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Abstract. We present three linear algorithms for as many formulations of the

problem of finding motifs with gaps. The three versions of the problem are

distinct in that they assume different constraints on the size of the gaps. The

outline of the algorithm is always the same, although this is adapted each time

to the specific problem, while maintaining a linear time complexity with respect

to the input size. The approach we suggest is based on a re-writing of the text

that uses a new alphabet made of labels representing words of the original input

text. The computational complexity of the algorithm allows to use it also to find

long motifs. The algorithm is in fact general enough that it could be applied to

several variants of the problem other those suggested in this paper.
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1 Introduction

The inference of common motifs is an interesting problem in a variety of text algorithm
applications [1, 2, 4]. Given several input strings, the goal is to find words that are
shared by all (or by some) of them. In many applications, such as for instance
biology, the requirement should be a certain degree of similarity, rather than identity,
between a motif and its occurrences in the different input strings. This is what
makes the problem computationally difficult and algorithmically challenging. Such
similarity can be expressed in various ways. Among the most classical, in one case
similarity is modelled by means of a limited edit (or Hamming) distance between
a motif and its occurrences while in another don’t care symbols are allowed in a
motif. Our approach falls under this latter category. We are therefore interested in
motifs with don’t cares. A don’t care is a special symbol that matches any letter of
the alphabet. We further focus our attention on statements of the problem where
don’t cares appear concentrated in distinct sets of contiguous positions, that is, we
are interested in finding common motifs with gaps. In computational biology, this
particular problem may have applications to the inference of co-regulated genes, that
is, to the detection of common binding sites whose structure often consists of motifs
separated by gaps of approximatively known size. The hypothesis is that genes whose
promoter regions share a binding site are co-regulated. Common motifs located in the
regions upstream of genes are good candidates to be such common binding sites that
could then be experimentally tested. Figure 1 shows an example of gapped motif.
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Figure 1: An example of a motif with gaps that occurs in every string, where by di,j

we mean a gap of size di,j.

Section 2 formally introduces the general problem and describes the data struc-
ture used in the algorithms presented in this paper. Section 3 defines the simplest
formulation of the problem, that is, when all gaps have the same fixed size, and shows
a linear solution for this problem. This will serve as a starting point for the solution
to two variants of the problems where the sizes of the gaps are more flexible. Sec-
tion 4 presents the first variant where each gap inside a motif has variable size but
for each occurrence the total sum of such sizes is upper bounded by a fixed value. A
solution for this problem is then provided that does not increase the complexity of
the first algorithm. Finally, Section 5 addresses, and solves by keeping the same time
complexity, another variant of the problem where each gap is of variable size but each
such size is upper bounded by a fixed value.
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2 Preliminaries

A string is a sequence of zero or more symbols from an alphabet Σ. A string s of
length n is represented by s1s2 · · · sn, where si ∈ Σ for 1 ≤ i ≤ n. A string w is a
substring , or word of s if s = uwv for u, v ∈ Σ∗; in this case we also say that the string
w occurs at position |u| + 1 of the string s. We denote by s[i..j] with 1 ≤ i ≤ j ≤ n

the word sisi+1 · · · sj of s. A string w is a prefix of s if s = wu for u ∈ Σ∗. Similarly,
w is a suffix of s if s = uw for u ∈ Σ∗. The don’t care symbol that matches any other
symbol of Σ is denoted by ∗.

The general problem addressed in this paper can be formalized in the following
way.

We are given a set of r input strings {S1, S2, . . . , Sr} and we want to find gapped
motifs B = B1 ∗

d1 B2 ∗
d2 · · ·∗dm−1 Bm occurring in each of them. An example in shown

in Fig. 1.
We consider three variants of the problem that basically differ in the way the size

of the gaps are constrained. Assuming that the number m of motifs as well as the
gap sizes (bounded by input parameters) are constants, we present linear algorithms
for all three variants.

The proposed algorithms make use of a generalised and truncated suffix tree. A
generalised suffix tree [5] is a suffix tree for a set of more than one input string where
the information of which string each indexed suffix belongs to is stored in the nodes
of the tree. A truncated suffix tree [6] is a suffix tree that stores only suffixes up to
a certain length l. In practice, it is a suffix tree pruned at level l.

3 Finding motifs with fixed gaps

We start by considering the most constrained version of the problem, that is when
the size of the gaps is always the same. More flexible formulations of the problem
will be addressed in the next sections.

Formally, given a set of strings {S1, S2, . . . , Sr} and integers k, m, d, the problem
consists in finding words B1, B2, . . . , Bm such that:

1. |B1| = |B2| = . . . = |Bm| = k;

2. B1 ∗
d B2 ∗

d · · · ∗d Bm occurs in Si for i = 1..r.

Observe that technically we can allow d to be zero. This possibility becomes more
interesting when dealing with gaps of variable size. The strings B1 ∗

d B2 ∗
d · · · ∗d Bm

are said to form a gapped motif; in the literature the sequence of words B1, B2, . . . , Bm

is also called a chain and each word Bi a block of a gapped motif. The size of the
blocks Bj ’s is also assumed to be fixed and the same for all blocks.

We now give an algorithm that solves the problem stated above.
Step 1 Build the generalised suffix tree, truncated at depth k, for the input strings
S1, S2, . . . , Sr. This data structure indexes all words of length k (which we call the
“k-words”) of the set of input strings. We label each “k-word” by the number of the
corresponding leaf in the suffix tree (the number of distinct such k-words is at most
linear in the input size). The k-words are thus labelled in lexicographic order.
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Step 2 Build a new set of strings {S̃1, . . . S̃r} as follows. The new string S̃i is obtained
from Si by replacing each symbol with the label of the k-word that starts there. In
other words, S̃i[j] becomes the label assigned to the k-word Si[j..j + k − 1].
Step 3 Search for all possible chains of m blocks by doing m−1 skips of length d+k

in S̃i (the motifs have now length |B1 ∗
d B2 ∗

d . . . ∗d Bm| = m(d + k)− d). The chains
sought are the following:

Ci[j] = S̃i[j]S̃i[j + d + k]S̃i[j + 2(d + k)] . . . S̃i[j + (m − 1)(d + k)],

∀j ∈ {1..n − m(d + k) + d}

Step 4 Let Ŝi be the set of chains Ci[j], ∀j ∈ {1..n−m(d+ k)+ d}. Obtain the sets
Ŝi for all i.
Step 5 Build the generalised suffix tree for the set of sets of chains {Ŝ1, . . . Ŝr}.
This tree has depth m. The leaves are labelled by the set of strings Si each chain in
{Ŝ1, . . . Ŝr} is derived from.
Step 6 The motifs sought correspond to the leaves of this second generalised suffix
tree with labels covering all strings.

Observe that in general the Ŝi’s are multisets and not sets (some of the chains
may appear repeated). The redundancy may be detected at Step 4 (by not including
in a set Ŝi a chain that is already there), or left to be detected at Step 5.

 = 

 = 

 = 

S1

S2

S3

1 2 3 4 5 6 7 8 9 10 11

A C A A A A C A C A A A

12

A C A C C A A C C CA A

C A C A A A C C A C C A

Figure 2: An example of input

As an example, consider the set of strings of Fig. 2 and the input parameters k =
2, d = 1 and m = 3. We want to find gapped motifs of the form b1,1b1,2∗b2,1b2,2∗b3,1b3,2

that are common to all three strings. We first construct the truncated suffix tree as
shown in Fig. 3.

A C

C CA A

1 2 3 4

Figure 3: Truncated suffix tree for the strings of Fig. 2 and with k = 2

We then compute S̃1, S̃2, S̃3 by re-writing the Si’s using the labels of the leaves.
From S̃1, S̃2, S̃3, we obtain the set of chains Ŝ1, Ŝ2, Ŝ3. The result is shown in Fig. 4

Finally, we construct the generalised suffix tree at depth m = 3 of the three sets
of chains Ŝ1, Ŝ2, Ŝ3. The result is shown in Fig. 5. The leaf circled spells a chain that
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Figure 4: Strings of Fig. 2 after steps 3 (S̃i) and 4 (Ŝi) of the algorithm

belongs to each one of the sets Ŝi. Hence, it corresponds to a gapped motif with the
required structure that occurs in every input string. This is the (only) output of our
example, corresponding to the gapped motif AC ∗AA∗CA occurring in S1 at position
1, in S2 at position 3, and in S3 at position 2 as shown in Fig. 6.

1 2 3 4
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^ S1

^ S1
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^S1
^
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^ S2

^S2
^ S2

^S2
^

S3
^S3

^S3
^S3

^ S3
^

1 2 3 4

21 42 3 4

1 3 1 3 34 2 2 4 2 4 3 2

Figure 5: The generalised truncated suffix tree for Ŝ1, Ŝ2, Ŝ3. The circled leaf presents
a common motif occurring in the three strings
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1 2 3 4 5 6 7 8 9 10 11

A C A A A A C A C A A A

12

A C A C C A A C C CA A

C A C A A A C C A C C A

Figure 6: A motif with fixed gaps with k = 2, m = 3 and D = 1

The correctness of the algorithm is straightforward. The string Ci[j] given as
output in Step 6 is an encoding of a gapped motif that satisfies the input parameters.
Furthermore, the construction of the generalised suffix tree of Step 5 provides the
evidence that Ci[j] is common to all the strings of the input set {S1, S2, . . . , Sr}.

Let us now discuss the complexity of the algorithm. The construction of the
generalised suffix tree at Step 1 requires O(nr log |Σ|) time, that is O(nr) assuming
|Σ| is a constant and n = |Si| for all Si’s. The transformation of the strings S into S̃

requires linear O(nr) time. In Step 3, we construct n−m(d + k) + d chains of length
m(d+k)−d, thus Step 3 is bounded by O(rn) assuming that m, k and d are constants.
Since at Step 5 the alphabet has size O(rn), we resort to the suffix tree construction
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of [3] whose time complexity is independent of the alphabet’s size. Therefore, the
construction of the generalised suffix tree of Step 5 requires O(rn) time, and Step 6
is also linear. Thus the overall complexity of the algorithm is O(rn).

4 Finding motifs with bounded sum of variable

gaps

We now consider the problem of finding motifs with gaps of variable sizes, but
whose sum is upper bounded by a user defined parameter. Again, the gapped motif
must occur at least once in each one of the input strings. Given a set of strings
{S1, S2, . . . , Sr}, and given integers k, m, d, D, the problem is then to find strings
B1, B2, . . . , Bm such that:

1. |B1| = |B2| = . . . = |Bm| = k;

2. B1 ∗
di,1 B2 ∗

di,2 . . . ∗di,m−1 Bm occurs in Si for i = 1..r;

3.
∑m

j=1
di,j ≤ D for i = 1..r;

4. 0 ≤ di,j.
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1, ...

Figure 7: The strings {Ŝ1, . . . Ŝr} after step 4. The end of each line shows the gap
lengths applied to obtain the values (omitted if equal to zero).

What follows is a solution to the problem just stated.
Step 1 As was done in the first step of the previous algorithm, build the truncated
generalised suffix tree for the input set of strings, and label each “k-word” with the
number of the corresponding leaf in the suffix tree.
Step 2 Build the strings {S̃1, . . . ,̃Sr}.
Step 3 In order to compute the different chains, we now use a window of width
D + km. Let Wi,j be the window appearing in string i at position j, and let Ci[j] be
the set of all non-overlapping words of length m that occur in Wi,j:

Ci[j] =
{

S̃i[p1], S̃i[p2], . . . , S̃i[pm] |

p1 = j,

∀ l > 1, k ≤ pl − pl−1 < k + D and pm − p1 ≤ D + (m − 1)k and

pm < n − k
}
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Without the condition (pm − p1 ≤ D + (m − 1)k), Ci[j] would contain Dm−1

elements. Thus there are at most Dm−1 elements in Ci,j.

Step 4 Obtain the sets of chains Ŝi.
Step 5 Construct the generalised suffix tree for the set of sets of chains {Ŝ1, . . . , Ŝr}.
Step 6 The motifs sought correspond as before to the leaves of this second generalised
suffix tree with labels covering all strings.

Consider the same input strings as in the previous example (see Fig. 2), the same
values for k and m, and D = 3. The S̃i strings are thus the same as before, while the
Ŝi strings for motifs with bounded sum of variable gaps are shown in Fig. 7.
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^ S1

^ S1
^ S1

^ S1
^ S1

^ S1
^ S1

^

S2
^ S2

^S2
^ S2

^S2
^ S2

^S2
^S2

^ S2
^ S2

^ S2
^

S3
^S3

^ S3
^S3

^S3
^ S3

^S3
^ S3

^S3
^S3

^ S3
^S3

^
S2
^ S2

^ S2
^

1

2 2 2 2

2 3 4

3 4 1 3 4 1 3 4 4

31 3 1 3 3 4 2 3 2 4 2 4 2 4 2 4 3 4 3 4 2 33 3

Figure 8: Part of the generalised truncated suffix tree for Ŝ1, Ŝ2, Ŝ3. Each circled
leaf represents a common motif occurring in the three strings. Dashed paths indicate
simply that all the tree is not drawn.
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 = 

 = 

S1

S2

S3

2 3 4 5 6 7 8 9 10 11

C A A A A C A C A A A

12

A C A C C A A C C CA A

C A C A A A C C A C C A

A

1

Figure 9: A gapped motif found for the bounded sum of variable gaps problem with
k = 2, m = 3 and D = 3

Part of the generalised suffix tree for the set of chains Ŝ1, Ŝ2, Ŝ3, is shown in Fig. 8.
In this tree, three leaves present motifs common to all the strings. For instance,

the one given by the path 313 corresponds to the gapped motif CA ∗di,1 AA ∗di,2 CA

with 0 ≤ di,j and
∑m

j=1
di,j ≤ D, ∀i = 1..r which occurs in all the strings as shown

in Figure 9.
The correctness of the algorithm is straightforward. The output string Ci[j] in

Step 6 is an encoding of a motif with bounded sum of gaps according to the input
parameters that is common to all the strings {S1, S2, . . . , Sr}.

If one assumes that m and D are constants, the construction of the generalised
suffix tree at Step 1 requires O(nr log |Σ|) time, where n = |Si|. The transformation
of the strings S into the set of chains S̃ requires linear O(nr) time.

For each position i in a string, the number of motifs that may have an occurrence
starting at i is at most Dm−1. Thus, if one considers all positions in the strings, there
are at most r ·n ·Dm−1 motifs. Hence, the overall cost of Step 3 is bounded by O(rn)
assuming that m and D are constants.

Step 5 requires O(rn) time, and Step 6 is linear. The overall complexity of the
algorithm is therefore again O(rn), and hence linear in the input size.
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5 Finding motifs with variable gaps of bounded

size

In this section, we address a third variant of the problem. We have again that the
size of the gaps is variable, but this time we set an upper bound on the size of each
individual gap.

Given a set of strings {S1, S2, . . . , Sr} and given integers k, m, D, the problem
consists now in finding strings B1, B2, . . . , Bm such that:

1. |B1| = |B2| = . . . = |Bm| = k

2. B1 ∗
di,1 B2 ∗

di,2 . . . ∗di,m−1 Bm occurs in Si for i = 1..r;

3. 1 ≤ di,j ≤ D for i = 1..r, j = 1..m.

Notice that putting an upper bound on the size of each gap implies also putting a
bound on the size of their sum, as is the case of the previous variant of the problem.

2 2
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=1)=3, d

=2)

=2, d =3)

 =S2 ...

Figure 10: Part of the strings Ŝi after step 4. The end of each line shows the gap
lengths applied to obtain the values.

What follows is an algorithm that solves this last variant of the problem.
Step 1 Compute the truncated generalised suffix tree for the k-words of the set of

input strings, and as before label each “k-word” with the number of the corresponding
leaf in the suffix tree.
Step 2 Construct the strings {S̃1, . . . , S̃r} as in the previous algorithms.
Step 3 Let Ci[j] be the set of all the possible chains S̃i[p1], S̃i[p2], . . . , S̃i[pm] in the
string S̃i such that p1 = j and ∀ j > 1, k ≥ pj − pj−1 < k + D.

Formally,

Ci[j] =
{

S̃i[p1], S̃i[p2], . . . , S̃i[pm] | p1 = j

and ∀ l > 1, k ≤ pl − pl−1 < k + D and pm < n − k
}

.

Notice that Ci[j] contains at most Dm−1 elements.
Step 4 Obtain the set of chains Ŝi.
Step 5 As for the first algorithm, build the generalised suffix tree for {Ŝ1, . . . Ŝr}.
step 6 The motifs sought correspond as before to the leaves of this second generalised
suffix tree with labels covering all strings.

For example, with the strings shown in Fig. 2, the same values for k and m (i.e.,
k = 2, m = 3), and D = 3, part of the Ŝi strings obtained for this last variant of the
problem is shown in Fig. 10.

Part of the generalised suffix tree for the set of chains Ŝ1, Ŝ2, Ŝ3, is shown in Fig. 11.
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Figure 11: A part of the generalised truncated suffix tree for Ŝ1, Ŝ2, Ŝ3. The circled leaf
presents a common motif occurring in the three strings. The dashed paths indicate
simply that all the tree is not drawn.
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 = 

 = 

S1

S2

S3

3 4 5 6 7 8 9 10 11

C A A A A C A C A A A

12

A C A C C A A C C CA A

C A C A A A C C A C C A

A

1 2

Figure 12: A gapped motif found for the bounded variable gaps problem with k =
2, m = 3 and D = 3

In this tree, one of the leaves corresponds to a motif common to all the strings.
It denotes the path 223 corresponding to the gapped motif AC ∗di,1 AC ∗di,2 CA with
0 ≤ di,j ≤ D ∀i = 1..r which is present in all the strings as shown in Figure 12.

The string Ci[j] output in Step 6 is an encoding of a structured motif with each
gap bounded by a fixed value that is common to all the input strings {S1, S2, . . . , Sr}.

The construction of the generalised suffix tree at Step 1 requires O(nr log |Σ|)
time, where n = |Si|. The transformation of the strings S into S̃ requires linear
O(nr) time. For each position i in each string, the number of motifs that may have
an occurrence at i is at most Dm−1. Hence, there are overall r ∗ n ∗ Dm−1 motifs.
Step 3 takes O(rn) assuming that m and D are constants. Again, the construction of
the generalised suffix tree of Step 5, as well as Step 6, can be done in linear time. The
overall complexity of the algorithm for the third variant of the problem is therefore
O(rn).

6 Conclusion

We have presented algorithms for three different variants of the problem of finding
motifs with gaps. The approach we suggest allows to find motifs with gaps maintain-
ing a linear time complexity with respect to the input size. The technique we applied
is general enough that it can be used for several other variants of the problem besides
those addressed in this paper.

Another interesting further direction to explore would be to allow errors (i.e.,
substitutions and insertions deletions) inside the blocks.
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