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Abstrat. Given two n-bit (yli) binary strings, A and B, represented on a

irle (neklae instanes). Let eah sequene have the same number k of 1's.

We are interested in omputing the yli swap distane between A and B, i.e.,

the minimum number of swaps needed to onvert A into B, minimized over all

rotations of B. We show that this distane may be approximated in O(n+ k

2

)

time.

1 Introdution

Cyli string omparison is important for di�erent domains where linear strings rep-

resent yli sequenes, for example, in omputational biology the geneti material

is sequened from irular DNA or RNA moleules. Baterial, hloroplasts and mi-

tohondrial genomes are in majority irular [2℄. Small irular DNA moleules that

have the ability to repliate on their own, are extensively used in biotehnology [2℄.

All suh yli moleules are represented as linear strings by hoosing an arbitrary

starting point. It follows that the omparison of two suh sequenes needs to onsider

all possible yli shifts of one of the sequenes. DNA, as well as RNA, are oriented

moleules, therefore, in some ases, e.g., for Expressed Sequene Tags, sequenes must

be ompared in eah orientation [1℄. Other domains are pattern representation and

reognition [6℄. There, polygonal shapes are enoded into linear strings by hoosing

arbitrarily a start position on the ontour. Determining if two shapes are similar

requires to ompare one string with all yli shifts of the other.

Another domain in whih yli strings arise is omputational musi analysis.

Mathematis and musi theory have a long history of ollaboration dating bak to

at least Pythagoras [11℄. More reently the emphasis has been mainly on analysing

string pattern mathing problems that arise in musi theory [7, 8, 9, 10℄. A funda-

mental problem in musi theory is to measure the similarity between rhythms, with

many appliations suh as opyright infringement resolution and musi information

retrieval.

Six examples of 4/4 time lave and bell timelines are given in Fig. 1. The left-

hand side shows the rhythms with standard Western musi notation using the smallest

onvenient notes and rests. The right-hand side shows a popular way of representing
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Figure 1: Six fundamental 4/4 time lave rhythms. The left-hand side uses the

Western musi notation and the right-hand size the box notation and binary repre-

sentation. The bottom line shows a ommon geometri representation using onvex

polygons. The dashed lines indiate an axis of mirror symmetry (e.g. for the son

lave, if the rhythm is started at loation 3 then it sounds the same whether it is

played forward or bakwards).

rhythms for perussionists that do not read musi. It is alled the Box Notation

Method developed by Philip Harland at the University of California in Los Angeles

in 1962 and is also known as TUBS (Time Unit Box System). The box notation

method is onvenient for simple-to-notate rhythms like bell and lave patterns as

well as for experiments in the psyhology of rhythm pereption, where a ommon

variant of this method is simply to use one symbol for the note and another for the

rest. The Clave Son is the most popular among these rhythms and an be heard a

lot in Son and Salsa musi as well as muh other musi around the world. For our

purpose, A rhythm is represented as a yli binary sequene where a zero denotes a

rest (silene) and a one represents a beat or note onset, for example, the lave Son

would be written as the 16-bit binary sequene: [1001001000101000℄. This rhythm

an also be thought as a point in a 16-dimensional spae (the hyperube). A natural

measure of the di�erene between two rhythms represented as binary sequenes is the

well known Hamming distane, whih ounts the number of positions in whih the

two rhythms disagree. Although the Hamming distane measures the existene of a

mismath, it does not measure how far the mismath ours, that is why, Toussaint

[15℄ proposed a distane measure termed the swap distane. A swap is an interhange
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of a one and a zero (note duration and rest interval) that are adjaent in the sequene.

The swap distane between two rhythms is the minimum number of swaps required

to onvert one rhythm to the other. The swap distane measure of dissimilarity was

shown in [14℄ to be more appropriate than several other measures of rhythm similarity

inluding the Hamming distane, the Eulidean interval-vetor distane, the interval-

di�erene distane measure of Coyle and Shmulevih, and the hronotoni distane

measures of Gustafson and Hofmann-Engl.

More formally, given two n-bit (yli) binary strings, A and B, represented on a

irle (neklae instanes). Let eah sequene have the same number k of 1's. We are

interested in omputing the yli swap distane between A and B, i.e., the minimum

number of swaps needed to onvert A into B, minimized over all rotations of B. We

show that this distane may be omputed in O(n+ k

2

).

The outline of the paper is as follows: Some preliminaries are desribed in Setion

2. A Naive Solution is presented in Setion 3 and in Setion 4 we present a better-

than-naive solution. Conlusions are drawn in Setion 5.

2 Preliminaries

Let X[0::n � 1℄ be a n-bit yli string over � = f0; 1g, with n � 0. By X[i℄ we

denote the (i + 1)-st bit in X, 0 � i <length(X). Let `=ones(X) be the number of

1's in X. Let X

r

be the r-rotation of X suh that X

r

[i℄ = X[i�

+

r℄ for i 2 [0::n� 1℄,

and any integer r (i�

+

r = mod(i + r; n)

1

).

Let x be the inreasing sequene of 1's indies (x

0

; x

1

; : : : ; x

`�1

) suh thatX[x

i

℄ = 1

for i 2 [0::`� 1℄. For u = (u

0

; u

1

; : : : ; u

n

), v = (v

0

; v

1

; : : : ; v

n

) and some integer e, we

denote by u � v = (u

0

; u

1

; : : : ; u

n

; v

0

; v

1

; : : : ; v

n

) the sequene onatenation operation

and by u+ e = (u

0

+ e; u

1

+ e; : : : ; u

n

+ e) the sequene transposition operation.

Given X and Y , two n-bit (yli) binary strings with the same number of 1's,

the yli swap problem is to �nd the yli swap distane between X and Y , i.e., the

minimum number of swaps needed to onvert X into Y , minimized over all rotations

of Y . A swap is an interhange of a one and a zero that are adjaent in the binary

string.

2.1 Mappings and Rotations

A mapping is a bijetion funtion M : x ! y. Sine no two adjaent 1's an be

swaped, no two mappings should ross. Hene, there are ` possible mappings. For

instane, if ` = 3, we ould have the following three mappings f(x

0

! y

0

); (x

1

!

y

1

); (x

2

! y

2

)g, f(x

0

! y

1

); (x

1

! y

2

); (x

2

! y

0

)g and f(x

0

! y

2

); (x

1

! y

0

); (x

2

!

y

1

)g. So we de�ne

M

k

= f (x

i

! y

i�

+

k

) j i; k 2 [0::`� 1℄ g (1)

to be the k-mapping of the 1's in X with those 1's in Y .

We also rede�ne y as y � (y + n) and denote

1

We use operator �

+

to indiate that all indies are viewed modulo n.
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D

(k;r)

=

`�1

X

i=0

jy

i+k

� x

i

+ rj; for k 2 [0::`� 1℄ (2)

to be the sum of the number of swap between the pairs in M

k

and rotation r of

Y . (Here jxj designates the absolute value of x.) The reason for using y � (y + n)

instead of y is beauseM

k

will always have k mappings that are irular, for example,

for M

1

we map x

2

with y

0

but the number of swap needed to map x

2

with y

0

is

(y

0

+ n)� x

2

instead of y

0

� x

2

. Fig. 2 shows rotations �7;�6; : : : ; 6; 7 for mapping

M

0

of X = [10010001℄ and Y = [01010010℄. Note that D

(k;n�r)

+ D

(k;�r)

= `n for

0 < r < n.
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Figure 2: Rotations �7;�6; : : : ; 6; 7 for mapping M

0

of X = [10010001℄ and Y =

[01010010℄ or x = (0; 3; 7) and y = (1; 3; 6). X/Y orresponds to the outer/inner

yli string.
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3 Naive Solution

The naive approah is to examine eah mapping and alulate for eah possible ro-

tation the sum of number of swap operations between eah pair of mapped 1's. This

approah osts O(n`

2

) time. This is beause there are ` possible mappings and n

possible rotations per eah mapping. Fig. 3 shows the main steps of the algorithm.

Algorithm 1 Naive Solution

Input: x; y; n; `

Output: d

min

; r

min

; k

min

1. y = y � (y + n); d

min

= r

min

= k

min

=1

2. for k = 0 to `� 1 do

3. for r = 0 to n� 1 do

4. d = 0

5. for i = 0 to `� 1 do

6. d = d+ jy

i+k

� x

i

+ rj

7. if d < d

min

then d

min

= d; r

min

= r; k

min

= k

8. return (d

min

; r

min

; k

min

)

Figure 3: Naive Algorithm.

4 Better-than-Naive Solution

The problem is redued to �nd, for eah mappingM

k

, the rotation r that minimizes

Equation 2. This an be approximated by replaing the absolute values in (2) by

squares so we get

D

0(k;r)

=

`�1

X

i=0

(y

i+k

� x

i

+ r)

2

; for k 2 [0::`� 1℄:

Lets say that s

k

i

= y

i+k

� x

i

so we get

D

0(k;r)

=

`�1

X

i=0

(s

k

i

+ r)

2

;

whih we an be rewritten as

D

0(k;r)

=

`�1

X

i=0

(s

k

i

)

2

+ 2r

`�1

X

i=0

s

k

i

+ `r

2

: (3)

Di�erentiating (3) and setting the result equal to zero, we obtain

�D

0(k;r)

�r

= 2

`�1

X

i=0

s

k

i

+ 2`r = 0: (4)
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If we say that S

k

=

P

`�1

i=0

s

k

i

and solving r from (4) it follows r = �S

k

=`. The

orollary good news is that

S

k

= S

k�1

+ n; for k 2 [2::`� 1℄: (5)

So, if we let

f = S

0

=

`�1

X

i=0

s

0

i

= s

0

0

+ s

0

1

+ � � �+ s

0

`�1

= y

0

+ y

1

+ � � �+ y

`�1

� x

0

� x

1

� � � � � x

`�1

;

then

r

0

k

= �

f + kn

`

; for k 2 [0::`� 1℄; (6)

will orrespond to the rotation that will minimize the square of the swap distane for

mappingM

k

. Thus, D

0(k;r

0

k

)

is optimal for M

k

.

Now that we know how to �nd the best rotation r

0

k

for eah mapping, it is easy

to ompute the minimum swap distane for eah suh rotation and the best overall

rotation will be given by

d

�

=

`�1

min

i=0

(D

0(i;r

0

i

)

):

The time omplexity to ompute f is �(`) and eah r

0

i

for i 2 [0::` � 1℄ an be

ompute in �(1) time using Equation 6. So the time required to ompute all rotations

r

0

0

; r

0

1

; : : : ; r

0

`�1

is �(`). One we have the rotations, the time to ompute the swap

distane for eah mapping and eah rotation D

(k;r

0

k

)

, for k 2 [0::`� 1℄, is �(`) if done

naively. Hene, the total time to �nd d

�

is �(`

2

) or �(n + `

2

) if we assume that

sequenes x and y are to be omputed. Fig. 4 shows these ideas algorithmially.

Algorithm 2 Better-than-Naive Solution

Input: x; y; n; `

Output: d

min

; r

min

; k

min

1. y = y � (y + n); f = 0; d

min

= r

min

= k

min

=1

2. for i = 0 to `� 1 do

3. f = f + y

i

� x

i

4. for k = 0 to `� 1 do

5. r = �(f + nk)=`; d = 0

6. for i = 0 to `� 1 do

7. d = d+ jy

i+k

� x

i

+ rj

8. if d < d

min

then d

min

= d; r

min

= r; k

min

= k

9. return (d

min

; r

min

; k

min

)

Figure 4: Better-than-Naive Algorithm.

Note that the value d

�

is an approximated yli swap distane. Our experiments

show that in very few ases d

�

was not the optimal yli swap distane. However, it
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indiates orretly the optimal mappingM

�

. Additionally, we were also able to prove

[4℄ that if r

k

was the optimal exat rotation for mappingM

k

, then at least one of the

values jy

i+k

� x

i

+ r

k

j is equal to 0, for 0 � i � ` � 1. Thus, the exat yli swap

distane may be alulated using �rst Algorithm 4 to alulate the optimal mapping.

Then, if none of the values jy

i+k

�x

i

+ rj (Line 8) is equal to 0, then additional O(k

2

)

is needed to alulate the optimal yli swap distane. Clearly, this is not going to

e�et the overall running time.

Before ontinuing our disussion, we show why Equation 5 is orret. First, we

illustrate the formula using the example in Fig. 5. Here, f = S

0

= s

0

0

+ s

0

1

+ s

0

2

=

1�2�3 = �4, S

1

= s

1

0

+s

1

1

+s

1

2

= 3+0+3 = 6 and S

2

= s

2

0

+s

2

1

+s

2

2

= 5+6+5 = 16.

However, we do not need to ompute s

1

0

; s

1

1

; s

1

2

; s

2

0

; s

2

1

and s

2

2

in order to ompute S

1

and S

2

, instead, we apply Equation 5 and �nd that S

1

= S

0

+ n = �4 + 10 = 6 and

S

2

= S

0

+ 2n = �4 + 20 = 16.

s0
0

n
s1

0s2
0

s0
1

s1
1

s2
1

n

s0
2

s1
2

s2
2

n

f=S
0

S
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x0 x1 x2
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M
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M
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Figure 5: Illustration to demonstrate the orretness of Equation 5 for X =

[1000000100000101℄ and Y = [0001000000101010℄ or x = (0; 5; 8) and y = (1; 3; 5).

Note that S

1

= S

0

+ n and S

2

= S

1

+ n = S

0

+ 2n.

More formally we know that for M

k

S

k

=

`�1

X

i=0

s

k

i

=

`�1

X

i=0

(y

i+k

� x

i

) =

`�1

X

i=0

y

i+k

�

`�1

X

i=0

x

i

:
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Note that

`�1

X

i=0

y

i+k

= y

0+k

+ y

1+k

+ :::+ y

`�2+k

+ y

`�1+k

= y

1+(k�1)

+ y

2+(k�1)

+ :::+ y

`�1+(k�1)

+ y

k�1

+ n

= y

0+(k�1)

+ y

1+(k�1)

+ y

2+(k�1)

+ :::+ y

`�1+(k�1)

+ n

=

`�1

X

i=0

y

i+(k�1)

+ n:

Therefore, Equation 5 is orret.

Example. Lets assume we want to solve the yli swap problem for the yli

binary strings X = [1000000100000101℄ and Y = [0001000000101010℄. Then n = 16,

` = 4, x = (0; 7; 13; 15) and y = (3; 10; 12; 14). Reall we double y by adding (y + n)

to be able to ompute the initial mappings, so y will be (3; 10; 12; 14; 19; 26; 28; 30).

(See Fig. 6 for a visualization of the input data.)

1
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11

x0 x3x2x1

y0 y1 y2 y3

X

Y

x0

x1

x2

x3

y0

y1

y2

y3

0 1 2 3 4 5 6 7 8 9 10 1514131211

Figure 6: Example for x = (0; 7; 13; 15) and y = (3; 10; 12; 14). The right-hand side

depits the strings irularly.

The �rst step is to ompute f as follows

f =

3

X

i=0

s

0

i

= s

0

0

+ s

0

1

+ s

0

2

+ s

0

3

= y

0

+ y

1

+ y

2

+ y

3

� x

0

� x

1

� x

2

� x

3

= 3 + 10 + 12 + 14� 0� 7� 13� 15

= 4:

Now we ompute the best rotation for eah mapping applying Equation 6 and get

r

0

0

= �

4

4

= �1; r

0

1

= �

4 + 16

4

= �5; r

0

2

= �

4 + 32

4

= �9; r

0

3

= �

4 + 48

4

= �13:
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The next step is to �nd the swap distane for eah mapping using Equation 2 and

the r's we found in the previous step

D

(0;r

0

0

)

= jy

0

� x

0

+ r

0

j+ jy

1

� x

1

+ r

0

j+ jy

2

� x

2

+ r

0

j+ jy

3

� x

3

+ r

0

j

= j3� 0� 1j+ j10� 7� 1j+ j12� 13� 1j+ j14� 15� 1j

= 2 + 2 + 2 + 2 = 8.

D

(1;r

0

1

)

= jy

1

� x

0

+ r

1

j+ jy

2

� x

1

+ r

1

j+ jy

3

� x

2

+ r

1

j+ jy

4

� x

3

+ r

1

j

= j10� 0� 5j+ j12� 7� 5j+ j14� 13� 5j+ j19� 15� 5j

= 5 + 0 + 4 + 1 = 10.

D

(2;r

0

2

)

= jy

2

� x

0

+ r

2

j+ jy

3

� x

1

+ r

2

j+ jy

4

� x

2

+ r

2

j+ jy

5

� x

3

+ r

2

j

= j12� 0� 9j+ j14� 7� 9j+ j19� 13� 9j+ j26� 15� 9j

= 3 + 2 + 3 + 2 = 10.

D

(3;r

0

3

)

= jy

3

� x

0

+ r

3

j+ jy

4

� x

1

+ r

3

j+ jy

5

� x

2

+ r

3

j+ jy

6

� x

3

+ r

3

j

= j14� 0� 13j+ j19� 7� 13j+ j26� 13� 13j+ j28� 15� 13j

= 1 + 1 + 0 + 0 = 2.

Fig. 7 shows the best rotations for eah mapping. We onlude that mappingM

3

with Y rotated by -13 (+3) gives the best swap distane D

(3;�13)

= D

(3;+3)

= 2.

5 Conlusions

We have presented a new algorithm that solve the problem of yli swap distane

between two n-bit (yli) binary strings in O(n + `

2

) where ` is the number of 1's

(same) in both strings.

The fat that a n-bit binary string ould be thought as a point in a n-dimensional

spae (the hyperube) suggests the strong links between the yli swap problem and

the problem of alulating the losest pairs problem in high dimension. The later

problem is a fundamental and well-studied problem in omputational geometry. For

dimension d = n (whih is the ase here), Shamos and Bently [5℄ onjetured that

the problem an be solved in O(n

2

logn) time, where n is the number of points all in

R

d

. Reently, a better-than-naive-solution has been presented with running time of

O(n

(!+3)=2

), where O(n

!

) is the running time of matrix multipliation [13℄. Several

approximate algorithms were designed for the high-dimensional losest pair problem;

see [12℄ for a survey of suh algorithms. We plan to use some of these ideas, plus the

fat that the swap distane problem is equivalent to alulate the L

1

distane [3℄, to

further improve the time omplexity of the presented algorithm, where for two strings

X, Y , L

1

(X; Y ) is de�ned as follows:

L

1

(X; Y ) =

n�1

X

i=0

jY [i℄�X[i℄j:

The question of whether the swap distane an be alulated in more eÆient time

is left as an open problem.
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Figure 7: Computation of the minimum yli swap distane for X =

[1000000100000101℄ and Y = [0001000000101010℄ or x = (0; 7; 13; 15) and y =

(3; 10; 12; 14). The inner irle represents string X while the outer irle represents

string Y . The �rst row, shows the initial mappings orresponding to Equation 1.

The seond row shows the result after shifting the original mappings by the rotations

omputed using Equation 6, thus mapping M

0

is shifted by r

0

0

= �1 (a negative

value means that the shift is performed anti-lokwise), M

1

by -5, M

2

by -9, and

M

3

by -13. For eah new rotation the orresponding swap distane was alulated

using Equation 2 and it an be seen that the best result is given by M

3

with an

anti-lokwise rotation of 13.
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