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Abstrat. The unbounded version of the Lempel-Ziv dynami ditionary om-

pression method is P-omplete. Therefore, it is unlikely to implement it with

sublinear work spae unless a deletion heuristi is applied to bound the ditio-

nary. The well-known LRU strategy provides the best ompression performane

among the existent deletion heuristis. We show experimental results on the

ompression e�etiveness of a relaxed version (RLRU) of the LRU heuristi.

RLRU partitions the ditionary in p equivalene lasses, so that all the ele-

ments in eah lass are onsidered to have the same \age" for the LRU strategy.

Suh heuristi turns out to be as good as LRU when p is greater or equal to

2. Moreover, RLRU is slightly easier to implement than LRU in addition to be

more spae eÆient.
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1 Introdution

The Lempel-Ziv dynami ditionary (LZ2) ompression algorithm learns substrings

by reading the input string from left to right with an inremental parsing proedure

[7℄. The ditionary is empty, initially. The proedure adds a new substring to the

ditionary as soon as a pre�x of the still unparsed part of the string does not math

a ditionary element and replaes the pre�x with a pair omprising a pointer to the

ditionary and the last unompressed harater. For example, the parsing of the

string abababaaaaaa is a; b; ab; aba; aa; aaa and the oding is 0a; 0b; 1b; 3a; 1a; 5a (the

pointer value for the �rst element in the ditionary is 1 and 0 represents the empty

string). We will see in the next setion di�erent LZ2 ompression heuristis (NC, FC,

ID, AP), whih work with a ditionary ontaining initially the alphabet haraters

and produe a oding with no raw haraters.

The main issue for implementation purposes is to bound the work spae to produe

the inremental parsing of the string to ompress. Sine the problem of omputing

suh parsing is P-omplete [2, 3℄, it is unlikely to have sublinear work spae when

LZ2 ompression is implemented unless a deletion heuristi is applied to bound the

ditionary. Several deletion heuristis have been designed and applied to the om-

pression heuristis mentioned above (see the books of Storer [5, 6℄ and Bell, Cleary
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and Witten [1℄). A strategy that an ahieve good ompression ratio with small

memory is the LRU deletion heuristi that disards the least reently used ditionary

element to make spae for the new substring. The least reently used strategy pro-

vides the best ompression performane among the well-known heuristis (FREEZE,

RESTART, SWAP, LRU). AP-LRU turns out to be the best ompression heuristi

when the ditionary is bounded.

When the size of the ditionary is O(log

k

n) the LRU strategy is log-spae hard for

SC

k

(Steve Cook's lass), the lass of problems solvable simultaneously in polynomial

time and O(log

k

n) spae [4℄. Sine its sequential omplexity is polynomial in time

and O(log

k

n log logn) in spae, the problem belongs to SC

k+1

. Moreover, in [4℄ a

relaxed version (RLRU) was introdued whih turned out to be the �rst (and only so

far) natural SC

k

-omplete problem. RLRU partitions the ditionary in p equivalene

lasses, so that all the elements in eah lass are onsidered to have the same \age"

for the LRU strategy.

While in [4℄ the RLRU heuristi was onsidered only for theoretial reasons on-

erning omplexity theory, in this paper we want to look at its pratial aspets. We

show experimental results on its ompression e�etiveness for 2 � p � 6, using the

AP ompression heuristi. RLRU turns out to be as good as LRU even when p is

equal to 2. Sine RLRU removes an arbitrary element from the equivalene lass

with the \older" elements, the two lasses (when p is equal to 2) an be implemented

with a ouple of staks, whih makes RLRU slightly easier to implement than LRU in

addition to be more spae eÆient. Surprisingly, the ompression e�etiveness (whih

we an measure as the inverse of the ompression ratio) is not monotonily inreasing

with the value of p. This might be explained by the fat that the approah is heuristi

(hoosing to remove an older element is not always a better hoie). However, LRU

is always stritly better (in an irrelevant way for the ompression e�etiveness) than

RLRU. This fat shows that there should be always an improvement when two values

of p di�er substantially.

Simpler hoies for the deletion heuristi are FREEZE, RESTART and SWAP.

These heuristis do not delete elements from the ditionary at eah step. SWAP is

the best among these simpler approahes and has a worse ompression performane

than RLRU and LRU. We desribe ompression and deletion heuristis in setion 2.

In setion 3, we disuss the omplexity of the LRU and RLRU heuristis. In setion

4, we ompare the experimental results of LRU, RLRU and SWAP. Conlusions are

given in setion 5.

2 Compression and Deletion Heuristis

As mentioned in the introdution, the ompression and deletion heuristis presented

in this setion an be found in [1, 5, 6℄. The inremental parsing proedure used

by the LZ2 algorithm produes a ompressed string omprising pointers and raw

haraters. In pratie, we do not want to leave haraters unompressed. This an

be avoided by initializing the ditionary with the alphabet haraters. The NC (next

harater) heuristi also parses the string from left to right with a greedy proedure. It

�nds the longest math in the urrent position and updates the ditionary by adding

the onatenation of the math with the next harater. The FC (�rst harater)

heuristi di�ers in the way it updates the ditionary. The element to add is de�ned
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as the onatenation of the last math with the �rst harater of the urrent math.

With the ID (identity) heuristi, the element to add is de�ned as the onatenation

of the last math with the whole urrent math. The AP (all pre�xes) heuristi adds

a set of elements to the ditionary at eah step. Eah element is the onatenation

of the last math with a pre�x of the urrent math. In this way, the ditionary of

the AP heuristi has both the harateristis of the ditionaries of the FC and ID

heuristis. Observe that with FC, ID and AP, an element to add might be in the

ditionary already. How these heuristis work on the example in the introdution is

shown in Figure 1.

NC heuristi

parsing: a; b; ab; aba; a; aa; aa;

ditionary: a; b; ab; ba; aba; abaa; aa; aaa;

oding: 1, 2, 3, 5, 1, 7, 7

FC heuristi

parsing: a, b, ab, ab, a, a, aa, aa

ditionary: a, b, ab, ba, aba, aa, aaa, aaaa

oding: 1, 2, 3, 3, 1, 1, 7, 7

ID heuristi

parsing: a, b, ab, ab, a, a, aa, aa

ditionary : a, b, ab, bab, abab, aba, aa, aaaa

oding: 1, 2, 3, 3, 1, 1, 7, 7

AP heuristi

parsing: a, b, ab, ab, a, a, aa, aa

ditionary : a, b, ab, ba, bab, aba, abab, aa, aaa, aaaa

oding: 1, 2, 3, 3, 1, 1, 8, 8

Figure 1: The ompression heuristis.

It is well known that these heuristis an be implemented by storing the ditionary

in a tree data struture, alled trie. At eah step, we �nd the longest math in the

ditionary as a path from the root to a leaf of the trie and update the ditionary by

adding a new leaf to the trie. Real time implementations are possible for eah om-

pression heuristi using any deletion heuristi (FREEZE, RESTART, SWAP, LRU

and RLRU) to bound the ditionary. FREEZE, RESTART and SWAP work as it

follows:

� FREEZE: one the ditionary is full, freeze it and do not allow any further

entries to be added.
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� RESTART: stop adding further entries when the ditionary is full; when the

ompression ratio starts deteriorating lear the ditionary and learn new strings.

� SWAP: when the primary ditionary �rst beomes full, start an auxiliary di-

tionary, but ontinue ompression based on the primary ditionary; when the

auxiliary ditionary beomes full, lear the primary ditionary and reverse their

roles.

The SWAP and RESTART heuristis an be viewed as disrete versions of LRU.

In fat, the ditionaries depend only on small segments of the input string.

parsing: a; b; ab; ab; a; a; aa; aa;

ditionary (step 3): a, b, ab, ba, bab

ditionary (step 4): a, b, ab, ba, aba

ditionary (step 4): a, b, ab, abab , aba

ditionary (step 6): a, b, ab, aa, aba

ditionary (step 7): a, b, ab, aa, aaa

ditionary (step 8): a, b, aaaa, aa, aaa

oding: 1, 2, 3, 3, 1, 1, 4, 4

Figure 2: The AP-LRU heuristi on the example string.

We showed in the introdution of the paper how the LZ2 algorithm parses the

example string abababaaaaaa. If we bound the ditionary size with 3 and use LRU,

after three steps a; b; ab is the partial parsing, 0a; 0b; 1b is the partial oding and the

ditionary is �lled up with the three elements a; b; ab. The LRU heuristi works as

follows:

LRU: de�ne a string as \used" when it is added to the ditionary and re-

move the least reently used leaf of the trie representing the ditionary

after a new leaf is added. The pointer to the element whih is removed

beomes the pointer to the new element.

Hene at the fourth step, �rst aba is added and oded as 3a. Then, b is disarded.

Finally, aba is replaed with aa, oded as 1a, and ab with aaa, oded as 2a.

Observe that while for the NC heuristi the element added to the ditionary is an

extension of the urrent math as for the original LZ2 algorithm, this is not true for

the other heuristis. To make things work properly when we apply the LRU deletion

strategy to the FC, ID and AP heuristis, a string is de�ned to be \used" also when

it is mathed. AP-LRU turns out to be the best ompression heuristi when the

ditionary is bounded. How the AP-LRU heuristi works on the example string with

a ditionary of size 5 is shown in Figure 2. Steps orrespond to the parsing. In

this example, the AP-LRU heuristi adds more than one element only at the fourth

parsing step. In Figure 3, we extend the example by adding the suÆx bbaaa to make

some observations. At step 11, the urrent math is removed from the ditionary. In
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this ase, the AP-LRU heuristi puts it bak into the ditionary at step 12 and then

it adds its extensions (this an happen with FC and ID as well). With AP, it ould

be possible that pre�xes of the urrent math are removed and similarly they would

be put bak into the ditionary at the next step. Finally, observe that at step 10

if aab were removed instead of aaa, aaa would be parsed o� at the end providing a

shorter ode for the string. This shows that removing the older element might not be

the better hoie.

parsing: a; b; ab; ab; a; a; aa; aa; b; b; aa; a;

ditionary (step 9): a, b, aab, aa, aaa

ditionary (step 10): a, b, aab, aa, bb

ditionary (step 11): a, b, ba, aa, bb

ditionary (step 11): a, b, ba, baa, bb

ditionary (step 12): a, b, ba, baa, aa

ditionary (step 12): a, b, ba, aa, aaa

oding: 1, 2, 3, 3, 1, 1, 4, 4, 2, 2, 4, 1

Figure 3: The AP-LRU heuristi on the extended example.

We present, now, a relaxed version of LRU. The relaxed version (RLRU) of the

LRU heuristi is:

RLRU: When the ditionary is not full, label the i

th

element added to

the ditionary with the integer di � p=ke, where k is the ditionary size

minus the alphabet size and p < k is the number of labels. When

the ditionary is full, label the i � th element with p if di � p=ke =

d(i � 1)p=ke. If di � p=ke > d(i � 1)p=ke, derease by 1 all the labels

greater or equal to 2. Then, label the i � th element with p. Finally,

remove one of the elements represented by a leaf with the smallest

label.

In other words, RLRU works with a partition of the ditionary in p lasses, sorted

somehow in a fashion aording to the order of insertion of the elements in the di-

tionary, and an arbitrary element from the oldest lass with removable elements is

deleted when a new element is added. RLRU is more sophistiated than SWAP

(whih is the best among the simpler deletion strategies presented above) sine it

removes elements in a ontinuous way as the original LRU. In fat, we will see in

setion 4 that the ompression performane of AP-RLRU is better than AP-SWAP.

Moreover, even if it relaxes on the hoie of the element to remove AP-RLRU is as

good as AP-LRU.
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3 The Complexity of LRU and RLRU Heuristis

The unbounded version of the LZ2 ompression method is P-omplete [2, 3℄. This

means there is a log-spae redution from any problem in P to the problem of om-

puting LZ2 ompression. Sine it is believed that POLYLOGSPACE, the lass of

problems omputed with polylogarithmi work spae, is not ontained in P, it is un-

likely to have sublinear work spae when LZ2 ompression is implemented unless a

deletion heuristi is applied to bound the ditionary.

The LZ2 algorithm with LRU deletion heuristi on a ditionary of size O(log

k

n)

an be performed in polynomial time and O(log

k

n log logn) spae (n is the length

of the input string). In fat, the trie requires O(log

k

n) spae by using an array

implementation sine the number of hildren for eah node is bounded by the alphabet

ardinality. The log logn fator is required to store the information needed for the

LRU deletion heuristi sine eah node must have a di�erent age, whih is an integer

value between 0 and the ditionary size. Obviously, this is true for any LZ2 heuristi

(NC, FC, ID, AP). If the size of the ditionary is O(log

k

n), the LRU strategy is log-

spae hard for SC

k

(Steve Cook's lass), the lass of problems solvable simultaneously

in polynomial time and O(log

k

n) spae [4℄. The problem belongs to SC

k+1

. This

hardness result is not so relevant for the spae omplexity analysis sine 
(log

k

n) is

an obvious lower bound to the work spae needed for the omputation. Muh more

interesting is what an be said about the parallel omplexity analysis. In [4℄ it was

shown that LZ2 ompression using the LRU deletion heuristi with a ditionary of

size  an be performed in parallel either in O(logn) time with 2

O( log )

n proessors

or in 2

O( log )

logn time with O(n) proessors. This means that if the ditionary size

is onstant, the ompression problem belongs to NC, the lass of problems solvable

in polylogarithmi time with a polynomial number of proessors. NC and SC (the

lass of problems solvable simultaneously in polynomial time with polylogarithmi

work spae) are lasses that an be viewed in some sense symmetri and are believed

to be inomparable. Sine log-spae redutions are in NC, the ompression problem

annot belong to NC when the ditionary size is polylogarithmi if NC and SC are

inomparable. We want to point out that the ditionary size  �gures as an exponent

in the parallel omplexity of the problem. This is not by aident. If we believe that

SC is not inluded in NC, then the SC

k

-hardness of the problem when  is O(log

k

n)

implies the exponentiation of some inreasing and diverging funtion of . In fat,

without suh exponentiation either in the number of proessors or in the parallel

running time, the problem would be SC

k

-hard and in NC when  is O(log

k

n). Observe

that the P-ompleteness of the problem, whih requires a superpolylogarithmi value

for , does not suÆe to infer this exponentiation sine  an �gure as a multipliative

fator of the time funtion. Moreover, this is a unique ase where somehow we use

hardness results to argue that pratial algorithms of a ertain kind (NC in this ase)

do not exist beause of huge multipliative onstant fators ourring in their analysis.

Finally, the LZ2 ompression heuristis with RLRU deletion heuristi on a ditio-

nary of size O(log

k

n) an be performed in polynomial time and O(log

k

n) spae sine

the number of ages is onstant. In fat, LZ2-RLRU ompression is the �rst (and only

so far) natural SC

k

-omplete problem [4℄.
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4 Experimental Results

We show experimental results onerning the ompression e�etiveness of AP-RLRU

with a number of lasses between 2 and 6, and ompare them with the results of

AP-SWAP and AP-LRU. Eah lass is implemented with a stak. Therefore, the

newest element in the lass of least reently used elements is removed. Observe that

if RLRU worked with only one lass, after the ditionary is �lled up the next element

added would be immediately deleted. Therefore, RLRU would work like FREEZE.

This is why we show results for a number of lasses between 2 and 6. We onsidered

natural language, programming language and postsript. The ditionary size in real

life implementations has usually varied between 4,096 (twelve bits pointer size) and

65,536 (sixteen bits pointer size). In Figure 4, we present results with a ditionary

size equal to 4,096.

Heuristi English C Programs Postsript

LRU .51034 .52026 .46806

RLRU2 .51193 .52039 .46971

RLRU3 .51147 .52060 .46916

RLRU4 .51153 .51957 .46902

RLRU5 .51159 .52008 .46888

RLRU6 .51150 .51982 .46919

SWAP .68654 .71967 .61341

Figure 4: Compression ratios with ditionary size 4,096.

We experimented on samples of English text �les, C programs and Postsript

�les. The �le size varied between 100 Kilobytes and 2 Megabytes. The table shows

the average of the ompression ratios obtained on eah sample. RLRUp denotes that

the RLRU heuristi works with p lasses. The ompression ratios of LRU and RLRUp

for 2 � p � 6 are about the same up to the third or fourth deimal digit. On the other

hand, their ompression e�etiveness provides about 15 to 20 perent improvement

on the performane of SWAP. As mentioned in the introdution, the ompression

e�etiveness of the RLRU heuristi is not monotonily inreasing with the value of

p, whih might be explained by the fat that the approah is heuristi (hoosing to

remove an older element is not always a better hoie as disussed with the example

of Figure 3).

The ompression ratios of LRU and RLRU improve when the ditionary size is

65,536 as shown in Figure 5, but they ompare to eah other in a similar way while

SWAP is only a 3 perent of LRU and RLRU on C programs and about 10 and 20

perent on English and Postsript, respetively.

5 Conlusions

We showed that a relaxed version of the best bounded size ditionary LZ2 ompression

tehnique, whih uses the least reently used strategy, provides the same ompression

e�etiveness. This version is more spae eÆient and easier to implement, sine it
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Heuristi English C Programs Postsript

LRU .32363 .38213 .33556

RLRU2 .32371 .38221 .33710

RLRU3 .32414 .38219 .33667

RLRU4 .32374 .38229 .33613

RLRU5 .32342 .38217 .33588

RLRU6 .32349 .38216 .33597

SWAP .41402 .41657 .52827

Figure 5: Compression ratios with ditionary size 65,536.

relaxes by making a bipartition of the ditionary whih de�nes, generally speaking, a

set of less reently used elements from whih one element an be removed arbitrarily.
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