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Abstrat. Musi sequenes an be treated as texts in order to perform musi

retrieval tasks on them. However, the text searh problems that result from this

modeling are unique to musi retrieval. Up to date, several approahes derived

from lassial string mathing have been proposed to ope with the new searh

problems, yet eah problem had its own algorithms. In this paper we show that

a tehnique reently developed for multipattern approximate string mathing

is exible enough to be suessfully extended to solve many di�erent musi

retrieval problems, as well as ombinations thereof not addressed before. We

show that the resulting algorithms are lose to optimal and muh better than

existing approahes in many pratial ases.

Keywords: Musi retrieval, approximate string mathing, (Æ; )-mathing,

transposition invariane.

1 Introdution

In this paper we are interested in musi retrieval, and in partiular, in a reent

approah to it where musial sores are regarded as strings and string mathing

tehniques an be used to solve musi retrieval problems. In order to map the problem

to string mathing, the alphabet of the string ould simply be the set of notes in the

hromati or diatoni notation, or the set of intervals that appear between notes

(for example, pithes may be represented as MIDI numbers and pith intervals as

number of semitones). In both ases, we deal with numeri strings. Then, many

musi retrieval problems an be onverted into string mathing problems, that is,

�nd the ourrenes of a short string (alled the pattern) in a longer string (alled

the text). This is usually not enough to fully solve all musi retrieval problems, but

it provides a useful and eÆient �lter to leave the most promising andidates for a
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more profound and ostly evaluation. There are also some problems where two long

musial piees are ompared, whih we do not address in this paper.

Exat string mathing annot be used to �nd ourrenes of a partiular melody,

beause a number of irrelevant distortions ould exist between the melody sought and

its version stored in the musi database. To perform meaningful musi retrieval one

must resort to diverse forms of approximate mathing, where a limited amount of dif-

ferenes of diverse kinds are permitted between the searh pattern and its ourrene

in the text. Di�erent versions of the approximate string mathing problem arise in

di�erent �elds [24℄, yet those of musi retrieval are unique of this area [11, 5, 28℄.

One approximate mathing model of use in musi retrieval is (Æ; )-mathing. In

this model, two strings a

1

a

2

: : : a

m

and b

1

b

2

: : : b

m

of the same length m math if (i)

the absolute di�erenes between orresponding haraters do not exeed Æ, that is,

ja

i

� b

i

j � Æ for all 1 � i � m (or, alternatively, max

1�i�m

ja

i

� b

i

j � Æ), and (ii) the

sum of those absolute di�erenes does not exeed , that is,

P

1�i�m

ja

i

� b

i

j � .

This model aounts for small di�erenes that may arise between two versions of the

same melody, setting a limit for the individual absolute di�erenes, as well as a global

limit to the overall di�erenes. Searhing for pattern p under (Æ; )-mathing onsists

of �nding all the text positions where a text substring that (Æ; )-mathes p appears.

Less popular subproblems are Æ-mathing and -mathing, whih only enfore one of

the two onditions.

A seond relevant approximate mathing model is the longest ommon subsequene

(LCS) and its dual indel distane. The former, LCS(a; b), is the maximum length

of a string that is subsequene both of a and b, that is, LCS(a; b) = maxfjsj; s v

a; s v bg. A string s = s

1

s

2

: : : s

r

is a subsequene of string a

1

a

2

: : : a

m

, s v a, if s an

be obtained by removing zero or more haraters from a, that is, s = a

i

1

a

i

2

: : : a

i

r

for

1 � i

1

< i

2

< : : : < i

r

� m. The LCS has been largely used in omputational biology

to model biologial similarity, and it is also relevant to identify musial passages that

are similar exept for a few extra or missing notes. This is espeially relevant beause

musi ontains various kind of \deorations", suh as grae notes and ornamentations,

that are not essential for mathing. The indel distane id(a; b) between strings a and

b is the number of haraters one has to add or remove to a and b to make them

equal, id(a; b) = jaj+ jbj � 2 �LCS(a; b). Searhing for pattern p under indel distane

with tolerane k onsists of �nding all the text positions where a string p

0

appears

so that id(p; p

0

) � k. Other variants of indel distane, whih are less popular in

musi retrieval, are Levenshtein or edit distane (where substitutions of haraters

are also permitted) and episode mathing (where only insertions in the pattern are

permitted).

Finally, a third similarity onept of relevane in musi retrieval is transposition

invariane. Two strings a = a

1

a

2

: : : a

m

and b = b

1

b

2

: : : b

m

are one the transposed

version of the other if there is a onstant t suh that a+t = (a

1

+t)(a

2

+t) : : : (a

m

+t) =

b. Transposition invariane is very relevant beause Western people tend to listen to

musi analytially, by observing the intervals between onseutive pith values rather

than the atual pith values themselves. As a result, a melody performed in two

distint pith levels is pereived as equal regardless of whether it is performed in a

lower or higher level of pithes.

As a string mathing problem, dealing with transposition invariane is trivial

beause it suÆes to represent text and pattern as di�erenes between onseutive
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notes and then apply exat string mathing. However, the above problems in most

ases of interest appear in ombined form. In partiular, transposition invariane

is usually ombined with longest ommon subsequene. The longest ommon trans-

position invariant subsequene between two strings a and b, LCTS(a; b), permits

transposing a or b as neessary to �nd the longest ommon subsequene among them,

LCTS(a; b) = max

t2Z

LCS(a+ t; b).

In reent years, there has been muh ativity around developing spei� string

mathing tehniques to solve diverse musi retrieval problems, mostly onsisting of

ombinations of those outlined above. Several theoretial and pratial results of

interest have been ahieved. We over these in the next setion.

Our ontribution in this paper is to show that a partiular approah reently devel-

oped for multiple approximate string mathing [17℄ is exible enough to be suessfully

adapted to solve most of the ombinations of problems skethed above. Basially the

same searh tehnique, oupled with slightly di�erent pattern preproessings, yield

algorithms that solve eah ombination. We also haraterize those ombinations

that annot be addressed by our approah. In theoretial terms, we show that the

resulting algorithms are sublinear (that is, they do not inspet all text haraters)

and an be argued to be lose to optimal. Yet, the most important aspet is the

pratial side, where we show that our tehnique largely outperforms all the existing

ones in most ases of interest.

2 Related Work

In whih follows, we assume that a long text T = t

1

t

2

: : : t

n

is searhed for a ompar-

atively short pattern p = p

1

p

2

: : : p

m

. Both are sequenes over alphabet �, a �nite

ontiguous subset of Z, of size �.

2.1 (Æ; )-Mathing

Several reent algorithms exist to solve this problem. These an be lassi�ed as

follows:

Bit-parallel: The idea is to take advantage of the intrinsi parallelism of the bit

operations inside a omputer word of w bits [27℄, so as to pak several values

in a single word and manage to update them all in one step [6, 7, 13℄. The

best omplexity ahieved [13℄ is O(n m log()=w) in the worst ase and O(n)

on average.

Ourrene heuristis: Inspired by Boyer-Moore tehniques [4℄, they skip some text

haraters aording to the position of some haraters in the pattern [6, 12℄.

In general, only Æ is used to skip haraters, while the -ondition is used to

verify andidates. This makes these algorithms weak for large Æ and small .

Substring heuristis: Based on suÆx automata [15℄, these algorithms skip text har-

aters aording to the position of some pattern substrings [12, 13℄. In the

seond artile, they use bit-parallelism to �lter the text using both Æ and ,

unlike previous approahes. This is shown to be the approah examining the

least number of text haraters.
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FFT-related: It is possible to solve the Æ-mathing and (Æ; )-mathing problems in

O(Æn logm) time, and -mathing problem in O(n

p

m logm) time [8℄ using Fast

Fourier Transform (FFT) based tehniques. The O(n log ) time algorithm in

[2℄ is faster for small . This algorithm is based on bounded divide-and-onquer

and non-boolean onvolutions. This tehnique an be also used to solve the

Æ-mathing problem in O(n logm

p

Æ) time. Other FFT based o(mn) solutions

exist for related problems, see e.g. [9℄ and espeially related to Æ-mathing [1, 10℄.

Mathing under -restrition is possible in O(mn= log

�

n) time [22℄ without

using FFT (but using the Four-Russians trik).

In pratie, the best urrent algorithms for (Æ; )-mathing are those in [13℄, as

demonstrated by the experiments in [12, 13℄. In [13℄ they present a plain bit-parallel

and a substring heuristi. The �rst is shown to be the best in most ases, but for

short patterns and small Æ and , the harater-skipping tehnique is better.

The FFT based tehniques, although elegant, have onsiderably large overheads to

make them pratial. Our preliminary tests show that they only beome faster than

the naive algorithm on very long patterns. Searhing for long patterns is not typial

in musi retrieval. The solution based on the Four-Russians trik is only pratial for

small alphabets, muh smaller than what is required for musi retrieval.

2.2 Transposition Invariant LCS and Indel Distane

Plain (non-transposed) LCS among strings p and T an be omputed in O(mn) time

using dynami programming [18℄. In general, any LCTS algorithm an be adapted to

text searhing with indel distane. The LCTS problem was �rst stated in [21℄, where

O(�mn) time was obtained by trying out all the 2� + 1 possible transpositions one

by one. Further solutions to the problem an be lassi�ed as follows.

Brute-fore: The idea is to pik any LCS algorithm and try it for all the 2� + 1

possible transpositions. Apart from the original proposal [21℄, several others

have been attempted onsidering di�erent pratial LCS algorithms based on

bit-parallelism [14, 19℄. The best omplexity ahieved is O(�mn=w).

Sparse dynami programming: An evolution over the above sheme is to notie that

the LCS(a + t; b) problem for eah transposition t has only a few harater

mathes between a and b, mn in total. Those sparse problems are best handled

by sparse dynami programming algorithms. This idea lead to several solutions

[23, 26, 16℄. The best omplexity ahieved is O(mn log logmin(m; �)), yet a

version with omplexity O(mn log�= logw) is shown to be better in pratie.

Branh and bound: In this ase the idea is to searh for the best possible trans-

position t by a baktraking method, reursively dividing the spae of 2� + 1

transpositions into ranges until �nding the best one [20℄. This yields a best-ase

omplexity of O((mn+ log log �) log�), and the method works well in pratie.

Yet, it annot be extended to searhing with indel distane.

Experiments in [20, 19, 16℄ demonstrate that the O(mn log�= logw) algorithm in

[16℄ is the fastest in pratie. This method an be adapted to searhing with indel

distane.
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3 Optimal Multiple Approximate String Mathing

In [17℄, new algorithms for single and multiple approximate string mathing were

presented. Those algorithms were not only optimal on average, but also very eÆient

in pratie, even in the more ompetitive area of single approximate string mathing.

It was shown that, to searh for the ourrenes of r patterns of length m in a text

of length n, all them uniformly distributed over an alphabet of size �, the algorithm

required O(n(k + log

�

(rm))=m) time on average. Here k is the maximum number of

missing, extra, or substituted haraters permitted to math a pattern against a text

string (searhing under edit distane). This average omplexity is optimal [29, 25℄.

We �rst explain how to searh for a single pattern p. We hoose a blok length `,

and omputemed(b; p) for every possible blok b 2 �

`

(that is, every possible `-gram).

Here, med(b; p) is the minimum edit distane between b and a substring of p,

med(b; p) = minfed(b; p

0

); 9x; y; p = xp

0

yg;

being ed(b; p

0

) the edit distane between b and p

0

.

Now, the text T = t

1

t

2

: : : t

n

is sanned as follows. Sine the minimum length of

an ourrene of p = p

1

p

2

: : : p

m

in T with edit distane at most k has length at least

m�k (when k deletions our on p), we slide a window of length m�k along the text.

For eah window tried, t

i+1

t

i+2

: : : t

i+m�k

, we read its `-grams right to left. That is, we

read at most b(m� k)=` `-grams b

1

, b

2

, and so on, so that b

1

= t

i+m�k�`+1

: : : t

i+m�k

is the rightmost, b

2

= t

i+m�k�2`+1

: : : t

i+m�k�`

preedes b

1

, et. The invariant is that

any ourrene of p starting at positions � i has already been reported.

For eah suh `-gram b

j

= t

i+m�k�j`+1

: : : t

i+m�k�j`+`

, we �nd med(b

j

; p) in the

preomputed table. If, after reading b

j

, we have med(b

1

; p) + med(b

2

; p) + : : : +

med(b

j

; p) > k, then no possible ourrene of p an ontain the text b

j

b

j�1

: : : b

2

b

1

,

thus the window is slid forward to start at the seond harater of b

j

, that is, we set

i i+m� k � j`+ 1 (as the new window will start at i + 1).

If, on the other hand, all the `-grams of the window are sanned and yet the

window annot be shifted, it must be veri�ed for a real ourrene. At this point,

we must hek if there is an ourrene p

0

of p starting at text position i + 1. Sine

the maximum length of an ourrene is m+ k (where k insertions our into p), any

potential p

0

mush �nish between positions i +m� k and i +m+ k. So we ompute

led(p; i) = minfed(p; t

i+1

: : : t

i+m�k+d

); 0 � d � 2kg;

whih an be done in O(m

2

) time by omputing ed( ) inrementally in d. If led(p; i) �

k, we report i + 1 as the starting position of an ourrene. Finally, we advane the

window by one position, i i+ 1.

We show now that the way we shift the window is safe, that is, no ourrene an

start at positions i+ 1 to i+m� k� j`+ 1. Any suh ourrene, of length at least

m� k, must ontain the sequene of `-grams b

j

: : : b

1

. Let p

0

= xb

j

: : : b

1

y be suh an

ourrene. This is a split of p

0

into j + 2 piees. The main point is that the edit

distane is deomposable: For any strings p and p

0

, given any split p

0

= p

0

1

: : : p

0

j+2

,

there is a split p = p

1

: : : p

j+2

suh that ed(p

0

; p) = ed(p

0

1

; p

1

) + : : : + ed(p

0

j+2

; p

j+2

).

But eah suh ed(p

0

s

; p

s

) � med(p

0

s

; p) � 0, by de�nition of med( ).

Hene, in our partiular ase, ed(p

0

; p) � med(b

j

; p)+ : : :+med(b

1

; p). Thus if the

latter exeeds k, there an be no ourrene of p ontaining b

j

: : : b

1

.
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The extension of the algorithm for multiple patterns is trivial. We only have to

hange the preproessing so that p is now a set of patterns p = fp

1

: : : p

r

g and now

med(b; p) = min

1�i�r

med(b; p

i

). Somed(b; p) is a lower bound to the ost of mathing

b anywhere inside any pattern of the set.

By appropriately hoosing ` = �(log

�

(rm)), we obtain the promised omplexity.

3.1 Extensions

Several other improvements are studied in [17℄. We briey review some that are used

in our experiments. For more details see [17℄.

On the windows that have to be veri�ed, we ould simply run the veri�ation for

every pattern, one by one. A more sophistiated hoie is hierarhial veri�ation [3℄.

We form a tree whose nodes have the form [i; j℄ and represent the group of patterns

p

i

: : : p

j

. The root is [1; r℄, and the leaves have the form [i; i℄. Every internal node

[i; j℄ has two hildren [i; b(i + j)=2℄ and [b(i+ j)=2+ 1; j℄.

The preproessing is done �rst for the leaves, as in the single pattern ase,

that is, we ompute a table for med(b; p

i

). The internal nodes ontain tables for

min

i�h�j

med(b; p

h

), omputed as minimizing over the two tables of the subtrees. In

the �ltering phase, we �rst use the table for the root, orresponding to the full set of

patterns, and if the urrent window has to be veri�ed with respet to a node in the

hierarhy, we resan the window onsidering the two hildren of the urrent node. It

is possible that the window an be disarded for both hildren, for one, or for none.

We reursively repeat the proess for every hild that does not permit disarding the

window. If we proess a leaf node and still have to verify the window, then we run

the veri�ation algorithm for the orresponding single pattern.

The seond improvement is to have bit-parallel ounters. In this ase we reserve

only O(log

2

k) bits to aumulate the di�erenes med(b

j

; p). This means that if we

have a omputer word of w bits, we an proess O(w= log

2

k) patterns in parallel.

This tehnique an also be used with the hierarhial veri�ation, to inrease the

arity of the tree to O(w= log

2

k).

The third improvement is to use ordered `-grams, where eah b

j

is permit-

ted to math only in the area of p where it ould be aligned in an ourrene

starting at i + 1. In an approximate ourrene of b

j

: : : b

1

inside the pattern,

b

i

annot be loser than (i � 1)` positions to the end of the pattern. There-

fore, we ompute tables for med

j

(b; p), 1 � j � b(m � k)=`, where med

j

(b; p) =

minfed(b; p

0

); 9x; y; jyj � (j � 1)`; p = xp

0

yg. This allows us to disard a window

whenever med

1

(b

1

; p)+med

2

(b

2

; p)+ : : :+med

j

(b

j

; p) > k. This redues veri�ations

but inreases preproessing time and spae.

Finally, it is possible to improve the preproessing time by using a trie of all the

possible `-grams to reuse preproessing work. All the improvements an be ombined

into a single algorithm.
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4 Adapting to Musi Retrieval

The method above was designed for multiple string mathing under edit distane. Yet

its main idea is muh more general and an be used to solve many other problems. In

this setion we demonstrate that the idea solves most of the musi retrieval problems

we have foused on in this paper. We note that this gives immediately a solution to

the multipattern version of the same problems.

4.1 Transposition Invariant Indel Distane

Let us start with searhing with transposition invariant indel distane. For eah

`-gram b 2 �

`

, we ompute

mtid(b; p) = minfid(b+ t; p

0

); 9x; y; p = xp

0

y; � � � t � �g:

This is the minimum transposition invariant indel distane to math b anywhere inside

p. The same algorithm of the previous setion is used, and the same argument shows

that we annot disard a window that starts an ourrene of p in T . Indel distane

is deomposable just like edit distane, that is, for any split p

0

= p

0

1

: : : p

0

j+2

, there is

a split p = p

1

: : : p

j+2

suh that id(p

0

; p) = id(p

0

1

; p

1

) + : : : + ed(p

0

j+2

; p

j+2

). Assume

p mathes t the urrent window xb

j

: : : b

1

y starting at position i + 1. That is, there

exists a transposition t suh that id(p

0

; p) � k, p

0

= (x + t)(b

j

+ t) : : : (b

1

+ t)(y + t).

Now, id(p

0

; p) � id(b

j

+ t; p

2

)+ : : : id(b

1

+ t; p

j+1

) � mtid(b

j

; p)+ : : :mtid(b

1

; p). Thus

if the latter exeeds k we an safely shift the window.

When a window starting at position i + 1 annot be shifted, we simply om-

pute LCTS(p; t

i+1

: : : t

i+m�k+d

) for any 0 � d � 2k, and report position i + 1 if

LCTS(p; t

i+1

: : : t

i+m�k+d

) � (m +m � k + d � k)=2 = m � k + d=2 for some d, as

this is equivalent to id(p; t

i+1

: : : t

i+m�k+d

) � k for some transposition t.

Fig. 1 shows simpli�ed pseudoode.

4.2 (Æ; )-Mathing

Alternatively, we an searh for (Æ; )-mathes of p in T . In this ase the window is of

length m, as ourrenes are all of that length. For eah `-gram b 2 �

`

, we ompute

mdg(b; p) = minf

0

; 9x; y; p = xp

0

y; b (Æ; 

0

)-mathes p

0

g:

This is the minimum total number of absolute di�erenes obtained by b inside p,

where we restrit those positions to Æ-math as well. The same algorithm of the

previous setion is used with this preproessing (and the threshold is  instead of k).

Being -mathing a umulative measure, the sum of mdg(b

j

; p) values is a

lower bound to the  needed to math the window inside p. Consider window

p

0

= t

i+1

: : : t

i+m

= xb

j

: : : b

1

. Assume p

0

(Æ; )-mathes p. Then, by de�nition of

(Æ; )-mathing, b

1

(Æ; 

1

)-mathes p

m�`+1

: : : p

m

, and so on until b

j

, whih (Æ; 

j

)-

mathes p

m�j`+1

: : : p

m�j`+`

, so that 

1

+ : : : + 

j

� . As eah b

s

(Æ; 

s

)-mathes

p

m�s`+1

: : : p

m�s`+`

, it holds mdg(b

s

; p) � 

s

, and mdg(b

j

; p) + : : :+mdg(b

1

; p) � k.

When a window t

i+1

: : : t

i+m

annot be shifted, we hek whether p (Æ; )-mathes

the window in time O(m), and report position i + 1 if this is the ase.
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Searh ( )

1. D Preproess ( )

2. i 0

3. While i � n� (m� k) Do

4. pos Shift (i; D)

5. If pos = i

6. Verify area t

i+1

: : : t

i+m+k

7. pos pos+ 1

8. i pos

Shift (i; D)

1. M  0

2.  m� k

3. While  � ` Do

4.  � `

5. M  M +D[t

i++1

: : : t

i++`

℄

6. If M > k Return i+  + 1

7. Return i

Preproess ( )

1. ` �(log

�

m)

2. For b 2 �

`

Do D[b℄ mtid(b; p)

3. Return D

Figure 1: Simple desription of the algorithm. The main variables are global for all

the algorithms. The ode orresponds to transposition invariant indel.

The pseudoode of Fig. 1 an be easily adapted to this model. One needs only to

replae mtid() with mdg(), k with , and adjust the window size from m � k to m,

and veri�ation area from t

i+1

: : : t

i+m+k

to t

i+1

: : : t

m

.

4.3 Feasible and Unfeasible Combinations

We an also ombine transposition invariant indel distane with Æ-mathing. In this

ase we ount indels, but two haraters math whenever they do not di�er by more

than Æ units. This is easily handled by modifyingmtid(b; p) formula so that id(b+t; p

0

)

onsiders mathes in the more relaxed way. Transposition invariane an also be

ombined with (Æ; )-mathing, by using mtdg(b; p) instead of mdg(b; p), so that

mtdg(b; p) = minf

0

; 9x; y; p = xp

0

y; b + t (Æ; 

0

)-mathes p

0

; � � � t � �g:

We annot diretly ombine transposition invariant indel distane with (Æ; )-

mathing. The reason is that we do not have here a single value to minimize, suh

as the number of indels or , but both of them at the same time. It was possible to

ombine transposition invariant indel distane with Æ-mathing beause the latter is

not a parameter to optimize but a ondition for mathing. Likewise, it was possible

to ombine -mathing with Æ-mathing to obtain (Æ; )-mathing. Yet, if we want

to ombine indel distane (even without transposition invariane) with -mathing,

the problem is that eah pair (b; p

0

) produes some number of indels and some , so

di�erent pairs will yield the minimal of eah and it is not lear whih to hoose.

Of ourse we an ount indels and  separately in di�erent tables (eah ahieved

by a di�erent pair). This is equivalent to �ltering eah window with k and with 

separately, and verifying those that pass both �lters. Yet, this is not the same as a

ombined �lter, but it ould be pratial.
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4.4 Complexity Considerations

We are not able to analyze our algorithms, but we an give some lues about their

average ase performane. As we have desribed it, our algorithm for transposition

invariant indel distane is equivalent to multipattern searh with indel distane for the

set p

1

= p��, p

2

= p��+1, : : :, p

2�+1

= p+�. Sine id(a; b) � ed(a; b) for any strings

a and b, we an use the analysis of [17℄ on edit distane for indel distane and the

result is pessimisti (yet tight). Aording to that analysis, searhing for r = 2� + 1

random patterns in random text yields average omplexity O(n(k+ log

�

(rm))=m) =

O(n(k + log

�

m)=m). This value is optimal even for one pattern [29℄, and it would

show that our algorithm is optimal too.

Yet, the problem is that our 2� + 1 patterns are not random, but are all the

transpositions of a random pattern. For example, if ` = 1, then our 2� + 1 patterns

neessarily math any string of length 1, whereas the same number of random pat-

terns do not. Thus our analysis is optimisti and therefore not onlusive. Yet, we

onjeture that the result of the analysis is valid.

In ase Æ-mathing is permitted together with transposition invariane indel dis-

tane in the model, then the probability of mathing is not 1=� but O(Æ=�), and

therefore the base of the logarithm is not � but O(�=Æ). Redoing the analysis we get

O(n(k+log

�=Æ

(Æm))=m). With Æ-mathing alone (no transposition invariane) we get

O(n log

�=Æ

m=m), and with Æ-mathing with transposition invariane (without indels)

we get O(n log

�=Æ

(Æm)=m). We are not able to aount for the analytial e�et of a

-restrition in these analyses, but of ourse they an only improve.

In the worst ase the �ltering algorithm for eah model takes O(mn) time with-

out the hierarhial veri�ation, and O(mn�) with hierarhial veri�ation (for the

transposition invariant models). There is also a linear time variant of the �ltering

algorithm that runs in O(n) time in the best and worst ases, see [17℄. However,

in the worst ase the veri�ation time dominates. For transposition invariant indel

distane the worst ase veri�ation time is O(nm�=w). For (Æ; )-mathing the worst

ases are O(nm) without transpositions and O(nm�) with transpositions. We note

that these an be improved by using the more eÆient worst ase algorithms available

in the literature.

The preproessing time is O(m�

`+1

=w) for transposition invariant indels, O(m�

`

)

for (Æ; )-mathing, and O(m�

`+1

) for transposition invariant (Æ; )-mathing. With

ordered `-grams the preproessing ost for indels inreases to O(m�

`+1

). For the other

models the osts remain the same. The spae requirement is O(�

`

) and O(�

`

m=`)

for the basi algorithm and for the ordered `-grams, respetively. These have to be

multiplied by O(�) if hierarhial veri�ation is used. All the bounds are polynomial

in m (as ` = �(log

�

m)).

5 Experimental Results

We have implemented the algorithms in C, ompiled using i 8.0 with full op-

timizations. The experiments were run in a 2GHz Pentium 4, with 512mb ram,

running Linux 2.4.18. The omputer word length is w = 32 bits.

For the text we used a onatenation of 7543 musi piees, whose total length

is 1828089 bytes. The �le was obtained by extrating the pith values from MIDI
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�les. The pith values are in the range [0 : : : 127℄. A set of 100 patterns were ran-

domly extrated from the text. Eah pattern was then searhed for separately, and

we report the average searh times. We measured user times. We have separated the

preproessing and searh times, whih makes it easier to ompare the searh perfor-

mane. Our preproessing ost is onsiderably high, but this is amortized by large

musi olletions that arise in pratial appliations.

5.1 Implementation

Several variants of the optimal multipattern algorithm were onsidered in [17℄. For

(Æ; )-mathing without transpositions, we used the basi single pattern algorithm.

As the transpositions were implemented as multipattern searh, we used bit-parallel

ounters and hierarhial veri�ation in these ases, whih give a onsiderable speed-

up. For indels, we used the IndelMYE algorithm [19℄ for the �nal veri�ations. We

ran eah experiment with and without ordered `-grams. The former is an order of

magnitude faster in many ases, but it has higher preproessing ost, justi�ed only

for large texts.

For all experiments we used ` = 2. Due to the onsiderably large alphabet size,

larger ` values were not pratial. On the other hand, ` = 1 gives in general poor re-

sults, espeially ombined with transpositions (but note that with bit-parallel ounters

even 1-grams are not guaranteed to math always, as di�erent transposition ranges

are mapped to di�erent ounters).

As the alphabet size was large (128), but most of the values our in the middle

of the range, we mapped the alphabet into the range 0 : : : 63. That is, values 32 : : : 95

were mapped to 0 : : : 63, values 0 : : : 31 to 0, and values 96 : : : 127 to 95. This map-

ping allows us to use the original Æ values. Veri�ation was done using the original

alphabet. This improves the preproessing times, without worsening the searh times.

We note that other alphabet mappings may make sense. In partiular, for musi

appliations, it might be aeptable to make the alphabet otave-independent, so that

the same notes in di�erent otaves are mapped to the same value.

5.2 Preproessing Time

Table 1 gives the preproessing times. For mtid() and mtdg() we have onsidered hi-

erarhial veri�ation beause it gave onsistently better results, so the preproessing

timings inlude all the hierarhy onstrution. Using ordered `-grams inreases the

preproessing ost, but improves the searh performane.

mtid(), m = 32 mdg(), m = 8 mdg(), m = 64 mtdg(), m = 32

0.0699 / 0.2680 0.0048 / 0.0052 0.0067 / 0.0092 0.0936 / 0.5177

Table 1: Preproessing times in seonds for ` = 2. The seond timings are for ordered

`-grams.

183



Proeedings of the Prague Stringology Conferene '05

5.3 Transposition Invariant Indel Distane

We ompared our approah against the LCTS algorithm [16℄, whose running time

is O(mn log�= logw). Although the algorithm solves the dual problem, it ould be

adapted to searhing with indel distane as well. We also ompared against the bit-

parallel dynami programming algorithm IndelMYE [19℄, whose running time for a

single transposition is O(mn=w). We superimposed [3℄ all the transpositioned pat-

terns and used hierarhial veri�ation, in the same manner as in [17℄ with BPM

algorithm. This works very well in pratie, although the worst ase omplexity is

still O(�mn=w). Fig. 2 shows the results for m = 8 : : : 64 and k = 1 : : : 5. Our al-

gorithm is by far the fastest for small k=m. LCTS is ompetitive only for very large

k=m, while IndelMYE is the best hoie for moderate k=m. Our algorithm learly

improves with ordered `-grams, at the ost of higher preproessing e�ort and memory

requirements.
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Figure 2: Left: Searh time in seonds for transposition invariant indel/LCS for

m = 8:::64. Right: The same with ordered `-grams.

Fig. 3 shows the results for m = 32, k = 1 : : : 6 and Æ = 0 : : : 2. The LCTS

algorithm annot be applied for this setting. Being bit-parallel algorithm, IndelMYE

an be easily adapted to this ase by using lasses of haraters to implement Æ. In

this ase we are again ompetitive against IndelMYE for small k=m, but only for very

small Æ. Ordered `-grams boost the searh onsiderably.

5.4 (Æ; )-Mathing

For (Æ; )-mathing we ompared against the bit-parallel Forward mathing algorithm

(Fwd) of [13℄. Fig. 4 shows the results form = 8 : : : 64, Æ = 1 : : : 3 and  = mÆ=2. Our

algorithm is muh more sensitive to inreasing Æ than Fwd, but for small Æ values we

are an order of magnitude faster. Using ordered `-grams makes our algorithm more

tolerant for inreasing  (but note that =m is onstant here).

In [13℄ they give also bit-parallel bakward mathing algorithm, that is able to

skip some text haraters. The implementation restrits the pattern lengths to be at

most �(w= log

2

()). This means that in this experiment this algorithm is appliable

only for the ase m = 8, Æ = 1, and  = 8 � 1=2 = 4. The algorithm takes 0.0063s

average time, in this ase, and marginally beats our algorithm (0.0065s)
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Figure 3: Left: Searh times in seonds for transposition invariant indel for Æ = 1:::3,

and m = 32. Right: The same with ordered `-grams.

Timings for m = 32, Æ = 1 : : : 3, and  = 4 : : : 40 are shown in Fig. 5. (Note

that for Æ = 1 there is no point for using  > m.) Again, Fwd beomes eventually

faster for large Æ and , while our algorithm dominates for small parameter val-

ues. Fig. 6 repeats the experiment for transposition invariant (Æ; )-mathing. Note

that no ompetitors exist in this ase, although transposition superimposition and

hierarhial veri�ation ould be applied for some of the existing (Æ; ) mathing al-

gorithms. However, observe that our transposition invariant algorithm is faster than

Fwd algorithm (without transpositions) for small Æ and .
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Figure 4: Left: Searh times in seonds for (Æ; )-mathing for m = 8 : : : 64 and

Æ = 1 : : : 3. For eah data point  = mÆ=2. Right: The same with ordered `-grams.

5.5 Comparison

We have separated the preproessing and searhing times in presenting the experi-

mental results. This may seem unfair against the ompeting algorithms, and so it is

for short texts. To show that our algorithms are ompetitive, Table 2 gives estimates

for the minimum �le sizes required to beat the ompeting approahes for various

problem instanes. These limits are quite modest, and for smaller parameter values

even shorter �les are suÆient.
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Figure 5: Left: Searh times in seonds for (Æ; )-mathing for m = 32, Æ = 1 : : : 3,

and  = 4 : : : 40. Right: The same with ordered `-grams.
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Figure 6: Left: Searh times in seonds for (Æ; )-mathing with transpositions for

m = 32, Æ = 1 : : : 3, and  = 4 : : : 40. Right: The same with ordered `-grams.

6 Conlusions

We have presented new �ltering algorithms for musi retrieval. Our algorithms are

very eÆient in pratie, and are onjetured to be optimal on average. The experi-

ments show that for small to moderate error thresholds our algorithms are substan-

tially faster than previous approahes for all but very short texts. These are the

parameter values that are most interesting in most musi retrieval appliations.

The algorithms are extremely exible. We an solve many di�erent problem vari-

ants essentially without any modi�ations to the searh algorithms, only preproess-

ing hanges aording to the searh model. In partiular, we are able to solve some

variants where no ompeting algorithms urrently exist. These are transposition in-

variant indel with Æ > 0, and transposition invariant (Æ; )-mathing. Moreover, our

algorithms an be used for multipattern searh as well.
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Indels (Æ; )-mathing

k = 4; Æ = 0 k = 1; Æ = 1 (1;1) (2;1) (3; 24)

> 0:61 Mb > 1:77 Mb > 0:46 Mb > 0:71 Mb > 1:52 Mb

Table 2: Examples of musi �le sizes where we begin to win for a few settings. The

�rst row shows the parameter values, and the seond row gives an estimate of the

minimum �le size where our algorithm wins its ompetitor. For smaller parameters

shorter �les would suÆe. The estimates are for m = 32.
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