
A Missing Link in Root-to-Frontier Tree Pattern

Mathing

Loek G. W. A. Cleophas, Kees Hemerik and Gerard Zwaan

Department of Mathematis and Computer Siene,

Tehnishe Universiteit Eindhoven,

P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

e-mail: loek�loekleophas.om, .hemerik�tue.nl, g.zwaan�tue.nl

Abstrat. Tree pattern mathing (tpm) algorithms play an important role in

pratial appliations suh as ompilers and XML doument validation. Many

tpm algorithms based on tree automata have appeared in the literature. For

reasons of eÆieny, these automata are preferably deterministi. Deterministi

root-to-frontier tree automata (drftas) are less powerful than nondeterministi

ones, and no root-to-frontier tpm algorithm using drftas has appeared so far.

Ho�mann & O'Donnell [HO82℄ presented a root-to-frontier tpm algorithm based

on an Aho-Corasik automaton reognizing tree stringpaths, but no relationship

between this algorithm and algorithms using tree automata has been desribed.

In this paper, we show that a spei� drfta an be used for stringpath mathing

in a root-to-frontier tpm algorithm. This algorithm has not appeared in the

literature before, and provides a missing link between tpm algorithms using

stringpath automata and those using tree automata.

1 Introdution

Tree pattern mathing (tpm) is an important problem from regular tree theory. It an

be desribed as �nding all ourrenes of one or more given pattern trees (patterns)

in a given subjet tree. Algorithms solving this problem form the basis for tree

aeptane and tree parsing algorithms, whih play an important role in pratial

appliations suh as ompilers and XML doument validation.

The problems of pattern mathing, aeptane and parsing for trees are related,

and so are the algorithms solving them (referred to as tree algorithms from this point

onward). Either impliitly or expliitly, many use some form of tree or string au-

tomata, ombined with a frontier-to-root (bottom-up) or root-to-frontier (top-down)

tree traversal [FSW94, HK89, AGT89, vdM88, vD87, Cha87, HC86, AG85, HO82,

Kro75℄. For eÆieny reasons, the automata used should preferably be deterministi.

In frontier-to-root tree algorithms, deterministi frontier-to-root tree automata

an be and indeed often are used [FSW94, HK89, Cha87, HC86, HO82℄.

Deterministi root-to-frontier tree automata (drftas) however have not been

used in root-to-frontier tree algorithms, sine it is known from regular tree the-

ory that in general they are less powerful than their nondeterministi ounterparts

(nrftas) [Eng75, GS97℄. Suh algorithms therefore use nrftas [vD87℄.

216

A Missing Link in Root-to-Frontier Tree Pattern Mathing

Ho�mann & O'Donnell [HO82℄ and Aho, Ganapathi & Tjiang [AGT89, AG85℄

presented root-to-frontier tree algorithms based on deterministi string automata in-

stead. These algorithms use a deterministi Aho-Corasik (a) automaton [AC75℄

and its output funtion to reognize tree stringpaths. Sine a tree is uniquely deter-

mined by its stringpaths, this automaton an be used to detet tree mathes. The

presentation in those papers is somewhat informal and ompliated by optimizations,

but van de Meerakker [vdM88℄ gave a stepwise aount of how to obtain the al-

gorithms. Unfortunately, no relationship between tree algorithms using stringpath

automata and those using tree automata seems to have appeared in the literature.

In this paper, we show that even though a drfta annot be used as a tree aeptor

or mather by itself, a spei� drfta an be used (together with an output funtion)

for stringpath mathing in a root-to-frontier tree traversal. We present a version of

Ho�mann & O'Donnell's root-to-frontier tpm algorithm that uses an a automaton

and output funtion, and then present a modi�ed tpm algorithm that uses this drfta

and assoiated output funtion. To the best of our knowledge, this algorithm has not

appeared in the literature before. It provides a missing link between tpm algorithms

using stringpath automata and those using tree automata.

Our algorithm is not neessarily eÆient. It has the same worst-ase bound of

O(m � n) as the other papers mentioned (where m and n are the pattern and subjet

tree size). In reent years, many papers providing algorithms with better worst-ase

bounds have appeared [Kos89, DGM94, CH97, CHI99℄. These algorithms improve

the worst-ase bound at the ost of somewhat more elaborate algorithms and/or the

onstrution of larger auxiliary data strutures. It is unlear (and a potential subjet

of future researh) what the pratial performane of the algorithms is.

Setion 2 introdues basi de�nitions and notations. Tree pattern mathing is

introdued in Setion 3. In Setion 4 we present a version of Ho�mann & O'Donnell's

root-to-frontier tpm algorithm, while Setion 5 shows that a partiular kind of drfta

an be onstruted and used for stringpath mathing, and presents a root-to-frontier

tpm algorithm using this drfta. Setion 6 gives some onlusions as well as sugges-

tions for future work, in partiular a more detailed omparison of the two algorithms

and automata kinds.

2 Preliminaries

We use B ;N and N

+

to denote the domain of the booleans, the natural numbers and

the natural numbers exluding 0 respetively.

A basi understanding of the meaning of quanti�ations is assumed. We use

the notation h�a : R(a) : E(a)i where � is the assoiative and ommutative quan-

ti�ation operator (with unit e

�

), a is the quanti�ed variable introdued, R is the

range prediate on a, and E is the quanti�ed expression. By de�nition, we have

h�a : false : E(a)i = e

�

. The following table lists some of the most ommonly

quanti�ed operators, their quanti�ed symbols, and their units:

Operator _ ^ [

Symbol 9 8

S

Unit false true ?

We use

Set a : R(a) : E(a)

�

for

S

a : R(a) : fE(a)g

�

.

217

Proeedings of the Prague Stringology Conferene '05

2.1 Trees

De�nition 1. An ordered tree domain is a �nite non-empty subset D of N

�

+

suh

that

� pref(D) � D, i.e. D is pre�x-losed, and

� for all n 2 D and i 2 N

+

, n � i 2 D)

8 j : j < i : n � j 2 D

�

.

Note that we use � to separate elements of N

+

in tree domain elements. Tree domain

elements are alled nodes. Root node " 2 D for any D.

Example 2. Set f"; 1; 1 � 1; 2g is an ordered tree domain.

De�nition 3. Let D be an ordered tree domain, V a �nite non-empty set of symbols

(alphabet) and r 2 V ! N a ranking funtion. An ordered ranked tree t is a funtion

t 2 D ! V for whih for every node n 2 D, r(t(n)) equals the number of i 2 N

+

suh

that n � i 2 D.

For a tree t, we will use D

t

to refer to the tree domain underlying t. Given an

alphabet V and ranking funtion r, we all the pair (V; r) a ranked alphabet. For

any a 2 V , we all r(a) the rank of a. In this paper, we assume (V; r) to be the �xed

ranked alphabet f(a; 2); (b; 1); (; 0)g, i.e. with symbols a; b; of rank 2; 1; 0.

We denote the set of all ordered ranked trees over (V; r) by Tree(V; r). For t 2

Tree(V; r) and n 2 D

t

, t�n is t's subtree starting at n. Note that t�" = t.

We may represent a tree by a set of pairs of tree domain values and symbols,

graphially, or using a term representation, as in the following example.

Example 4 (Tree). Given (V; r), set t = f("; a); (1; b); (1 � 1;); (2; a); (2� 1; b); (2 �

1 � 1;); (2 � 2; a); (2 � 2 � 1;); (2 � 2 � 2;)g forms an ordered, ranked tree. It an be

represented as a term by a(b(); a(b(); a(;))), while tree t�(2 � 2) for example or-

responds to set f("; a); (1;); (2;)g and term a(;). Graphially, t is represented as

a

b

a

b

a

2.2 Tree automata

De�nition 5. A tree automaton (ta) M is a 6-tuple (Q; V; r; R;Q

ra

; Q

la

) suh that

� Q is a �nite set, the state set

� (V; r) is a ranked alphabet

� R =

Set a : a 2 V : R

a

�

is the set of transition relations, where R

a

�

Q�Q

r (a)

for all a 2 V

� Q

ra

� Q, the root aepting states

218

A Missing Link in Root-to-Frontier Tree Pattern Mathing

� Q

la

� Q, the leaf aepting states,

de�ned by Q

la

=

Set a; q : a 2 V ^ r(a) = 0 ^ (q; ()) 2 R

a

: q

�

Remark 6. An expliit set Q

la

for leaf aepting states is not needed, but is inluded

to failitate notation. Note that for a 2 V with r(a) = 0, R

a

� Q � Q

0

, i.e. the

seond omponent orresponds to a domain whose single element is the empty tuple

(). Some de�nitions of tree automata use R

a

� Q�Q for suh symbols a instead.

De�nition 7. An nrfta (nondeterministi root-to-frontier tree automaton) M =

(Q; V; r; R;Q

ra

; Q

la

) is a ta where R

a

2 Q ! P(Q

r (a)

) for all a 2 V , i.e. R

a

is

onsidered to be direted.

Considering the relations R

a

in this way is not a restrition, and therefore the

lasses of nrfta and ta are equivalent. By direting the relations, the root aept-

ing states beome start states. By restriting the relations R

a

of the nrfta to be

funtions yielding a single state tuple instead of a set of suh tuples, we obtain the

deterministi root-to-frontier tree automata:

De�nition 8. A drfta M = (Q; V; r ; R;Q

ra

; Q

la

) is an nrfta where R

a

2 Q !

Q

r(a)

for all a 2 V|i.e. the R

a

are funtions|and Q

ra

= fq

ra

g|i.e. there is a

unique root aepting state (start state).

We de�ne tree aeptane using tree state assignments, i.e. assignments of a

state to eah tree node. Consider the set of tree state assignments that respet the

automaton transition relations (or funtions in ase of direted automata) and that

assign a (the, for drftas) root aepting state to the subjet tree root. A subjet

tree is aepted by an automaton if and only if this set is non-empty.

Lemma 9. There are nrftas for whih no drfta aepting the same language an

be onstruted.

Proof. We give an example of a language whih is not reognizable by a drfta.

Let L = fa(; d); a(d;)g. We try to onstrut a drfta aepting L. There must

be exatly one pair of states (q

1

; q

2

) suh that R

a

(q

ra

) = (q

1

; q

2

). To reognize both

trees, R

(q

1

) = R

d

(q

2

) = R

d

(q

1

) = R

(q

2

) = () must hold, but this means that

trees a(;) and a(d; d) are aepted as well. A drfta aepting L therefore annot

exist, but an nrfta for L an be onstruted (see Figure 1, the notation of whih is

explained below).

Finite string automata are often represented visually by a state diagram. We

adapt this notation to �nite tree automata. Eah state is represented by a irle,

with double irles indiating root aepting states, while a transition relating state

q and states q

1

: : : q

n

on a symbol a is represented by

1. a (direted) edge onneting q to a small unlabeled irle, labeled by a and

2. n (direted) edges onneting the unlabeled irle to q

i

(for 1 � i � n)

Finally, we introdue dotted trees, whih are used in Setion 5. A dotted tree is

a tree with a distinguished position, as in the following de�nition.

219

Proeedings of the Prague Stringology Conferene '05

q

ra

q

1

q

2

q

3

q

4

a

1

2

a

1

2

d

d

Figure 1: nrfta aepting L = fa(; d); a(d;)g

De�nition 10. Let t 2 Tree(V; r) and n 2 D

t

, then the pair (t; n) is a dotted tree.

We use DT (t) to indiate the set of all dotted trees for a tree t.

Example 11. Let u = a(b();), then set DT (u) orresponds to f(u; "); (u; 1); (u; 1 �

1); (u; 2)g.

3 Tree pattern mathing

The leaves of trees in Tree(V; r) always have symbols of rank 0, but for pattern

mathing, something more general is needed. We extend the alphabet with a speial

variable or `wildard' symbol, indiating a math of any tree from Tree(V; r). We

extend (V; r) into (V

0

; r

0

) by adding symbol � with r

0

(�) = 0, and letting r

0

(a) = r(a)

for all a 2 V . Trees in Tree(V

0

; r

0

) are alled pattern trees or patterns. Note that � an

only label leaf nodes. Notation t�n and DT (t) are extended to trees in Tree(V

0

; r

0

).

We an now de�ne what it means for a subtree of a tree to math a pattern,

de�ning a funtion Math as follows.

De�nition 12. Funtion Math 2 Tree(V

0

; r

0

) � Tree(V; r) � D ! B is de�ned

for every pattern p 2 Tree(V

0

; r

0

), subjet t 2 Tree(V; r) and node n 2 D

t

by

Math(p; t; n) =

9 s

1

; : : : ; s

k

: s

1

; : : : ; s

k

2 Tree(V; r) : p[s

1

; : : : ; s

k

℄ = t�n

�

where p[s

1

; : : : ; s

k

℄ is the tree obtained by substituting s

1

; : : : ; s

k

respetively for the

k instanes of � in p.

Example 13. Given trees t = a(b(); a(b(); a(;))) and p = a(b(); �),Math(p; t; n)

holds for n = " and n = 2 (and not for any other nodes). Math(p; t; ") holds sine

t�" = p[a(b(); a(;))℄. Math(p; t; 2) holds sine t�2 = p[a(;)℄.

Apart from the tree domain, term and graphial notations used before, a tree is

also uniquely haraterized by its set of stringpaths, whih represent all its root to

leaf paths.

De�nition 14 (Tree stringpaths). Let t 2 Tree(V

0

; r

0

), then funtion SPaths 2

Tree(V

0

; r

0

)! P((V

0

� N

+

)

�

� V

0

) is de�ned by

SPaths(t) = ft(")g if r(t(")) = 0

SPaths(t) = ft(")g

�

S

i : 1 � i � r(t(")) : fig � SPaths(t�i)

�

if r(t(")) > 0

(where string onatenation operator � is extended to operate on sets of strings).

220

A Missing Link in Root-to-Frontier Tree Pattern Mathing

Example 15. For t = a(b(); a(b(); a(;))), SPaths(t�2) = fa1b1; a2a1; a2a2g

and SPaths(t) = fa1b1; a2a1b1; a2a2a1; a2a2a2g.

A stringpath of a pattern p mathes in a given subjet tree t starting at n if and

only if either the stringpath is in SPaths(t�n) or the stringpath ends in � and the

stringpath minus this � is a pre�x of some stringpath in SPaths(t�n). It follows that

p mathes in t at node n if and only if eah stringpath in SPaths(p) mathes in t

starting at n.

We introdue in�x operators � and � (right take and right drop). For any string s

of length � m 2 N

+

, s�m equals the rightmost m symbols of s, while s�m equals s

exept its rightmost m symbols.

Example 16. Given tree t = a(b(); a(b(); a(;))) and pattern p = a(b(); �),

Math(p; t; n) holds for n = " and n = 2 only. Math(p; t; ") holds sine a1b1 2

SPaths(t�") and a2��1 = � ^ a2��1 2 pref(SPaths(t�")). Math(p; t; 2) holds

sine a1b1 2 SPaths(t�2) and a2��1 = � ^ a2��1 2 pref(SPaths(t�2)).

To solve the tpm problem using a root-to-frontier approah, stringpath mathing

an be used. Stringpath mathes are most easily registered at their endpoints, but

algorithms an be adapted to register stringpath mathes at their beginpoints, and

by doing so, tree pattern mathes an be determined. In the rest of this paper, we

onsider tree pattern mathing as stringpath mathing.

Related to the de�nition of stringpaths, we de�ne a funtion representing the

rootpath to a given node, i.e. the labeled path from the tree root to the given node:

De�nition 17. Funtion RPath 2 Tree(V

0

; r

0

)�D! (V

0

� N

+

)

�

� V

0

is de�ned by

RPath(t; ") = t(")

RPath(t; n � i) = RPath(t; n) � i � t(n � i) for n � i 2 D

t

Note that a rootpath RPath(t; n) always ends with symbol t(n).

For every pattern p, there is a orrespondene between dotted trees and rootpaths:

RPath(p; n) is de�ned if and only if (p; n) 2 DT (p).

4 Using a stringpath automata

The basi idea of Ho�mann & O'Donnell's root-to-frontier tpm algorithm [HO82℄ is

to use an optimal a automaton for mathing pattern stringpaths, ombined with a

root-to-frontier traversal of the subjet tree.

An optimal a automaton is a version of the a automaton without failure tran-

sitions. Constrution algorithms for a automata have been desribed in numerous

referenes [CR03, NR02, Wat95, AC75℄, and we do not disuss any in detail.

Given the state reahed by the a automaton by proessing an input string upto a

given position, the output funtion determines the set of keyword ourrenes ending

at this position.

The a automaton built from stringpath set SPaths(p) for a given pattern p 2

Tree(V

0

; r

0

) is a 5-tuple M

AC

= (Q; V

0

[N

+

; Æ; q

0

; output) in whih Q is the state set,

221

Proeedings of the Prague Stringology Conferene '05

V

0

[N

+

the alphabet, Æ 2 Q � (V

0

[N

+

) ! Q the transition funtion, q

0

the start

state, and output 2 Q! P(SPaths(p)) the output funtion.

On a high level, the onstrution of this automaton an be desribed as follows:

1. Construt a trie reognizing the set of stringpaths

2. For every state orresponding to a stringpath math, de�ne the output of the

state equal to the stringpath; for other states, the output is empty

3. Add a `self-loop' transition on every alphabet symbol to the start state

4. Determinize the resulting automaton and adapt the output funtion aordingly

The resulting optimal a automaton for the set of pattern stringpaths an be used

in a root-to-frontier subjet tree traversal to �nd all pattern stringpath mathes.

Example 18 (a stringpath automaton for pattern p). The trie with `self-

loop' onstruted for pattern p = a(b(); �) by steps 1{3 of the above onstrution

is depited in Figure 2. The output funtion values orresponding to �nal states are

de�ned as output(q

) = a1b1; output(q

d

) = a2�.

q

0

q

a

q

1

q

2

q

b

q

3

q

q

d

a; b; ; �; 1; 2

a

1

2

�

b

1

Figure 2: Trie with `self-loop' for p

Applying step 4 of the above onstrution leads to the a stringpath automaton

depited in Figure 3 (in whih transitions not shown lead to q

0

). The output funtion

values orresponding to �nal states are de�ned as output(q

) = fa1b1g; output(q

d

) =

fa2�g. Note that states in the a automaton are di�erent from those in the trie with

`self-loop', sine states of the a automaton orrespond to sets of states of the trie

with `self-loop'.

q

0

q

a

q

1

q

2

q

b

q

3

q

q

d

b; ; �; 1; 2

a

1

2

�

b

1

a

a

a

a

a

a

Figure 3: a stringpath automaton for p.

4.1 An a-based tpm algorithm

In this setion, we present a version of Ho�mann & O'Donnell's root-to-frontier

tpm algorithm. The algorithm presentation is similar to that by van de Meer-

akker [vdM88℄. It uses expliit reursion instead of a stak as in the original al-

gorithm. As an invariant, when visiting a node n of the given subjet tree t, the a

222

A Missing Link in Root-to-Frontier Tree Pattern Mathing

automaton is in the state reahed on input equal to the rootpath RPath(t; n) exept

its last symbol, t(n), i.e. on input RPath(t; n)�1.

To traverse the tree, the algorithm should be alled on every hild node i of the

urrent node, if any. To maintain the invariant, the a automaton should be in the

state reahed from the urrent state by a transition on t(n) followed by one on i, the

number of the branh leading to the hild node.

When visiting a node, the algorithm should register mathes indiated by the

a automaton after a transition on symbol t(n), but also mathes indiated after a

transition on symbol �, sine � mathes any subtree. This results in:

f Pre: q = Æ

�

(q

0

; RPath(t; n)�1) g

pro Traverse(q : Q; n : D) =

j[var q

next

: Q; i : N

+

; sp : (V � N

+

)

�

� V

j for i : 1 � i � r

0

(t(n))!

q

next

: = Æ(Æ(q; t(n)); i);

Traverse(q

next

; n � i)

rof ;

for sp : sp 2 output(Æ(q; t(n)))!

\register sp math at its endpoint n";

rof

for sp : sp 2 output(Æ(q; �))!

\register sp math at its endpoint n";

rof

℄j;

f Post: every stringpath math in t whose endpoint is in the subtree t�n

has been registered at its endpoint g

f Pre: M

a

= (Q; V

0

[N

+

; Æ; q

0

; output) is the a automaton

built on the stringpaths of the pattern tree g

Traverse(q

0

; ")

f Post: every stringpath math in t has been registered at its endpoint g

a

b

a

b

a

q

0

q

a

q

1

q

b

q

3

fa1b1g q

q

2

q

a

, q

d

! fa2�g

q

1

q

b

q

3

fa1b1g q

q

2

q

a

, q

d

! fa2�g

q

1

q

0

q

2

q

0

, q

d

! fa2�g

Figure 4: a automaton state assignment and stringpath mathes

Example 19. As an example, Figure 4 shows the states assoiated with every node

and mathes deteted by the algorithm for subjet tree t = a(b(); a(b(); a(;))).

223

Proeedings of the Prague Stringology Conferene '05

Note that even though the a automaton used is deterministi, two states may be

assoiated with a tree node n: the states orresponding to Æ(q; t(n)) and to Æ(q; �).

States orresponding to stringpath mathes are framed.

The algorithm an be extended to deal with multiple patterns as well, and an be

used as the basis for tree aeptane and tree parsing algorithms [vdM88, AGT89℄.

5 Using stringpath drftas

In this setion, we present our new tpm algorithm. It uses a partiular drfta and

assoiated output funtion, ombined with a root-to-frontier subjet tree traversal.

On a high level, the drfta and output funtion onstrution works as follows:

1. Construt a drfta reognizing the pattern tree

2. For every state and alphabet symbol indiating a stringpath math, de�ne the

output of the state and symbol equal to this stringpath; for other ombinations

of state and alphabet symbol, de�ne the output to be empty

3. Add `self-loop' transitions on every symbol of rank > 0 to the start state

4. Determinize the resulting automaton and adapt the output funtion aordingly

The onstrution bears a lot of resemblane to the a automaton onstrution proess

enumerated in the preeding setion. A detailed investigation of the orrespondene

between the two onstrutions will be the subjet of future work.

We disuss the above onstrution in more detail and show that the results an be

used for root-to-frontier tpm, before presenting the new algorithm. Steps 1{3 result

in a tpm nrfta and are disussed �rst. In Setion 5.2, step 4 is applied to obtain a

drfta. Although this automaton annot be used as a tpm automaton by itself, we

show that it an be used for stringpath mathing.

5.1 tpm nrfta onstrution

Given a pattern, we an onstrut a drfta M aepting this pattern, in whih the

set of states is the set of dotted trees:

Constrution 20. Let p 2 Tree(V

0

; r

0

), then M = (Q; V

0

; r

0

; R;Q

ra

; Q

la

) where

Q = DT (p)

Q

ra

= f(p; ")g

R

a

=

*

Set n : (p; n) 2 Q

^ p(n) = a

: ((p; n);

((p; n � 1);

: : : ;

(p; n � r(a))))

+

for all a 2 V

0

This onstrution results in a deterministi root-to-frontier tree automaton, but

when extending it to deal with multiple patterns this may no longer be the ase.

Note that for n suh that p(n) has rank 0, elements of R

a

have the form ((p; n); ())

i.e. relate a state (a dotted tree) to the empty tuple of states.

224

A Missing Link in Root-to-Frontier Tree Pattern Mathing

Example 21 (drfta aepting pattern p). Applying the onstrution to pattern

p = a(b(); �) leads to the drfta depited in Figure 5.

q

0

q

1

q

2

q

3

a

1

2

�

b

1

Figure 5: drfta resulting from Constrution 20

The orrespondene between the state labels used and the dotted trees they rep-

resent is as follows:

q

0

= (p; ") q

2

= (p; 2)

q

1

= (p; 1) q

3

= (p; 1 � 1)

The state assignment for every node of p in an aepting omputation is shown

in Figure 6. Tree p is aepted sine R

(q

3

) = () and R

�

(q

2

) = ().

a

�

b

q

0

q

1

q

2

q

3

Figure 6: State assignment leading to aeptane of pattern tree p

Note how the drfta onstruted for a tree pattern is similar to a trie onstruted

for the orresponding set of stringpaths.

Theorem 22. Given a subjet tree t, pattern tree p, nodes m 2 D

t

and n 2 D

p

, and

a drfta as in Constrution 20,

(p; n) is assigned to node m by

the drfta omputation

^ (t(m) = p(n) _ � = p(n))

)

RPath(p; n) mathes

ending at node m

Proof : We prove this theorem by strutural indution on n.

Case n = ": t(m) = p(") _ � = p(") implies that p(") = RPath(p; ") mathes

ending at node m.

Case n = l � i: Using the de�nition of the drfta's transition relation, (p; n)

is assigned to node m by the drfta omputation ^ (t(m) = p(n) _ � = p(n))

implies that (p; l) is assigned to node m�1 and t(m�1) = p(l). Using the indution

hypothesis, RPath(p; l) mathes ending at node m�1. Sine t(m) = p(n) _ � = p(n),

RPath(p; n) = RPath(p; l) � i � p(n) mathes ending at node m.

Sine stringpaths are rootpaths ending in symbols of rank 0, mathes an only

end in suh symbols, and using Theorem 22 we obtain the following de�nition:

225

Proeedings of the Prague Stringology Conferene '05

De�nition 23. For automata as in Constrution 20, partial funtion output 2 Q �

V

0

! (V

0

�N

+

)

�

�V

0

is de�ned for (p; n) 2 Q and a 2 V

0

suh that a = p(n) ^ r(a) = 0

by output((p; n); a) = RPath(p; n).

Note that funtion output is used with the symbol t(m) for m the node of t that a

state is assigned to, and with symbol �. The inverse of the impliation in Theorem 22

does not hold; the automaton is a tree aeptor, and an only be used to detet a

pattern math that starts at the subjet tree root. To enable pattern mathes starting

at other input tree nodes to be deteted, an extension similar to the addition of the

`self-loop' transitions of the a automaton is neessary, as follows:

Constrution 24. Let p 2 Tree(V

0

; r

0

), then M

0

= (Q; V

0

; r

0

; R

0

; Q

ra

; Q

la

) where

R

0

a

= R

a

[

�

f((p; "); ((p; ")

r(a)

))g for all a 2 V

0

with r(a) > 0

? for all a 2 V

0

with r(a) = 0

The result is an nrfta aepting all trees ending in pattern ourrenes.

Example 25 (Stringpath nrfta for pattern p). The nrfta with `self-loops'

onstruted for pattern p = a(b(); �) by Constrution 24|orresponding to steps 1{3

of the high-level onstrution at the beginning of Setion 5|is depited in Figure 7.

The output funtion is de�ned by output(q

3

;) = a1b1, output(q

2

; �) = a2� and

unde�ned for other input range values.

q

0

q

1

q

2

q

3

a

1

2

�

b

1

b

a

1

1

2

Figure 7: nrfta with `self-loops' resulting from Constrution 24

Theorem 26. Given a subjet tree t, pattern tree p, nodes m 2 D

t

and n 2 D

p

, and

an nrfta as in Constrution 24,

(p; n) is assigned to node m by an

nrfta omputation

^ (t(m) = p(n) _ � = p(n))

�

RPath(p; n) mathes

ending at node m

Proof :): As in the proof of Theorem 22. (: By strutural indution on n.

Case n = ": RPath(p; ") = p(") mathes ending at node m implies that t(m) =

p(") _ � = p("). From the de�nition of the nrfta's transition funtion, (p; ") is

assigned to any given node in some omputation of the nrfta.

Case n = l � i: RPath(p; n) mathes ending at node m implies that RPath(p; l)

mathes ending at node m�1 and t(m) = p(n) _ � = p(n). Using the indution

hypothesis, (p; l) is assigned to node m�1 by a omputation of the nrfta ^ (t(m�1) =

p(l) _ � = p(l)). Sine r(�) = 0, the seond onjunt redues to t(m�1) = p(l), and

using the transition funtion de�nition we have that (p; l � i) = (p; n) is assigned to

node m by a omputation of the nrfta. Sine we already had t(m) = p(n) _ � = p(n)

this ompletes the proof of this ase.

226

A Missing Link in Root-to-Frontier Tree Pattern Mathing

5.2 Determinization

Similarly to the determinization of the trie with `self-loops' to obtain a deterministi

a automaton, the nrfta resulting from steps 1{3 an be determinized. The subset

onstrution for nrftas is a straightforward generalization of that for string automata

and is not elaborated here. It is known from regular tree theory however that the

resulting drfta in general reognizes a superset of the nrfta's language: the set

of trees of whih every stringpath ours as a stringpath in a tree from the nrfta's

language. We aim at using the resulting drfta for tree stringpath pattern mathing

however, and it turns out to be suitable for this purpose.

Example 27 (Stringpath drfta for pattern p). Applying the subset onstrution

to the nrfta of Example 25 (orresponding to step 4 at the beginning of Setion 5)

leads to the stringpath drfta depited in Figure 8. Output funtion values for this

example drfta are singleton set versions of the values for the nrfta of Example 25.

As in Example 18, states of the automaton are di�erent from those with the same

label in the automaton of Example 25.

q

0

q

1

q

2

q

3

a

1

2

�

b

1

b

1

a

1

2

a

1

2

a

1

2

Figure 8: Stringpath drfta for p. Missing transitions on symbols of rank > 0 lead

to (tuples of size equal to the symbol's rank of) state q

0

Using Theorem 26 and the subset onstrution, we obtain:

Corollary 28. Given a subjet tree t, pattern tree p, nodes m 2 D

t

and n 2 D

p

, and

a drfta obtained from Constrution 24 by a subset onstrution,

(p; n) is part of the state assigned

to node m by the drfta omputation

^ ((t(m) = p(n)) _ (� = p(n)))

�

RPath(p; n) mathes

ending at node m

In other words, the state assigned to a node and the symbol at that node and

� together determine the set of all mathing stringpaths ending at that node. As

indiated before, the drfta and assoiated output funtion an thus be used in a

root-to-frontier subjet tree traversal to detet all stringpath mathes.

5.3 A drfta-based tpm algorithm

As an invariant, when visiting a node n of the given subjet tree t, the drfta is in

the state assigned to the node based on the symbols on the rootpath RPath(t; n)

with the exeption of the last symbol of this rootpath|symbol t(n).

227

Proeedings of the Prague Stringology Conferene '05

As in the previous algorithm, the reursive proedure is alled on every hild i

of the urrent node, with a state obtained by projeting away all exept the ith

omponent of the state tuple reahed by a transition from the urrent state on t(n).

When visiting a node, the algorithm should register any mathes indiated by the

drfta's output funtion for the urrent state and either symbol t(n) or �, sine �

mathes any subtree. This leads to the following algorithm:

f Pre: q = p

n

where n = jnj ^ p

0

= q

0

^

8 i : 1 � i � n : p

i

= �

RPath(t;n)

2i

(R

RPath(t;n)

2i�1

(p

i�1

))

�

g

pro Traverse(q : Q; n : D) =

j[var q

next

: Q; i : N

+

; sp : (V � N

+

)

�

� V

j for i : 1 � i � r

0

(t(n))!

q

next

: = �

i

(R

t(n)

(q));

Traverse(q

next

; n � i)

rof ;

for sp : sp 2 output(q; t(n))!

\register sp math at its endpoint n";

rof

for sp : sp 2 output(q; �)!

\register sp math at its endpoint n";

rof

℄j;

f Post: every stringpath math in t whose endpoint is in the subtree t�n

has been registered at its endpoint g

f Pre: M

drfta

= (Q; V

0

; r

0

; R; q

0

; Q

la

) is the drfta built on the

pattern tree, and output is the assoiated output funtion g

Traverse(q

0

; ")

f Post: every stringpath math in t has been registered at its endpoint g

a

b

a

b

a

q

0

q

1

fa1b1g q

3

q

2

� ! fa2�g

q

1

fa1b1g q

3

q

2

� ! fa2�g

q

1

q

2

� ! fa2�g

Figure 9: drfta state assignment and stringpath mathes

Example 29. Figure 9 shows the states assoiated with every node and mathes

deteted by the algorithm for t = a(b(); a(b(); a(;))). Combinations of states and

symbols orresponding to stringpath mathes are framed. Note that symbol � is only

expliitly depited for nodes at whih it ours in a stringpath math.

228

A Missing Link in Root-to-Frontier Tree Pattern Mathing

6 Conluding remarks

We presented two algorithms for stringpath-based tree pattern mathing. One of

these, based on a root-to-frontier tree traversal and using an Aho-Corasik automaton,

is already well known from the literature [HO82, AGT89, vdM88, AG85℄. The other,

based on a root-to-frontier tree traversal and using a drfta, is new. By presenting

the two in a similar style, we highlighted their similarities and provided a missing link

between tpm algorithms using tree automata and those using stringpath automata.

The two tpm algorithms are very similar, their di�erene being restrited to the

di�erent automata and output funtions used. As future work, we intend to ompare

the automata in more detail. We onjeture that they are in some sense equivalent,

i.e. an be transformed into one another.

We intend to extend the new algorithm to multiple tree patterns and from there

to a tree aeptane and a tree parsing algorithm, providing related solutions to

the related problems of tree aeptane and tree parsing. The result will likely be

similar to the Aho-Corasik-based tree aeptane and tree parsing algorithms of Aho,

Ganapathi & Tjiang [AGT89, vdM88, AG85℄.

Finally, it would be interesting to investigate the use of di�erent keyword pattern

mathing automata or algorithms|suh as those in [CWZ04, Wat95℄|to obtain new

tree pattern mathing algorithms that are based on stringpath mathing. One suh

algorithm, using Boyer-Moore pattern mathing, was presented in [Wat97℄.

Referenes

[AC75℄ A.V. Aho and M.J. Corasik. EÆient string mathing: an aid to biblio-

graphi searh. Communiations of the ACM, 18:333{340, 1975.

[AG85℄ A.V. Aho and M. Ganapathi. EÆient tree pattern mathing: An aid to

ode generation. In Proeedings of the 12th ACM Symposium on Priniples

of Programming Languages, pages 334{340, 1985.

[AGT89℄ A.V. Aho, M. Ganapathi, and S.W.K. Tjiang. Code generation using tree

mathing and dynami programming. ACM Transations on Programming

Languages and Systems, 11(4):491{516, 1989.

[CH97℄ R. Cole and R. Hariharan. Tree pattern mathing and subset mathing in

randomized o(n log3 m) time. In Proeedings of the ACM Symposium on

Theory of Computing, pages 66{75, 1997.

[Cha87℄ David R. Chase. An improvement to bottom-up tree pattern mathing. In

Conferene Reord of the Fourteenth Annual ACM Symposium on Prini-

ples of Programming Languages, pages 168{177. ACM, 1987.

[CHI99℄ R. Cole, R. Hariharan, and P. Indyk. Tree pattern mathing and subset

mathing in deterministi o(nlog

3

n) time. In Proeedings of the 10th ACM-

SIAM Symposium on Disrete Algorithms, pages 245{254, 1999.

[CR03℄ Maxime Crohemore and Wojieh Rytter. Jewels of Stringology - Text

Algorithms. World Sienti� Publishing, 2003.

229

Proeedings of the Prague Stringology Conferene '05

[CWZ04℄ Loek Cleophas, Brue W. Watson, and Gerard Zwaan. Automaton-based

sublinear keyword pattern mathing. In Proeedings of the 11th interna-

tional onferene on String Proessing and Information REtrieval (SPIRE

2004), volume 3246 of LNCS. Springer, Otober 2004.

[DGM94℄ M. Dubiner, Z. Galil, and E. Magen. Faster tree pattern mathing. Journal

of the ACM, 41(2):205{213, 1994.

[Eng75℄ Joost Engelfriet. Tree Automata and Tree Grammars. Leture Notes

DAIMI FN-10, Aarhus University, April 1975.

[FSW94℄ Christian Ferdinand, Helmut Seidl, and Reinhard Wilhelm. Tree automata

for ode seletion. Ata Informatia, 31:741{760, 1994.

[GS97℄ Feren G�eseg and Magnus Steinby. Tree Languages, volume 3 of Handbook

of Formal Languages, pages 1{68. Springer, 1997.

[HC86℄ Philip J. Hather and Thomas W. Christopher. High-quality ode gener-

ation via bottom-up tree pattern mathing. In Conferene Reord of the

Thirteenth Annual ACM Symposium on Priniples of Programming Lan-

guages, pages 119{130. ACM, 1986.

[HK89℄ C. Hemerik and J.P. Katoen. Bottom-up tree aeptors. Siene of Com-

puter Programming, 13(1):51{72, 1989.

[HO82℄ C.M. Ho�mann and M.J. O'Donnell. Pattern mathing in trees. Journal

of the ACM, 29(1):68{95, January 1982.

[Kos89℄ S.R. Kosaraju. EÆient tree pattern mathing. In Proeedings of the 30th

annual IEEE Symposium on Foundations of Computer Siene, FOCS'89,

pages 178{183. IEEE Computer Soiety Press, 1989.

[Kro75℄ H. Kron. Tree templates and subtree transformational grammars. PhD

thesis, University of California, Santa Cruz, 1975.

[NR02℄ Gonzalo Navarro and Mathieu RaÆnot. Flexible pattern mathing in

strings: pratial on-line searh algorithms for texts and biologial se-

quenes. Cambridge University Press, 2002.

[vD87℄ Yolanda van Dinther. De systematishe aeiding van aeptoren en ont-

leders voor boom-grammatia's. Master's thesis, Faulteit Wiskunde en

Informatia, Tehnishe Universiteit Eindhoven, August 1987. (In Duth).

[vdM88℄ H.J.A. van de Meerakker. Een parsing algoritme voor boomgrammatia's.

Master's thesis, FaulteitWiskunde en Informatia, Tehnishe Universiteit

Eindhoven, May 1988. (In Duth).

[Wat95℄ Brue W. Watson. Taxonomies and Toolkits of Regular Language Algo-

rithms. PhD thesis, Tehnishe Universiteit Eindhoven, September 1995.

[Wat97℄ Brue W. Watson. A Boyer-Moore (or Watson-Watson) Type Algorithm

for Regular Tree Pattern Mathing. In Proeedings of the Prague Stringol-

ogy Club Workshop '97, pages 33{38, 1997.

230

