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Abstra
t. Given two n-bit (
y
li
) binary strings, A and B, represented on a


ir
le (ne
kla
e instan
es). Let ea
h sequen
e have the same number k of 1's.

We are interested in 
omputing the 
y
li
 swap distan
e between A and B, i.e.,

the minimum number of swaps needed to 
onvert A into B, minimized over all

rotations of B. We show that this distan
e may be approximated in O(n+ k

2

)

time.

1 Introdu
tion

Cy
li
 string 
omparison is important for di�erent domains where linear strings rep-

resent 
y
li
 sequen
es, for example, in 
omputational biology the geneti
 material

is sequen
ed from 
ir
ular DNA or RNA mole
ules. Ba
terial, 
hloroplasts and mi-

to
hondrial genomes are in majority 
ir
ular [2℄. Small 
ir
ular DNA mole
ules that

have the ability to repli
ate on their own, are extensively used in biote
hnology [2℄.

All su
h 
y
li
 mole
ules are represented as linear strings by 
hoosing an arbitrary

starting point. It follows that the 
omparison of two su
h sequen
es needs to 
onsider

all possible 
y
li
 shifts of one of the sequen
es. DNA, as well as RNA, are oriented

mole
ules, therefore, in some 
ases, e.g., for Expressed Sequen
e Tags, sequen
es must

be 
ompared in ea
h orientation [1℄. Other domains are pattern representation and

re
ognition [6℄. There, polygonal shapes are en
oded into linear strings by 
hoosing

arbitrarily a start position on the 
ontour. Determining if two shapes are similar

requires to 
ompare one string with all 
y
li
 shifts of the other.

Another domain in whi
h 
y
li
 strings arise is 
omputational musi
 analysis.

Mathemati
s and musi
 theory have a long history of 
ollaboration dating ba
k to

at least Pythagoras [11℄. More re
ently the emphasis has been mainly on analysing

string pattern mat
hing problems that arise in musi
 theory [7, 8, 9, 10℄. A funda-

mental problem in musi
 theory is to measure the similarity between rhythms, with

many appli
ations su
h as 
opyright infringement resolution and musi
 information

retrieval.

Six examples of 4/4 time 
lave and bell timelines are given in Fig. 1. The left-

hand side shows the rhythms with standard Western musi
 notation using the smallest


onvenient notes and rests. The right-hand side shows a popular way of representing
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Figure 1: Six fundamental 4/4 time 
lave rhythms. The left-hand side uses the

Western musi
 notation and the right-hand size the box notation and binary repre-

sentation. The bottom line shows a 
ommon geometri
 representation using 
onvex

polygons. The dashed lines indi
ate an axis of mirror symmetry (e.g. for the son


lave, if the rhythm is started at lo
ation 3 then it sounds the same whether it is

played forward or ba
kwards).

rhythms for per
ussionists that do not read musi
. It is 
alled the Box Notation

Method developed by Philip Harland at the University of California in Los Angeles

in 1962 and is also known as TUBS (Time Unit Box System). The box notation

method is 
onvenient for simple-to-notate rhythms like bell and 
lave patterns as

well as for experiments in the psy
hology of rhythm per
eption, where a 
ommon

variant of this method is simply to use one symbol for the note and another for the

rest. The Clave Son is the most popular among these rhythms and 
an be heard a

lot in Son and Salsa musi
 as well as mu
h other musi
 around the world. For our

purpose, A rhythm is represented as a 
y
li
 binary sequen
e where a zero denotes a

rest (silen
e) and a one represents a beat or note onset, for example, the 
lave Son

would be written as the 16-bit binary sequen
e: [1001001000101000℄. This rhythm


an also be thought as a point in a 16-dimensional spa
e (the hyper
ube). A natural

measure of the di�eren
e between two rhythms represented as binary sequen
es is the

well known Hamming distan
e, whi
h 
ounts the number of positions in whi
h the

two rhythms disagree. Although the Hamming distan
e measures the existen
e of a

mismat
h, it does not measure how far the mismat
h o

urs, that is why, Toussaint

[15℄ proposed a distan
e measure termed the swap distan
e. A swap is an inter
hange

191



Pro
eedings of the Prague Stringology Conferen
e '05

of a one and a zero (note duration and rest interval) that are adja
ent in the sequen
e.

The swap distan
e between two rhythms is the minimum number of swaps required

to 
onvert one rhythm to the other. The swap distan
e measure of dissimilarity was

shown in [14℄ to be more appropriate than several other measures of rhythm similarity

in
luding the Hamming distan
e, the Eu
lidean interval-ve
tor distan
e, the interval-

di�eren
e distan
e measure of Coyle and Shmulevi
h, and the 
hronotoni
 distan
e

measures of Gustafson and Hofmann-Engl.

More formally, given two n-bit (
y
li
) binary strings, A and B, represented on a


ir
le (ne
kla
e instan
es). Let ea
h sequen
e have the same number k of 1's. We are

interested in 
omputing the 
y
li
 swap distan
e between A and B, i.e., the minimum

number of swaps needed to 
onvert A into B, minimized over all rotations of B. We

show that this distan
e may be 
omputed in O(n+ k

2

).

The outline of the paper is as follows: Some preliminaries are des
ribed in Se
tion

2. A Naive Solution is presented in Se
tion 3 and in Se
tion 4 we present a better-

than-naive solution. Con
lusions are drawn in Se
tion 5.

2 Preliminaries

Let X[0::n � 1℄ be a n-bit 
y
li
 string over � = f0; 1g, with n � 0. By X[i℄ we

denote the (i + 1)-st bit in X, 0 � i <length(X). Let `=ones(X) be the number of

1's in X. Let X

r

be the r-rotation of X su
h that X

r

[i℄ = X[i�

+

r℄ for i 2 [0::n� 1℄,

and any integer r (i�

+

r = mod(i + r; n)

1

).

Let x be the in
reasing sequen
e of 1's indi
es (x

0

; x

1

; : : : ; x

`�1

) su
h thatX[x

i

℄ = 1

for i 2 [0::`� 1℄. For u = (u

0

; u

1

; : : : ; u

n

), v = (v

0

; v

1

; : : : ; v

n

) and some integer e, we

denote by u � v = (u

0

; u

1

; : : : ; u

n

; v

0

; v

1

; : : : ; v

n

) the sequen
e 
on
atenation operation

and by u+ e = (u

0

+ e; u

1

+ e; : : : ; u

n

+ e) the sequen
e transposition operation.

Given X and Y , two n-bit (
y
li
) binary strings with the same number of 1's,

the 
y
li
 swap problem is to �nd the 
y
li
 swap distan
e between X and Y , i.e., the

minimum number of swaps needed to 
onvert X into Y , minimized over all rotations

of Y . A swap is an inter
hange of a one and a zero that are adja
ent in the binary

string.

2.1 Mappings and Rotations

A mapping is a bije
tion fun
tion M : x ! y. Sin
e no two adja
ent 1's 
an be

swaped, no two mappings should 
ross. Hen
e, there are ` possible mappings. For

instan
e, if ` = 3, we 
ould have the following three mappings f(x

0

! y

0

); (x

1

!

y

1

); (x

2

! y

2

)g, f(x

0

! y

1

); (x

1

! y

2

); (x

2

! y

0

)g and f(x

0

! y

2

); (x

1

! y

0

); (x

2

!

y

1

)g. So we de�ne

M

k

= f (x

i

! y

i�

+

k

) j i; k 2 [0::`� 1℄ g (1)

to be the k-mapping of the 1's in X with those 1's in Y .

We also rede�ne y as y � (y + n) and denote

1

We use operator �

+

to indi
ate that all indi
es are viewed modulo n.
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D

(k;r)

=

`�1

X

i=0

jy

i+k

� x

i

+ rj; for k 2 [0::`� 1℄ (2)

to be the sum of the number of swap between the pairs in M

k

and rotation r of

Y . (Here jxj designates the absolute value of x.) The reason for using y � (y + n)

instead of y is be
auseM

k

will always have k mappings that are 
ir
ular, for example,

for M

1

we map x

2

with y

0

but the number of swap needed to map x

2

with y

0

is

(y

0

+ n)� x

2

instead of y

0

� x

2

. Fig. 2 shows rotations �7;�6; : : : ; 6; 7 for mapping

M

0

of X = [10010001℄ and Y = [01010010℄. Note that D

(k;n�r)

+ D

(k;�r)

= `n for

0 < r < n.
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Figure 2: Rotations �7;�6; : : : ; 6; 7 for mapping M

0

of X = [10010001℄ and Y =

[01010010℄ or x = (0; 3; 7) and y = (1; 3; 6). X/Y 
orresponds to the outer/inner


y
li
 string.
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3 Naive Solution

The naive approa
h is to examine ea
h mapping and 
al
ulate for ea
h possible ro-

tation the sum of number of swap operations between ea
h pair of mapped 1's. This

approa
h 
osts O(n`

2

) time. This is be
ause there are ` possible mappings and n

possible rotations per ea
h mapping. Fig. 3 shows the main steps of the algorithm.

Algorithm 1 Naive Solution

Input: x; y; n; `

Output: d

min

; r

min

; k

min

1. y = y � (y + n); d

min

= r

min

= k

min

=1

2. for k = 0 to `� 1 do

3. for r = 0 to n� 1 do

4. d = 0

5. for i = 0 to `� 1 do

6. d = d+ jy

i+k

� x

i

+ rj

7. if d < d

min

then d

min

= d; r

min

= r; k

min

= k

8. return (d

min

; r

min

; k

min

)

Figure 3: Naive Algorithm.

4 Better-than-Naive Solution

The problem is redu
ed to �nd, for ea
h mappingM

k

, the rotation r that minimizes

Equation 2. This 
an be approximated by repla
ing the absolute values in (2) by

squares so we get

D

0(k;r)

=

`�1

X

i=0

(y

i+k

� x

i

+ r)

2

; for k 2 [0::`� 1℄:

Lets say that s

k

i

= y

i+k

� x

i

so we get

D

0(k;r)

=

`�1

X

i=0

(s

k

i

+ r)

2

;

whi
h we 
an be rewritten as

D

0(k;r)

=

`�1

X

i=0

(s

k

i

)

2

+ 2r

`�1

X

i=0

s

k

i

+ `r

2

: (3)

Di�erentiating (3) and setting the result equal to zero, we obtain

�D

0(k;r)

�r

= 2

`�1

X

i=0

s

k

i

+ 2`r = 0: (4)
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If we say that S

k

=

P

`�1

i=0

s

k

i

and solving r from (4) it follows r = �S

k

=`. The


orollary good news is that

S

k

= S

k�1

+ n; for k 2 [2::`� 1℄: (5)

So, if we let

f = S

0

=

`�1

X

i=0

s

0

i

= s

0

0

+ s

0

1

+ � � �+ s

0

`�1

= y

0

+ y

1

+ � � �+ y

`�1

� x

0

� x

1

� � � � � x

`�1

;

then

r

0

k

= �

f + kn

`

; for k 2 [0::`� 1℄; (6)

will 
orrespond to the rotation that will minimize the square of the swap distan
e for

mappingM

k

. Thus, D

0(k;r

0

k

)

is optimal for M

k

.

Now that we know how to �nd the best rotation r

0

k

for ea
h mapping, it is easy

to 
ompute the minimum swap distan
e for ea
h su
h rotation and the best overall

rotation will be given by

d

�

=

`�1

min

i=0

(D

0(i;r

0

i

)

):

The time 
omplexity to 
ompute f is �(`) and ea
h r

0

i

for i 2 [0::` � 1℄ 
an be


ompute in �(1) time using Equation 6. So the time required to 
ompute all rotations

r

0

0

; r

0

1

; : : : ; r

0

`�1

is �(`). On
e we have the rotations, the time to 
ompute the swap

distan
e for ea
h mapping and ea
h rotation D

(k;r

0

k

)

, for k 2 [0::`� 1℄, is �(`) if done

naively. Hen
e, the total time to �nd d

�

is �(`

2

) or �(n + `

2

) if we assume that

sequen
es x and y are to be 
omputed. Fig. 4 shows these ideas algorithmi
ally.

Algorithm 2 Better-than-Naive Solution

Input: x; y; n; `

Output: d

min

; r

min

; k

min

1. y = y � (y + n); f = 0; d

min

= r

min

= k

min

=1

2. for i = 0 to `� 1 do

3. f = f + y

i

� x

i

4. for k = 0 to `� 1 do

5. r = �(f + nk)=`; d = 0

6. for i = 0 to `� 1 do

7. d = d+ jy

i+k

� x

i

+ rj

8. if d < d

min

then d

min

= d; r

min

= r; k

min

= k

9. return (d

min

; r

min

; k

min

)

Figure 4: Better-than-Naive Algorithm.

Note that the value d

�

is an approximated 
y
li
 swap distan
e. Our experiments

show that in very few 
ases d

�

was not the optimal 
y
li
 swap distan
e. However, it
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indi
ates 
orre
tly the optimal mappingM

�

. Additionally, we were also able to prove

[4℄ that if r

k

was the optimal exa
t rotation for mappingM

k

, then at least one of the

values jy

i+k

� x

i

+ r

k

j is equal to 0, for 0 � i � ` � 1. Thus, the exa
t 
y
li
 swap

distan
e may be 
al
ulated using �rst Algorithm 4 to 
al
ulate the optimal mapping.

Then, if none of the values jy

i+k

�x

i

+ rj (Line 8) is equal to 0, then additional O(k

2

)

is needed to 
al
ulate the optimal 
y
li
 swap distan
e. Clearly, this is not going to

e�e
t the overall running time.

Before 
ontinuing our dis
ussion, we show why Equation 5 is 
orre
t. First, we

illustrate the formula using the example in Fig. 5. Here, f = S

0

= s

0

0

+ s

0

1

+ s

0

2

=

1�2�3 = �4, S

1

= s

1

0

+s

1

1

+s

1

2

= 3+0+3 = 6 and S

2

= s

2

0

+s

2

1

+s

2

2

= 5+6+5 = 16.

However, we do not need to 
ompute s

1

0

; s

1

1

; s

1

2

; s

2

0

; s

2

1

and s

2

2

in order to 
ompute S

1

and S

2

, instead, we apply Equation 5 and �nd that S

1

= S

0

+ n = �4 + 10 = 6 and

S

2

= S

0

+ 2n = �4 + 20 = 16.

s0
0

n
s1

0s2
0

s0
1

s1
1

s2
1

n

s0
2

s1
2

s2
2

n

f=S
0

S
1

S
2

x0 x1 x2

y0 y1 y2

M
0

x0 x1 x2

y0 y1 y2 y3 y4 y5

y0 y1 y2

M
1

x0 x1 x2

y0 y1 y2 y3 y4 y5

y0 y1 y2

M
2

-1-2-3-4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1-2-3-4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 5: Illustration to demonstrate the 
orre
tness of Equation 5 for X =

[1000000100000101℄ and Y = [0001000000101010℄ or x = (0; 5; 8) and y = (1; 3; 5).

Note that S

1

= S

0

+ n and S

2

= S

1

+ n = S

0

+ 2n.

More formally we know that for M

k

S

k

=

`�1

X

i=0

s

k

i

=

`�1

X

i=0

(y

i+k

� x

i

) =

`�1

X

i=0

y

i+k

�

`�1

X

i=0

x

i

:
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Note that

`�1

X

i=0

y

i+k

= y

0+k

+ y

1+k

+ :::+ y

`�2+k

+ y

`�1+k

= y

1+(k�1)

+ y

2+(k�1)

+ :::+ y

`�1+(k�1)

+ y

k�1

+ n

= y

0+(k�1)

+ y

1+(k�1)

+ y

2+(k�1)

+ :::+ y

`�1+(k�1)

+ n

=

`�1

X

i=0

y

i+(k�1)

+ n:

Therefore, Equation 5 is 
orre
t.

Example. Lets assume we want to solve the 
y
li
 swap problem for the 
y
li


binary strings X = [1000000100000101℄ and Y = [0001000000101010℄. Then n = 16,

` = 4, x = (0; 7; 13; 15) and y = (3; 10; 12; 14). Re
all we double y by adding (y + n)

to be able to 
ompute the initial mappings, so y will be (3; 10; 12; 14; 19; 26; 28; 30).

(See Fig. 6 for a visualization of the input data.)

1
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15
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11

x0 x3x2x1

y0 y1 y2 y3

X

Y

x0

x1

x2

x3

y0

y1

y2

y3

0 1 2 3 4 5 6 7 8 9 10 1514131211

Figure 6: Example for x = (0; 7; 13; 15) and y = (3; 10; 12; 14). The right-hand side

depi
ts the strings 
ir
ularly.

The �rst step is to 
ompute f as follows

f =

3

X

i=0

s

0

i

= s

0

0

+ s

0

1

+ s

0

2

+ s

0

3

= y

0

+ y

1

+ y

2

+ y

3

� x

0

� x

1

� x

2

� x

3

= 3 + 10 + 12 + 14� 0� 7� 13� 15

= 4:

Now we 
ompute the best rotation for ea
h mapping applying Equation 6 and get

r

0

0

= �

4

4

= �1; r

0

1

= �

4 + 16

4

= �5; r

0

2

= �

4 + 32

4

= �9; r

0

3

= �

4 + 48

4

= �13:
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The next step is to �nd the swap distan
e for ea
h mapping using Equation 2 and

the r's we found in the previous step

D

(0;r

0

0

)

= jy

0

� x

0

+ r

0

j+ jy

1

� x

1

+ r

0

j+ jy

2

� x

2

+ r

0

j+ jy

3

� x

3

+ r

0

j

= j3� 0� 1j+ j10� 7� 1j+ j12� 13� 1j+ j14� 15� 1j

= 2 + 2 + 2 + 2 = 8.

D

(1;r

0

1

)

= jy

1

� x

0

+ r

1

j+ jy

2

� x

1

+ r

1

j+ jy

3

� x

2

+ r

1

j+ jy

4

� x

3

+ r

1

j

= j10� 0� 5j+ j12� 7� 5j+ j14� 13� 5j+ j19� 15� 5j

= 5 + 0 + 4 + 1 = 10.

D

(2;r

0

2

)

= jy

2

� x

0

+ r

2

j+ jy

3

� x

1

+ r

2

j+ jy

4

� x

2

+ r

2

j+ jy

5

� x

3

+ r

2

j

= j12� 0� 9j+ j14� 7� 9j+ j19� 13� 9j+ j26� 15� 9j

= 3 + 2 + 3 + 2 = 10.

D

(3;r

0

3

)

= jy

3

� x

0

+ r

3

j+ jy

4

� x

1

+ r

3

j+ jy

5

� x

2

+ r

3

j+ jy

6

� x

3

+ r

3

j

= j14� 0� 13j+ j19� 7� 13j+ j26� 13� 13j+ j28� 15� 13j

= 1 + 1 + 0 + 0 = 2.

Fig. 7 shows the best rotations for ea
h mapping. We 
on
lude that mappingM

3

with Y rotated by -13 (+3) gives the best swap distan
e D

(3;�13)

= D

(3;+3)

= 2.

5 Con
lusions

We have presented a new algorithm that solve the problem of 
y
li
 swap distan
e

between two n-bit (
y
li
) binary strings in O(n + `

2

) where ` is the number of 1's

(same) in both strings.

The fa
t that a n-bit binary string 
ould be thought as a point in a n-dimensional

spa
e (the hyper
ube) suggests the strong links between the 
y
li
 swap problem and

the problem of 
al
ulating the 
losest pairs problem in high dimension. The later

problem is a fundamental and well-studied problem in 
omputational geometry. For

dimension d = n (whi
h is the 
ase here), Shamos and Bently [5℄ 
onje
tured that

the problem 
an be solved in O(n

2

logn) time, where n is the number of points all in

R

d

. Re
ently, a better-than-naive-solution has been presented with running time of

O(n

(!+3)=2

), where O(n

!

) is the running time of matrix multipli
ation [13℄. Several

approximate algorithms were designed for the high-dimensional 
losest pair problem;

see [12℄ for a survey of su
h algorithms. We plan to use some of these ideas, plus the

fa
t that the swap distan
e problem is equivalent to 
al
ulate the L

1

distan
e [3℄, to

further improve the time 
omplexity of the presented algorithm, where for two strings

X, Y , L

1

(X; Y ) is de�ned as follows:

L

1

(X; Y ) =

n�1

X

i=0

jY [i℄�X[i℄j:

The question of whether the swap distan
e 
an be 
al
ulated in more eÆ
ient time

is left as an open problem.
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Figure 7: Computation of the minimum 
y
li
 swap distan
e for X =

[1000000100000101℄ and Y = [0001000000101010℄ or x = (0; 7; 13; 15) and y =

(3; 10; 12; 14). The inner 
ir
le represents string X while the outer 
ir
le represents

string Y . The �rst row, shows the initial mappings 
orresponding to Equation 1.

The se
ond row shows the result after shifting the original mappings by the rotations


omputed using Equation 6, thus mapping M

0

is shifted by r

0

0

= �1 (a negative

value means that the shift is performed anti-
lo
kwise), M

1

by -5, M

2

by -9, and

M

3

by -13. For ea
h new rotation the 
orresponding swap distan
e was 
al
ulated

using Equation 2 and it 
an be seen that the best result is given by M

3

with an

anti-
lo
kwise rotation of 13.
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