigation of the correspondence
between the two constructions will be the subject of future work.

We discuss the above construction in more detail and show that the results can be
used for root-to-frontier TPM, before presenting the new algorithm. Steps 1-3 result
in a TPM NRFTA and are discussed first. In Section 5.2, step 4 is applied to obtain a
DRFTA. Although this automaton cannot be used as a TPM automaton by itself, we
show that it can be used for stringpath matching.

5.1 TPM NRFTA construction

Given a pattern, we can construct a DRFTA M accepting this pattern, in which the
set, of states is the set of dotted trees:

Construction 20. Let p € Tree(V',r"), then M = (Q, V', 7', R, Qy4, Q1a) Where

Q@ = DT(p)
Qra {(p,e)}

R, = <Setn: (p,n) €@ : ((p,n), >f0ralla€V’
Ap(m)=a  ((p,n-1),

. ey

(p,n-r(a))))
O
This construction results in a deterministic root-to-frontier tree automaton, but
when extending it to deal with multiple patterns this may no longer be the case.
Note that for n such that p(n) has rank 0, elements of R, have the form ((p,n), ())
i.e. relate a state (a dotted tree) to the empty tuple of states.
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Example 21 (DRFTA accepting pattern p). Applying the construction to pattern
p = a(b(c),v) leads to the DRFTA depicted in Figure 5.

Figure 5: DRFTA resulting from Construction 20

The correspondence between the state labels used and the dotted trees they rep-
resent is as follows:

Qo = (pa 6) ‘ q2 = (pa 2)
o = 1)|a = (p1-1)
The state assignment for every node of p in an accepting computation is shown
in Figure 6. Tree p is accepted since R.(g3) = () and R,(¢2) = (). O

q0
a
a1 / \(]2
b v

Q3|
c

Figure 6: State assignment leading to acceptance of pattern tree p

Note how the DRFTA constructed for a tree pattern is similar to a trie constructed
for the corresponding set of stringpaths.

Theorem 22. Given a subject tree ¢, pattern tree p, nodes m € D, and n € D,, and
a DRFTA as in Construction 20,

(p,n) is assigned to node m by
the DRFTA computation

A (tH(m) = p(n) Vv = p(n))

RPath(p,n) matches
ending at node m

Proof : We prove this theorem by structural induction on n.

Case n = e: t(m) = p(e) V v = p(e) implies that p(¢) = RPath(p,c) matches
ending at node m.

Case n = [-i: Using the definition of the DRFTA’s transition relation, (p,n)
is assigned to node m by the DRFTA computation A (t(m) = p(n) V v = p(n))
implies that (p,[) is assigned to node m|1 and ¢(m|1) = p([). Using the induction
hypothesis, RPath(p,[) matches ending at node m|1. Since t(m) = p(n) V v = p(n),
RPath(p,n) = RPath(p, ) - i - p(n) matches ending at node m. O

Since stringpaths are rootpaths ending in symbols of rank 0, matches can only
end in such symbols, and using Theorem 22 we obtain the following definition:
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Definition 23. For automata as in Construction 20, partial function output € @ X
V' — (V'-Ny)*- V" is defined for (p,n) € @ and a € V' such that a = p(n) A r(a) =0
by output((p,n),a) = RPath(p,n). O

Note that function output is used with the symbol ¢(m) for m the node of ¢ that a
state is assigned to, and with symbol v. The inverse of the implication in Theorem 22
does not hold; the automaton is a tree acceptor, and can only be used to detect a
pattern match that starts at the subject tree root. To enable pattern matches starting
at other input tree nodes to be detected, an extension similar to the addition of the
‘self-loop’ transitions of the AC automaton is necessary, as follows:

Construction 24. Let p € Tree(V',r'), then M' = (Q, V', 7", R', Qyq, Qio) where

R —R U {((p,9), ((p,e)"@))} forall @ € V' with r(a) > 0
“ ‘ %) for all @ € V' with r(a) =0

O
The result is an NRFTA accepting all trees ending in pattern occurrences.

Example 25 (Stringpath NRFTA for pattern p). The NRFTA with ‘self-loops’
constructed for pattern p = a(b(c), v) by Construction 24—corresponding to steps 1-3
of the high-level construction at the beginning of Section 5—is depicted in Figure 7.
The output function is defined by output(gs,c) = alble, output(gs,v) = a2v and
undefined for other input range values. O

Figure 7: NRFTA with ‘self-loops’ resulting from Construction 24

Theorem 26. Given a subject tree ¢, pattern tree p, nodes m € D, and n € D,, and
an NRFTA as in Construction 24,

(p,n) is assigned to node m by an
NRFTA computation
A (t(m) = p(n) Vv = p(n))

Proof : =: As in the proof of Theorem 22. <: By structural induction on n.

Case n = e: RPath(p,e) = p(¢) matches ending at node m implies that ¢(m) =
p(e) V v = p(e). From the definition of the NRFTA’s transition function, (p,¢) is
assigned to any given node in some computation of the NRFTA.

Case n = [-i: RPath(p,n) matches ending at node m implies that RPath(p,[)
matches ending at node m|1 and ¢{(m) = p(n) V v = p(n). Using the induction
hypothesis, (p, [) is assigned to node m|1 by a computation of the NRFTA A (t(m|1) =
p(l) V v = p(l)). Since r(r) = 0, the second conjunct reduces to t(m|1) = p(I), and
using the transition function definition we have that (p,[-i) = (p,n) is assigned to
node m by a computation of the NRFTA. Since we already had ¢(m) = p(n) V v = p(n)
this completes the proof of this case. O

_ RPath(p,n) matches
~  ending at node m
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5.2 Determinization

Similarly to the determinization of the trie with ‘self-loops’ to obtain a deterministic
AC automaton, the NRFTA resulting from steps 1-3 can be determinized. The subset
construction for NRFTASs is a straightforward generalization of that for string automata
and is not elaborated here. It is known from regular tree theory however that the
resulting DRFTA in general recognizes a superset of the NRFTA’s language: the set
of trees of which every stringpath occurs as a stringpath in a tree from the NRFTA’s
language. We aim at using the resulting DRFTA for tree stringpath pattern matching
however, and it turns out to be suitable for this purpose.

Example 27 (Stringpath DRFTA for pattern p). Applying the subset construction
to the NRFTA of Example 25 (corresponding to step 4 at the beginning of Section 5)
leads to the stringpath DRFTA depicted in Figure 8. Output function values for this
example DRFTA are singleton set versions of the values for the NRFTA of Example 25.
As in Example 18, states of the automaton are different from those with the same
label in the automaton of Example 25. 0

Figure 8: Stringpath DRFTA for p. Missing transitions on symbols of rank > 0 lead
to (tuples of size equal to the symbol’s rank of) state o

Using Theorem 26 and the subset construction, we obtain:

Corollary 28. Given a subject tree ¢, pattern tree p, nodes m € D; and n € D,, and
a DRFTA obtained from Construction 24 by a subset construction,

(p,n) is part of the state assigned
to node m by the DRFTA computation =

A ((Hm) = p(n)) V (v = p(n)))

RPath(p,n) matches
ending at node m

O

In other words, the state assigned to a node and the symbol at that node and
v together determine the set of all matching stringpaths ending at that node. As
indicated before, the DRFTA and associated output function can thus be used in a
root-to-frontier subject tree traversal to detect all stringpath matches.

5.3 A DRFTA-based TPM algorithm

As an invariant, when visiting a node n of the given subject tree £, the DRFTA is in
the state assigned to the node based on the symbols on the rootpath RPath(t,n)
with the exception of the last symbol of this rootpath—symbol ¢(n).
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As in the previous algorithm, the recursive procedure is called on every child ¢
of the current node, with a state obtained by projecting away all except the ith
component of the state tuple reached by a transition from the current state on ¢(n).

When visiting a node, the algorithm should register any matches indicated by the
DRFTA’s output function for the current state and either symbol ¢(n) or v, since v
matches any subtree. This leads to the following algorithm:

{ Pre: ¢ = p, where n.=|n| A py = qo A
<VZ s 1<i<n s p= WRPath(t,n)Qi(RRPath(t,n)2i—1 (pi—l)) > }
proc vaerse(q :Q,n: D)=
|[ var Gneqgt : Q, N—l-’ Sp - (V : N—I—)* -V
|fori:1<i<7r'(t(n) —
next © = 7T'L(]:it ( ))7
Traverse(quegt, N * 1)
rof’;
for sp: sp € output(q,t(n)) —
“register sp match at its endpoint n”;
rof
for sp : sp € output(q,v) —
“register sp match at its endpoint n”;
rof
II;
{ Post: every stringpath match in ¢ whose endpoint is in the subtree t@n
has been registered at its endpoint }

{ Pre: Mppera = (Q, V', 7', R, qo, Q1) is the DRFTA built on the

pattern tree, and output is the associated output function }
Traverse(qo, )
{ Post: every stringpath match in ¢ has been registered at its endpoint }

/ — {a2v}
/ — {a2v}
{alblc} + i / \W — {a2v}

Figure 9: DRFTA state assignment and stringpath matches

{alble} + (g3

o—c

Example 29. Figure 9 shows the states associated with every node and matches
detected by the algorithm for ¢t = a(b(c), a(b(c),a(c, ¢))). Combinations of states and
symbols corresponding to stringpath matches are framed. Note that symbol v is only
explicitly depicted for nodes at which it occurs in a stringpath match. O
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6 Concluding remarks

We presented two algorithms for stringpath-based tree pattern matching. One of
these, based on a root-to-frontier tree traversal and using an Aho-Corasick automaton,
is already well known from the literature [HO82, AGT89, vdM88, AG85]. The other,
based on a root-to-frontier tree traversal and using a DRFTA, is new. By presenting
the two in a similar style, we highlighted their similarities and provided a missing link
between TPM algorithms using tree automata and those using stringpath automata.

The two TPM algorithms are very similar, their difference being restricted to the
different automata and output functions used. As future work, we intend to compare
the automata in more detail. We conjecture that they are in some sense equivalent,
i.e. can be transformed into one another.

We intend to extend the new algorithm to multiple tree patterns and from there
to a tree acceptance and a tree parsing algorithm, providing related solutions to
the related problems of tree acceptance and tree parsing. The result will likely be
similar to the Aho-Corasick-based tree acceptance and tree parsing algorithms of Aho,
Ganapathi & Tjiang [AGT89, vdM88, AGS85|.

Finally, it would be interesting to investigate the use of different keyword pattern
matching automata or algorithms—such as those in [CWZ04, Wat95]—to obtain new
tree pattern matching algorithms that are based on stringpath matching. One such
algorithm, using Boyer-Moore pattern matching, was presented in [Wat97].
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