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Abstract. Given two n-bit (cyclic) binary strings, A and B, represented on a
circle (necklace instances). Let each sequence have the same number & of 1’s.
We are interested in computing the cyclic swap distance between A and B, i.e.,
the minimum number of swaps needed to convert A into B, minimized over all
rotations of B. We show that this distance may be approximated in O(n + k?)
time.

1 Introduction

Cyeclic string comparison is important for different domains where linear strings rep-
resent, cyclic sequences, for example, in computational biology the genetic material
is sequenced from circular DNA or RNA molecules. Bacterial, chloroplasts and mi-
tochondrial genomes are in majority circular [2]. Small circular DNA molecules that
have the ability to replicate on their own, are extensively used in biotechnology [2].
All such cyclic molecules are represented as linear strings by choosing an arbitrary
starting point. It follows that the comparison of two such sequences needs to consider
all possible cyclic shifts of one of the sequences. DNA, as well as RNA, are oriented
molecules, therefore, in some cases, e.g., for Expressed Sequence Tags, sequences must
be compared in each orientation [1]. Other domains are pattern representation and
recognition [6]. There, polygonal shapes are encoded into linear strings by choosing
arbitrarily a start position on the contour. Determining if two shapes are similar
requires to compare one string with all cyclic shifts of the other.

Another domain in which cyclic strings arise is computational music analysis.
Mathematics and music theory have a long history of collaboration dating back to
at least Pythagoras [11]. More recently the emphasis has been mainly on analysing
string pattern matching problems that arise in music theory [7, 8, 9, 10]. A funda-
mental problem in music theory is to measure the similarity between rhythms, with
many applications such as copyright infringement resolution and music information
retrieval.

Six examples of 4/4 time clave and bell timelines are given in Fig. 1. The left-
hand side shows the rhythms with standard Western music notation using the smallest
convenient notes and rests. The right-hand side shows a popular way of representing
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Figure 1: Six fundamental 4/4 time clave rhythms. The left-hand side uses the
Western music notation and the right-hand size the box notation and binary repre-
sentation. The bottom line shows a common geometric representation using convex
polygons. The dashed lines indicate an axis of mirror symmetry (e.g. for the son
clave, if the rhythm is started at location 3 then it sounds the same whether it is
played forward or backwards).

rhythms for percussionists that do not read music. It is called the Box Notation
Method developed by Philip Harland at the University of California in Los Angeles
in 1962 and is also known as TUBS (Time Unit Box System). The box notation
method is convenient for simple-to-notate rhythms like bell and clave patterns as
well as for experiments in the psychology of rhythm perception, where a common
variant of this method is simply to use one symbol for the note and another for the
rest. The Clave Son is the most popular among these rhythms and can be heard a
lot in Son and Salsa music as well as much other music around the world. For our
purpose, A rhythm is represented as a cyclic binary sequence where a zero denotes a
rest (silence) and a one represents a beat or note onset, for example, the clave Son
would be written as the 16-bit binary sequence: [1001001000101000]. This rhythm
can also be thought as a point in a 16-dimensional space (the hypercube). A natural
measure of the difference between two rhythms represented as binary sequences is the
well known Hamming distance, which counts the number of positions in which the
two rhythms disagree. Although the Hamming distance measures the existence of a
mismatch, it does not measure how far the mismatch occurs, that is why, Toussaint
[15] proposed a distance measure termed the swap distance. A swap is an interchange
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of a one and a zero (note duration and rest interval) that are adjacent in the sequence.
The swap distance between two rhythms is the minimum number of swaps required
to convert one rhythm to the other. The swap distance measure of dissimilarity was
shown in [14] to be more appropriate than several other measures of rhythm similarity
including the Hamming distance, the Euclidean interval-vector distance, the interval-
difference distance measure of Coyle and Shmulevich, and the chronotonic distance
measures of Gustafson and Hofmann-Engl.

More formally, given two n-bit (cyclic) binary strings, A and B, represented on a
circle (necklace instances). Let each sequence have the same number k of 1’s. We are
interested in computing the cyclic swap distance between A and B, i.e., the minimum
number of swaps needed to convert A into B, minimized over all rotations of B. We
show that this distance may be computed in O(n + £?).

The outline of the paper is as follows: Some preliminaries are described in Section
2. A Naive Solution is presented in Section 3 and in Section 4 we present a better-
than-naive solution. Conclusions are drawn in Section 5.

2 Preliminaries

Let X[0..n — 1] be a n-bit cyclic string over ¥ = {0,1}, with n > 0. By X[i] we
denote the (i + 1)-st bit in X, 0 < i <length(X). Let {=ones(X) be the number of
1’s in X. Let X" be the r-rotation of X such that X"[i]| = X[i ®r] for i € [0..n — 1],
and any integer r (i ®r = mod(i + r,n)!).

Let = be the increasing sequence of 1’s indices (xg, 1, . .., z,_1) such that X [z;] =1
for i € [0..4 —1]. For u = (ug, u1,...,u,), v = (vy,v1,...,v,) and some integer e, we
denote by u-v = (ug,u1,. .., Uy, Vo, v1,...,0,) the sequence concatenation operation
and by u+e = (up +e,us; +e,...,u, + ¢€) the sequence transposition operation.

Given X and Y, two n-bit (cyclic) binary strings with the same number of 1’s,
the cyclic swap problem is to find the cyclic swap distance between X and Y, i.e., the
minimum number of swaps needed to convert X into Y, minimized over all rotations
of Y. A swap is an interchange of a one and a zero that are adjacent in the binary
string.

2.1 Mappings and Rotations

A mapping is a bijection function M : z — y. Since no two adjacent 1’s can be
swaped, no two mappings should cross. Hence, there are ¢ possible mappings. For
instance, if ¢ = 3, we could have the following three mappings {(zo — o), (1 —
1), (w2 = y2) }, {(wo = y1), (w1 = 12), (32 = yo)} and {(zo — 12), (¥1 = wo), (22 —
y1)}. So we define

to be the k-mapping of the 1’s in X with those 1’s in Y.
We also redefine y as y - (y + n) and denote

'We use operator & to indicate that all indices are viewed modulo n.
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-1
D) = Z Yirk — i + 1|, for k€ [0..0 — 1] )

1=0

to be the sum of the number of swap between the pairs in M* and rotation r of
Y. (Here |x| designates the absolute value of z.) The reason for using y - (y + n)
instead of y is because M* will always have k mappings that are circular, for example,
for M' we map z, with y, but the number of swap needed to map z, with v is
(yo +n) — xo instead of yo — 9. Fig. 2 shows rotations —7,—6,...,6,7 for mapping
MO of X = [10010001] and Y = [01010010]. Note that D*»7) 4 D) = fp for
0<r<n.
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Figure 2: Rotations —7,—6,...,6,7 for mapping M? of X = [10010001] and YV =
[01010010] or =z = (0,3,7) and y = (1,3,6). X /Y corresponds to the outer/inner
cyclic string.
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3 Naive Solution

The naive approach is to examine each mapping and calculate for each possible ro-
tation the sum of number of swap operations between each pair of mapped 1’s. This
approach costs O(nf?) time. This is because there are ¢ possible mappings and n
possible rotations per each mapping. Fig. 3 shows the main steps of the algorithm.

Algorithm 1 Naive Solution

Input: z,y,n,?
OU-tPU-t: dmin: T'min, Kmin

L y=y-(y+n); dnin = Tmin = kmin = 00

2. for k=0 to /—1 do

3 forr=0 to n—1 do

4. d=20

5. for:=0 to /—1 do

6 d:d+|y¢+k—xi+r|

7 if d< dmin then d,., = d, Tmin = T, komin = k
8. return (dmin, "mins Kmin)

Figure 3: Naive Algorithm.

4 Better-than-Naive Solution

The problem is reduced to find, for each mapping MP¥, the rotation » that minimizes
Equation 2. This can be approximated by replacing the absolute values in (2) by
squares so we get

-1
D/(lc,r) — (yz’—I—k —x; + 7“)2, for k € [OZ — 1].

3

o~

Il
o

Lets say that s¥ =y, — z; so we get

1
D'kr) = Z (sF +7)2,
i=0
which we can be rewritten as
-1 -1
D'k =N (52 4 o Z sk 4+ 0r?, (3)

Il
o

) 1=0

Differentiating (3) and setting the result equal to zero, we obtain

oD (k) i
o :223f+2€r:0. (4)
1=0
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If we say that ¥ = 2771 s% and solving r from (4) it follows r = —S8*/¢. The

z:O A
corollary good news is that

St =814 n, for ke [2.0—1]. (5)
So, if we let
l—1
F=8"=) =0+t ts) =gyt e — @ — T — e — T
=0
then
k
re = —u, for k € [0..0 — 1], (6)

will correspond to the rotation that will minimize the square of the swap distance for
mapping MF¥. Thus, D'*"%) is optimal for MF.

Now that we know how to find the best rotation 7 for each mapping, it is easy
to compute the minimum swap distance for each such rotation and the best overall
rotation will be given by

-1 o,
d* = IZIl_lgl(Dl(l’rl))

The time complexity to compute f is ©(¢) and each r} for i € [0..£ — 1] can be
compute in O(1) time using Equation 6. So the time required to compute all rotations
70, Ty, y_q is O(F). Once we have the rotations, the time to compute the swap
distance for each mapping and each rotation D*"%), for k € [0..¢ — 1], is O(¢) if done
naively. Hence, the total time to find d* is ©(¢%) or O(n + (?) if we assume that
sequences x and y are to be computed. Fig. 4 shows these ideas algorithmically.

Algorithm 2 Better-than-Naive Solution

Input: z,y,n, /¢
OUtPUt: dminarminakmin
L. y:y(y+n)afzoadmm:rmm:kmm:oo
fori=0 to /—1 do
f=f+tyi—wm
for k=0 to /-1 do
r=—(f+nk)/t;d=0
fori=0 to /—1 do
d:d+|y¢+k—:1:i—|—r|
if d<d,,;, then d,;, = d, Tmin = T, kpin = k
return (dmzna T'min, kmm)

e R il

Figure 4: Better-than-Naive Algorithm.

Note that the value d* is an approximated cyclic swap distance. Our experiments
show that in very few cases d* was not the optimal cyclic swap distance. However, it
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indicates correctly the optimal mapping M*. Additionally, we were also able to prove
[4] that if 7, was the optimal exact rotation for mapping M*, then at least one of the
values |y;1r — x; + 7| is equal to 0, for 0 < ¢ < ¢ — 1. Thus, the exact cyclic swap
distance may be calculated using first Algorithm 4 to calculate the optimal mapping.
Then, if none of the values |y;,x — z; + 7| (Line 8) is equal to 0, then additional O(k?)
is needed to calculate the optimal cyclic swap distance. Clearly, this is not going to
effect the overall running time.

Before continuing our discussion, we show why Equation 5 is correct. First, we
illustrate the formula using the example in Fig. 5. Here, f = 8% = 55 + s} + 5§ =
1-2-3=—-4,8" =s)+s;+s, =3+0+3 =6and S? = s2+s7+s3 =5+6+5 = 16.
However, we do not need to compute sj, s{, 54, 52,52 and s3 in order to compute S'
and S?, instead, we apply Equation 5 and find that S' = 8% +n = -4+ 10 = 6 and

S2=8%4+92n=—4+20=16.

0
/=S S
f_Hf_}%
-4-3-2-10 1 2 3 4 5 6 7 8 91011121314 1516
Z, T T 5
) eYeXeXey YeXe¥ Jo!
M o
ceodo®0000 2 S
0 1 2 1
Yo Y1 Y n
330 €I .Tg 81
QO 00§00 Y]
w S I
Ce 0800008080000 S3
Yo Y1 Yo Ys Yy Y5 n
Yo Y1 Yo
T, T, X St
M WX { 7
2
ceoe 0000 00000 —_—8
yO yl y,Q y3 y4 y5 -4-3-2-10 1 2 3 4 5 6 7 8 91011121314 1516
Y Y1 Yo

(¢ J
~—

82

Figure 5: Illustration to demonstrate the correctness of Equation 5 for X =
[1000000100000101] and Y = [0001000000101010] or = = (0,5,8) and y = (1,3,5).
Note that S' = 8% +n and §? = S' +n = S + 2n.

More formally we know that for M*

-1 —1 -1 -1
Sk o k __ . oyl — . _ .
- Si = (?/z+k :L’Z) = Yi+k T;.
=0 =0 =0 =0
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Note that

-1
Z Yirk = Yotk T Y1tk T oo+ Yo—2ik + Y14k
i=0

= Yi+k-1) T Y24+k—-1) t - T Yr-14(k—1) T Y—1 + 1
= Yo+(k—1) T Yi4(k—1) T Yot (k—1) T o T Yo—14(k—1) T N

/—1
= Z Yit+(k—1) + 1.
=0

Therefore, Equation 5 is correct.

Example. Lets assume we want to solve the cyclic swap problem for the cyclic
binary strings X = [1000000100000101] and Y = [0001000000101010]. Then n = 16,
(=4, 2=(0,7,13,15) and y = (3,10,12,14). Recall we double y by adding (y + n)
to be able to compute the initial mappings, so y will be (3,10, 12,14, 19, 26, 28, 30).
(See Fig. 6 for a visualization of the input data.)

) Iy Ly X3
X0OOOO0OOeOOO0OOe O e
o 1 2 83 4 5 6 7 8 9 10 11 12 13 14 15

Y OO0O@eO0O0O0O000Ce0eO ®O
Y Yy Y Y

Figure 6: Example for x = (0,7,13,15) and y = (3,10, 12, 14). The right-hand side
depicts the strings circularly.

The first step is to compute f as follows

3
fo= ) =50+ +s5+s]
i=0
= Yot+y1+tY2t+ys—r9g— T4 —Ty— T3
= 34+104+124+14—-0—-7—-13—-15

= 4.

Now we compute the best rotation for each mapping applying Equation 6 and get

4 4+ 32 4448
h=—g=-1, =222 4,¢_—;L—:—,¢:—'z — 13,



Proceedings of the Prague Stringology Conference '05

The next step is to find the swap distance for each mapping using Equation 2 and
the r’s we found in the previous step

DO = |yy —xg + 1| + |y1 — 21 + ol + |y2 — 2 + 10| + |yz — 23 + 10|
3—0—1|+[10—7—1|+[12—13—1| + |14 — 15— 1]
= 242+242=38.

'D(l’rll) = |y1—x0+r1|+|y2—x1+r1|+|y3—x2+r1|+|y4—x3+r1|
= [10-0—5|+ 127 =5+ [14 — 13 = 5| + |19 — 15 — 5|
= 54+0+4+1=10.

DR = |yy — x + 1| + |ys — 21+ o] + ys — 2 + o] + |ys — 23 + 19
= [12-0—-9[+(|14—7—9|+ 19— 13— 9| + |26 — 15 — 9|
= 34+243+2=10.

'D(?”rg) = |y3 — X +’I“3| + |y4 — T+ T3| + |y5 — Ty + T3| + |y6 — X3 +’I“3|
14 — 0 — 13| + [19 — 7 — 13| + |26 — 13 — 13| + |28 — 15 — 13|
= 14+14+0+0=2.

Fig. 7 shows the best rotations for each mapping. We conclude that mapping M?
with Y rotated by -13 (4-3) gives the best swap distance D(>~13) = D3+3) = 2,

5 Conclusions

We have presented a new algorithm that solve the problem of cyclic swap distance
between two n-bit (cyclic) binary strings in O(n + ¢?) where £ is the number of 1’s
(same) in both strings.

The fact that a n-bit binary string could be thought as a point in a n-dimensional
space (the hypercube) suggests the strong links between the cyclic swap problem and
the problem of calculating the closest pairs problem in high dimension. The later
problem is a fundamental and well-studied problem in computational geometry. For
dimension d = n (which is the case here), Shamos and Bently [5] conjectured that
the problem can be solved in O(n?logn) time, where n is the number of points all in
R%. Recently, a better-than-naive-solution has been presented with running time of
O(n@+3/2) where O(n®) is the running time of matrix multiplication [13]. Several
approximate algorithms were designed for the high-dimensional closest pair problem;
see [12] for a survey of such algorithms. We plan to use some of these ideas, plus the
fact that the swap distance problem is equivalent to calculate the L; distance [3], to
further improve the time complexity of the presented algorithm, where for two strings
X,Y, Li(X,Y) is defined as follows:

n—1

LiX,¥) = 3 Vil = X[l

1=0

The question of whether the swap distance can be calculated in more efficient time
is left as an open problem.
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3,-13
DO

(BEST)

Figure 7: Computation of the minimum cyclic swap distance for X =
[1000000100000101] and Y = [0001000000101010] or x = (0,7,13,15) and y =
(3,10,12,14). The inner circle represents string X while the outer circle represents
string Y. The first row, shows the initial mappings corresponding to Equation 1.
The second row shows the result after shifting the original mappings by the rotations
computed using Equation 6, thus mapping M is shifted by rj = —1 (a negative
value means that the shift is performed anti-clockwise), M! by -5, M? by -9, and
M? by -13. For each new rotation the corresponding swap distance was calculated
using Equation 2 and it can be seen that the best result is given by M? with an
anti-clockwise rotation of 13.
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