
BDD-Based Analysis of Gapped q-Gram Filters∗

Marc Fontaine1, Stefan Burkhardt2 and Juha Kärkkäinen2

1 Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

e-mail: stburk@mpi-sb.mpg.de
e-mail: fontaine@studcs.uni-sb.de

2 Department of Computer Science
P.O.Box 68 (Gustaf Hällströmin katu 2 B)
FI-00014 University of Helsinki, Finland

e-mail: Juha.Karkkainen@cs.helsinki.fi

Abstract. Recently, there has been a surge of interest in gapped q-gram filters
for approximate string matching. Important design parameters for filters are
for example the value of q, the filter-threshold and in particular the shape (aka
seed) of the filter. A good choice of parameters can improve the performance
of a q-gram filter by orders of magnitude and optimising these parameters is
a nontrivial combinatorial problem. We describe a new method for analysing
gapped q-gram filters. This method is simple and generic. It applies to a
variety of filters, overcomes many restrictions that are present in existing al-
gorithms and can easily be extended to new filter variants. To implement our
approach, we use an extended version of BDDs (Binary Decision Diagrams), a
data structure that efficiently represents sets of bit-strings. In a second step,
we define a new class of multi-shape filters and analyse these filters with the
BDD-based approach. Experiments show that multi-shape filters can outper-
form the best single-shape filters, which are currently in use, in many aspects.
The BDD-based algorithm is crucial for the design and analysis of these new
and better multi-shape filters. Our results apply to the k-mismatches problem,
i.e. approximate string matching with Hamming distance.

1 Introduction

String matching involves searching a given string or textual database T for occurrences
of substrings that match a search pattern P . The approximate string matching prob-
lem allows the search pattern and the matches to have some difference or distance
according to a given distance function.

Many applications depend on efficient solutions of this problem, especially in the
field of bio-informatics, where databases may consist of sequences of 109 nucleotides
of DNA or of long sequences of amino acids.

∗This work was conducted in part at the MPI for computer science, Saarbrücken with support
from the Future and Emerging Technologies programme of the EU under contract number IST-1999-
14186 (ALCOM-FT) and at the University of Helsinki supported by the Academy of Finland grant
201560.

56

BDD-Based Analysis of Gapped q-Gram Filters

Filter algorithms are a common approach for approximate string matching. They
speedup string matching by quickly generating a set of potential matches and dis-
carding the rest of the database. The true matches can then be found in a second
step, the verification phase, by inspecting all potential matches. Designing a good
filter usually means optimising the tradeoff between the complexity of the filtration
phase and the efficiency of the filter.

Many efficient filters work with precomputed indexes, in particular, indexes that
are based on gapped q-grams or shapes. For example the three 3-grams of string
ACAGCT for shape ##-# are AC-G,CA-C and AG-T. A matching pair of q-grams between
a pattern and a substring of T is called a hit. The q-gram index stores the positions
of all q-grams of the database and allows to find hits efficiently. If the number of
hits between the search pattern and a substring of the database exceeds a certain
threshold t, that substring is called a potential match.

As first shown in [6, 7], the performance of the filter depends crucially on the
shape. Good shapes are found by analysing large sets of shapes, because no method
for directly generating good shapes has been found yet. Even analysing a single shape
is non-trivial and a lot of effort has gone into developing methods for this purpose.
Recently gapped shapes have been the focus of quite a bit of attention [16, 9, 10, 12].

In [6, 7], Burkhardt and Kärkkäinen compute the optimal threshold. It is the
highest threshold that still allows the filter to return all true matches, i.e., substrings
that are within a fixed Hamming distance from the pattern. They also compute a
measure called the minimum coverage, which provides a rough estimate of how many
false matches get through the filter. The true positive rates and the false positive
rates were determined experimentally for selected shapes.

If the threshold or Hamming distance is increased, the filter also discards some
true matches, which are then called false negatives. In [5] an abstract measure for
the false negative probability, the so-called recognition rate was defined and analysed
experimentally. The exact computation of both false positive and false negative rates
was done by Ma, Tromp and Li [15]. However, their algorithms are restricted to
filters that count only non-overlapping hits. This is a significant restriction as the
lower correlation of overlapping q-grams is a big advantage of gapped q-grams over
ungapped ones [7].

Brejová, Brown and Vinař [1, 2] develop new variants of the algorithm of Ma,
Tromp and Li. In [1], a true match is defined not directly by a Hamming distance
but as a probability distribution represented by a hidden Markov model. In [2], they
further generalise the approach to approximate hits and multiple shapes. However,
the restriction to non-overlapping hits remains in all of their work. Very recently, we
became aware of several papers using multiple gapped shapes for approximate string
matching in various different approaches [13, 17, 18, 14].

We present a new and flexible method for computing various properties of q-gram
filters. This algorithm is based on a simple natural abstraction of the problem and
applies to a general class of filters. At the same time, it overcomes many restrictions
present in previous algorithms in particular the non-overlapping hit restriction.

Our method consists of two steps. The first step is an algorithm based on sets
of bit-strings. These sets can be of exponential size and we have to use a compact
and efficient representation of the sets to actually implement our algorithm. A data

57

Proceedings of the Prague Stringology Conference ’04

structure called BDDs [3, 4] (Binary decision diagrams or Binary decomposition di-
agrams) implements such a representation of sets. Only the use of a data structure
like BDDs makes it feasible to run our algorithm.

In the second step the BDDs generated in the first step can be used to efficiently
compute interesting properties of the sets they represent. Most properties can be
computed in linear time of the size of the BDDs. This clear split of the problem
into two steps distinguishes our method from previous algorithms, which were mostly
based on dynamic programming.

In the second part of this work, we apply our method to design new and better
filters. The basic idea in this part is to filter with a set of shapes simultaneously.
Multi-shape filters have been used before [8]. Our new idea is to use a carefully
selected set of shapes together with a specifically computed filtration criterion. This
filtration criterion replaces the optimal threshold of a single shape filter.

The BDD-based algorithm allows us to compute the best filtration criterion for a
set of shapes and at the same time determine the important quality measures of the
resulting multi-shape filter. To investigate the potential of multi-shape filters based on
a specific filtration criterion, we analyse large sets of randomly generated filters. These
experiments show that good multi-shape filters are very rare, but the experiments also
yield filters that are superior to single-shape filters in several important aspects.

2 Representing Match-Mismatch-Patterns with

BDDs

Let A and B be two strings of length l. We call the bit-string p(A, B) ∈ {0, 1}l the
match-mismatch-pattern of the two strings. A “1” in p(A, B) denotes a matching
position and “0” a mismatch. The Hamming distance of A and B is then the number
of zeros in p(A, B). We represent the number of zeros and ones in a bit-string p by |p|0
and |p|1. The k-differences version of approximate string matching allows a pattern
string and a match to have a Hamming distance of at most k.

For most filters, the match-mismatch-pattern of an alignment between the pat-
tern string and the database at some position x contains enough information to decide
whether x is returned as a potential match or not. Therefore it is, in principle, suffi-
cient to enumerate all possible match-mismatch-patterns to analyse the performance
of filters for the k-differences problem.

A drawback of this brute-force-approach is, that there are 2l possible match-
mismatch-patterns for strings of length l and realistic filters usually work with pattern
length l ≥ 50.

To overcome this complexity-problem we use a data structure called BDDs. BDDs
allow a compact and efficient representation of sets of equal-length bit-strings. They
can be seen as an abstract data structure that supports the following operations.

� Creation of a new BDD for the base-cases ∅ and {ǫ}.

� Composition of two BDDs S = comp(S0, S1)

� Decomposition of a BDD into two BDDs according to the first position of the
bit-strings in the BDD.

58

BDD-Based Analysis of Gapped q-Gram Filters

� Computing ∪ and ∩ of two BDDs and the complement ¬ of a BDD

The composition comp(S0, S1) represents the set:

comp(S0, S1) = {s | (s = 0a ∧ a ∈ S0) ∨ (s = 1b ∧ b ∈ S1)}

For two sets A and B that are given as decompositions A = comp(A0, A1) and
B = comp(B0, B1), A ∪ B and A ∩ B can be computed recursively as:

A ∪ B = comp(A0 ∪ B0, A1 ∪ B1)

and:
A ∩ B = comp(A0 ∩ B0, A1 ∩ B1)

BDDs are implemented with DAGs (Directed Acyclic Graphs) and they are similar
to finite automata without loops. In a BDD always the minimal, smallest possible
DAG is used to represent a set of bit-strings and equal sets are represented by one
canonical node of the DAG. A collection of BDDs can share the structure of a single
DAG and BDD-implementations usually make use of hash-tables to maintain the
canonical-representation-property. Hash tables are also used to avoid re-computations
during the computation of ∪ and ∩.

1100

0000
0001
0010
0011
0100
0110
1000
1001
1010
1011

1110

0

0

0

∅

0 1

1

1

1

0 1

ǫǫǫ

0
1

A simple BDD and the set it represents

BDDs have many different applications where they often make it possible to handle
exponential size sets within non-exponential complexity. An introduction to BDDs
can be found in [3, 4], where BDDs are used to represent boolean functions over a
finite set of variables. The actual performance of BDDs in an application depends on
the structure of the sets they represent. For sets of size 2l the space complexity of
BDDs can range from O(l) to Θ(2l).

It is important to note, that we use BBDs only to analyse q-gram filters. This is
a one-time computation and the complexity of the BDDs does not interfere with the
complexity of the filters under consideration. The theoretical complexity of BDDs
is therefore secondary in our application. Our experience is, that BDDs work well
to reduce the complexity of filter analysis. They make is possible to analyse all
interesting filters within reasonable time and space limits.

In [11] Fontaine described a extension of standard BDDs, which uses {0, 1}∗ as
an additional base case for the decomposition (so called ∗-BDDs). This extension
allows more compact representation than standard BDDs and it was used for all our
experiments. For code listings and runtime measurements of a prototype ∗-BDD
implementation see [11]. The prototype implementation only consists of about 10kb
of C++ code and computing the filter properties for a typical shape only takes a few
seconds.

59

Proceedings of the Prague Stringology Conference ’04

3 q-Gram Similarity-Based Filters

We use strings from {#, -}∗ to denote different shapes. # stands for a position that
must match, whereas - is a “don’t care” or wild-card position. span(s) = |s| is the
span of a shape s.

Let A and B be two strings of length l and s a shape. A position 0 ≤ i ≤ l−span(s)
is a hit of shape s if ∀0 ≤ n < span(s) : s(n) = # ⇒ A(i + n) = B(i + n).

The number of different hits of a shape s for two strings A and B is called the
q-gram similarity qgss(A, B) of the two strings. For strings of length l the q-gram-
similarity can be at most l − span(s) + 1.

A= ACTGTACTGCCGTACT

B= ACTGTAATGCAGTACT

p(A, B)= 1111110111011111

shape s= ###---##--##

qgss(A, B)= 2

ACTGTACTGCCGTACT

###---?#--?#

###---##--## <- hit

###---##--## <- hit

###---#?--##

##?---?#--##

ACTGTAATGCAGTACT

Match-mismatch-pattern and q-gram-similarity

A q-gram filter computes the set of potential matches with the help of a threshold
t. A potential match is the position of a substring in the database with a q-gram
similarity of at least t with the pattern string. Increasing the threshold of a filter
reduces the number of potential matches at the cost of a decreased filter sensitivity,
i.e. the filter is more likely to overlook true matches.

The match-mismatch-pattern of two strings contains sufficient information to com-
pute their q-gram-similarity. Therefore a filter can be analysed by looking at all
possible match-mismatch-patterns. We can partition the set of all possible match-
mismatch-patterns according to the q-gram-similarity they represent for a given
shape.

For any fixed shape s and any h, l ∈ N0 we define:

P h
l = {p ∈ {0, 1}l | s produces exactly h hits in p}

It follows that the set PM of match-mismatch-pattern that represent a potential

match is:

PM =
⋃

h≥t

P h
l

A set P h
l can easily be computed based on the sets P h−1

l−1 and P h
l−1. A match-

mismatch-pattern p ∈ {0, 1}l is in P h
l if:

either: its suffix of length l − 1 is in P h−1
l−1 and it has an additional hit of shape s at

position 0
or: its suffix of length l−1 is in P h

l−1 and it does not have an additional hit at position
0.

This algorithm can be formulated as a simple equation for sets

P h
l = (expand(P h−1

l−1) ∩ Sl(s)) ∪ (expand(P h
l−1) ∩ S̄l(s))

60

BDD-Based Analysis of Gapped q-Gram Filters

with the following three definitions:

Sl(s) = {p ∈ {0, 1}l | s has a hit in p at position 0}

S̄l(s) = {p ∈ {0, 1}l | s does not have a hit in p at position 0}

expand(M) = {x | x = 0m ∨ x = 1m, m ∈ M}

BDDs directly support ∪ and ∩, and expand(M) can be implemented as expand(M)=
comp(M, M). BDDs also support the creation of Sl(s) and S̄l(s) for any shape s. Sl(s)
can be computed recursively as:

Sl(s) =

{0, 1}l if s = ǫ

∅ if l < span(s)

comp(∅, Sl−1(r)) if s = #r

comp(Sl−1(r), Sl−1(r)) if s = -r

Shape=#-##

P 1
4 = S4 = {1011, 1111}

expand(P 1
4) = {01011, 01111, 11011, 11111}

P 1
5 = {01011, 01111, 11011, 10110, 11110, 10111}

P 2
5 = {11111}

P 0
5 = {00000, 00001, 00010, . . .} 0

1

∅

∅

∅

0

0

0

1

1

Sl

1

{0, 1}l−span(s)

P h
l and Sl(s) for shape #-##

As an alternative to our definition of the q-gram-similarity qgs(A, B) it is possible
to require individual hits to be non-overlapping [15, 1]. For such filters the set PM

can be computed with an algorithm similar to the one described above. (Compute

the sets P
(h,i)
l , where i is the offset of the first hit.)

4 Filter Analysis with BDDs

The algorithm described in the previous section allows us to generate BDD-
representations for the sets P h

l . These BDD-representations can be used to compute
many interesting properties of the sets and thereby the underlying filters. Note that
the computation of the various properties is independent of what filter the sets P h

l rep-
resent and how they were computed. This is in contrast to previous approaches using
dynamic programming where the filter definition is deeply involved in the property
computation.

4.1 Specificity

The specificity of a filter describes its ability to reduce a large database to a small set
of potential matches. For a given random model, the filter specificity is equivalent to
the probability that a random substring of length l is a potential match of a random
search pattern.

61

Proceedings of the Prague Stringology Conference ’04

Every match-mismatch-pattern p describes one possible event that can occur while
aligning a database and a search pattern and we can use several probability models
to assign probabilities to these events. We can then simply extend these probabilities
from one match-mismatch-pattern to sets of match-mismatch-patterns by summing
up the probabilities of the elements of the sets.

For example, to analyse a filter for a DNA database, we might assume that the
database and pattern string are independent random strings with an even distribution
of the letters {A, C, G, T}. It follows that every single character has a 1

4
chance of

being a match and the probability of any match-mismatch-pattern p is:

prob(p) = (
1

4
)|p|1(

3

4
)|p|0

With this we can compute the probability of a potential match, i.e the specificity of
the filters as:

specificity =
∑

p∈PM

prob(p)

Given the binary decomposition comp(P0, P1) of a set P the probability Prob(P)
of the set is:

Prob(P) = (
3

4
) ∗ Prob(P0) + (

1

4
) ∗ Prob(P1)

The base-cases for the binary decomposition are also the base-cases for this recursion:

Prob(∅) = 0 Prob(ǫ) = 1

This shows that, if BDDs are used to represent the sets, Prob(P) =
∑

p∈P prob(p)
can be computed in linear time of the size of the BDDs.

It can be seen that a similar approach allows to compute the probabilities of sets
for many different probability models efficiently. In particular it is also possible to
use hidden Markov models (HMMs) as probability model. HMMs have been used
in [1] to model real DNA sequences of different species.

4.2 Recognition Rate

For approximate string matching with Hamming distance we can define the recogni-
tion rate r(j) of a filter as the expected fraction of potential matches among substrings
of the database with exactly Hamming distance j. The match-mismatch-patterns of
length l and Hamming distance j can easily be computed with the single-character
shape # as P

l−j
l (#). It follows that a filter with potential matches PM has the recog-

nition rate:

r(j) =
Prob(PM ∩ P

l−j
l (#))

Prob(P l−j
l (#))

Recognition rates have been defined and determined experimentally in [5].

4.3 Threshold

The set of potential matches of a filter with shape s, and with it the recognition rates
of the filter, heavily depends on the threshold t.

62

BDD-Based Analysis of Gapped q-Gram Filters

A filter is lossless for a threshold t and Hamming distance k if ∀j ≤ k : r(j) = 1,
otherwise it is lossy. If one is interested in a fixed maximal Hamming distance k and
lossless filtering, then there exists an optimal threshold tbest. A dynamic programming
algorithm for computing tbest is described in [7].

BDD-based threshold computation is also possible. For each set P h
l we compute:

m(P) = min
p∈P

|p|0

We use the notation |p|0 for the number of occurrences of “0” in string p. m(P h
l) is the

minimum number of mismatching positions of any match-mismatch-pattern p ∈ P h
l .

This minimum can be found in linear time in the size of the BDD. Any set P h
l with

m(P h
l) ≤ k contains at least one match-mismatch-pattern with Hamming distance

at most k. The optimal threshold tbest for a lossless filter is the smallest h such that
m(P h

l) ≤ k.

shape s = #-#---#-#-#------#

span(s) = 18
pattern length l = 50
number of hits h ∈ {0, . . . , 33}
h 0 1 2 3 4 5 6 7 8 9 ... 31 32 33
m(P h

l) 8 7 7 6 6 6 5 5 5 4 ... 1 1 0
k = 7 tbest = 1
k = 6 tbest = 3
k = 5 tbest = 6
k = 4 tbest = 9

Computing the threshold tbest

5 Multi-shape Filters

Shapes can be better than contiguous q-grams because they introduce irregularity
in the way the mismatching positions affect the q-grams. For good shapes, only a
few worst case configurations of the mismatching characters affect many q-grams.
A reasonable approach to further improve the performance of filters is therefore to
use two or more somehow orthogonal shapes in parallel. The idea is, that those
configurations of mismatches, that are particularly bad for one shape, are better
covered by a second shape and vice versa.

Designing a good multi-shape filter is a nontrivial combinatorial problem, just like
finding good individual shapes. One could assume that the best individual shapes
also form the best multi-shape filter, however our experiments suggest that this is
often not the case.

Multi-shape filters are the most important application for our BDD-based ap-
proach. The extension of our algorithm to multi-shape filters is straight-forward and
it leads to a new concept: the generic filtration criterion C. The generic filtration
criterion C replaces the threshold t of a single-shape filter. It enables a multi-shape
filter to make full use of the relations between the single shapes.

63

Proceedings of the Prague Stringology Conference ’04

A filter with n shapes s1 . . . sn can use the q-gram similarities h1 = qgss1
(M, P) . . .

hn = qgssn
(M, P) to decide whether M is a potential match or not. (P is the pattern

string and M is any substring of the database.) We call a set C ⊂ N
n a filtration

criterion for the shapes s1 . . . sn and define:

M is a potential match ⇔ (h1, . . . , hn) ∈ C

This generic filtration criterion C can model many different strategies for multi-
shape filters. For example it can model filters that require at least one hit of one
shape, filters the require one hit of each shape, filters that sum up the hits of the
shapes, or filters that use each shape with its individual threshold tbest.

In Section 3 we used the notation P h
l (s) for the set of all match-mismatch-patterns

with exactly h hits of a single fixed shape s. To analyse multi-shape filters we extend
this notation to sets of shapes {s1, . . . , sn}. We define P

(h1,...,hn)
l (s1, . . . , sn) as the set

of all match match-mismatch-patterns with exactly hi hits of shape si (1 ≤ i ≤ n).

The sets P
(h1,...,hn)
l (s1, . . . , sn) can be computed as:

P
(h1,...,hn)
l (s1, . . . , sn) =

⋂

1≤i≤n

P hi

l (si)

With this, the set of match-mismatch-patterns, that represent a potential match
according to a filtration criterion C is:

PM =
⋃

(h1,...,hn)∈C

P
(h1,...,hn)
l (s1, . . . , sn)

Together with the set PM , all statistical performance measures (recognition rate,
specificity), which we computed for single-shape filters in Section 3, are now also
available for our model of multi-shape filters.

The definition of P
(h1,...,hn)
l (s1, . . . , sn) also makes it possible to compute a optimal

filtration criterion Cbest for a lossless filter with some fixed Hamming distance k. It
is:

Cbest = {(h1 . . . hn) | m(P
(h1,...,hn)
l (s1, . . . , sn)) ≤ k}

Cbest replaces the threshold tbest of single shape filters. To reduce the high complex-
ity involved in the computation of Cbest Fontaine [11] describes a straight forward
approximation.

6 Designing Better Filters

The design of a filter is always a compromise between three objectives:

� high sensitivity

� fast filtration phase

� high specificity of the filter, i.e. a fast verification phase

64

BDD-Based Analysis of Gapped q-Gram Filters

There are several trade-offs between these objectives. For example, a higher sensitivity
is usually at the cost of a lower specificity and a faster filtration often yields lower
sensitivities and specificities [5, 15, 8].

Using a well chosen shape for the q-grams and the appropriate threshold can
greatly improve overall filter performance compared to filtering with ungapped q-
grams [6, 7]. In this section we will show that multi-shape filters with a carefully
selected set of shapes and a specifically computed filtration criterion can further
boost filter performance for all three objectives compared to single-shape filters.

A good estimate for the runtime of a q-gram filter is the number of hits in the
database that have to be processed. It is roughly proportional to |Σ|−q. (This assumes
a database with a random distribution of letters from Σ and it is also a good estimate
for example for DNA sequences [7].) High values of q are desirable because they make
the filtration fast however they also mean lower sensitivities.

In this section we only consider q-gram filters that work lossless for a fixed Ham-
ming distance k and we use k to compare the sensitivities of such filters (a higher
value of k means a higher sensitivity). To compare the specificities of different filters,
we always use the shapes with the optimal threshold tbest (the optimal filtration cri-
terion Cbest for multi-shape filters) that still guarantees lossless filtering for the fixed
k. For all experiments in this section, we use a pattern length l = 50 and assume a
DNA-like database with |Σ| = 4.

There is a trade-off between k and the highest value of q that can be used for
lossless filtering. For example for pattern length l = 50 and k = 5 the highest
possible q for a lossless single-shape filter is q = 10, for k = 6 it is q = 9. Similar
constraints between q and k also exist for multi-shape filters. However we found
that they can have higher values of both q and k than is possible for single shapes.
Therefore multi-shape filters make it possible to increase q, which makes them faster,
or increase k, i.e the sensitivity. In some cases it is even possible to increase q and k

at the same time. This is not at the cost of a lower specificity, but instead it is even
possible to increase the specificity also.

Pairs of shapes: q = 10, k = 6

Consider for example the following three lossless two-shape filters for k = 6:

Three good two-shapes filters
k = 6, l = 50 ,|Σ| = 4

s1 s2 specificity

a) ##-##---##-#### ###-#-###----#--## 8.091782 ∗ 10−8

b) #-##-###-#### ####----###--##-# 9.306443 ∗ 10−8

c) #-##-##--##### ####--#--#---##--## 7.763605 ∗ 10−8

¬Cbest

a) and c) {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0)} not (0, 2)!
b) {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)}

The best single shape filter for this problem is ######-#-## with q = 9, tbest = 2
and a specificity of 3.838350 ∗ 10−6. Compared to this single shape filter, each of
these three multi-shape filters with two (q = 10)-shapes improves the specificity by
a factor of 50. The runtime of a multi-shape filter is approximately the sum of the

65

Proceedings of the Prague Stringology Conference ’04

run-times computed for its individual shapes. This means that the filters with two
(q = 10)-shapes for |Σ| = 4 are also about two times as fast as a q = 9 single-shape
filter.

The three multi-shape filters of this example were found by scanning 5000 pairs
of random (q = 10)-shapes. In this sample set, good pairs were extremely rare. 3439
of the pairs, i.e. more than two-thirds, did not yield a lossless filter for k = 6 at all.
It is interesting that none of the six shapes that comprise the three best pairs, we
found, work particularly well as a single-shape filter. This suggests that combining
good single-shape filters is not necessarily the best method to construct a good multi-
shape filter. Also note, that 5000 pairs of shapes is a relatively small random set. It
is very likely that much better two-shape filters can be found with more extensive
experiments.

4-tuples of shapes: q = 10, k = 8

In a second experiment we fixed q to 10 and tried to increase k. We generated
1, 500, 000 filters with 4-tuples of random (q = 10)-shapes and analysed each of these
4-tuples with our algorithm. In this sample set, the good 4-tuple filters were again
rare. Nevertheless, we found 15 lossless filters for k = 8 with specificities of about
10−3. For comparison, the highest possible k for a lossless single-shape filter with
q = 9 is k = 6. (A single-shape filter with q = 9, is about as fast as our 4-tuple
filters.) The filtration criterion of the 15 4-tuples filters for k = 8 is that they require
at least one hit of any of the four shapes.

4-tuples of shapes: q = 10, k = 7

Alternatively, each of the 15 good 4-tuple filters, we found, can also be used for k =
7 with a stricter filtration criterion. Although the computation of the exact filtration
criterion Cbest for this problem has a high complexity, it is easy to compute an suitable
approximation Capprox [11]. The complement ¬Capprox of one such approximation
consists of 40 elements. This filtration criterion ¬Capprox guarantees lossless filtering
for k = 7 and a specificity of 5.2288 ∗ 10−8.

The best set of four shapes out of 1,500,000 random
l = 50, k = 7, specificity = 5.228823e− 08

s1=##-#-###---#--#----## s2=##-#--#--#-#-#--###

s3=###-#-##-#-### s4=##-###-----##--#-#--#

¬C for the best 4-tuple filter and k = 7
{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0, 2), (0, 0, 0, 3), (0, 0, 0, 4), (0, 0, 0, 5), (0, 0, 1, 0),
(0, 0, 1, 1), (0, 0, 1, 2), (0, 0, 2, 0), (0, 0, 2, 1), (0, 0, 3, 0), (0, 0, 3, 1), (0, 0, 4, 0),
(0, 0, 4, 1), (0, 0, 5, 0), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 0, 2), (0, 1, 1, 0), (0, 1, 1, 1),
(0, 1, 2, 0), (0, 1, 3, 0), (0, 1, 4, 0), (0, 2, 0, 0), (0, 2, 0, 1), (0, 2, 1, 0), (0, 3, 0, 0),
(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 0, 2), (1, 0, 0, 4), (1, 0, 1, 0), (1, 0, 2, 0), (1, 0, 4, 0),

(1, 1, 0, 0), (1, 1, 0, 1), (1, 2, 0, 0), (2, 0, 0, 0), (5, 0, 0, 0)}

The experiments show that multi-shape filters can have significantly better speci-
ficities and work for higher values of k than single-shape filters. At the same time they
can also speed up the filtration. It remains an open question if there is an algorithm
to construct good sets of shapes for multi-shape filters.

66

BDD-Based Analysis of Gapped q-Gram Filters

7 Conclusion

We described a new method for the analysis of gapped q-gram filters. This method
uses bit-strings, we call them match-mismatch-patterns, to describe possible align-
ments between the database and the search patterns. Sets of match-mismatch-
patterns provide a simple abstraction of filter algorithms for the k-differences problem.

The first step of our approach is to generate sets of match-mismatch-patterns,
in particular the set of match-mismatch-patterns representing the potential matches.
To implement this step efficiently, we use BDDs as a data structure to represent sets
of bit-strings. In the second step, we can then use these BDD representations to
compute many interesting properties of filters like the recognition rate and specificity
for various probability models.

Our approach is simple and general and applies to a variety of filter algorithms.
For example, it can model single-shape filters with any threshold and generic multi-
shape filters. Previous algorithms for filter-related problems were often based on
dynamic programming. Compared to dynamic programming, our approach is more
general and more natural and allows many interesting extensions.

The most important application of our approach is the analysis of multi-shape
filters, which work with a set of shapes in parallel. For any set of shapes, our approach
can compute an optimal filtration criterion Cbest, which guarantees lossless filtering
for the k-differences problem and also the sensitivities and specificities of the resulting
multi-shape filter.

We found, that good multi-shape filters with a carefully selected set of shapes and
a specifically computed filtration criterion Cbest are much better than single-shape
filters. They allow higher specificities and sensitivities than single shape filters and
higher values of k are possible (for lossless filtering). Multi-shape filters can also be
faster than single shape filters, because they still work with higher values of q.

The BDD-based approach makes it possible to find good multi-shape filters by
scanning a large number of randomly generated candidates. However, only a small
fraction of these candidates show the desired properties. Since full enumeration as for
single-shape filters [6] is not possible for multi-shape filters, a constructive algorithm
to generate good sets of shapes remains an interesting open problem.

References

[1] B. Brejová, D. G. Brown, and T. Vinař. Optimal spaced seeds for hidden Markow
models, with applications to homologous coding regions. In Proc. 14th Annual

Symposium on Combinatorial Pattern Matching, volume 2676 of LNCS, pages
42–54. Springer, 2003.

[2] B. Brejová, D. G. Brown, and T. Vinař. Vector seeds: an extension to spaced
seeds allows substantial improvements in sensitivity and specificity. In Proc.

3rd International Workshop on Algorithms and Bioinformatics, volume 2812 of
Lecture Notes in Bioinformatics, pages 39–54. Springer, 2003.

[3] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, 35:677–691, 1986(8).

67

Proceedings of the Prague Stringology Conference ’04

[4] R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys, 24:293–318, 1992(3).

[5] S. Burkhardt. Filter Algorithms for Approximate String Matching. PhD thesis,
Department of Computer Science, Saarland University, 2002. http://www.mpi-
sb.mpg.de/˜stburk/thesis.ps.

[6] S. Burkhardt and J. Kärkkäinen. Better filtering with gapped q-grams. In
Proc. 12th Annual Symposium on Combinatorial Pattern Matching, volume 2089
of LNCS, pages 73–85. Springer, 2001.

[7] S. Burkhardt and J. Kärkkäinen. Better filtering with gapped q-grams. Funda-

menta Informaticae, 56(1–2):51–70, 2003.

[8] A. Califano and I. Rigoutsos. FLASH: A fast look-up algorithm for string homol-
ogy. In Proc. 1st International Conference on Intelligent Systems for Molecular

Biology, pages 56–64. AAAI Press, 1993.

[9] K. P. Choi, F. Zeng, and L. Zhang. Good spaced seeds for homology search.
Bioinformatics, 20(7):1054–1059, 2004.

[10] K. P. Choi and L. Zhang. Sensitivity analysis and efficient method for identifying
optimal spaced seeds. Journal of Computer and System Sciences, 68:22–40, 2004.

[11] M. Fontaine. Computing the filtration efficiency of shape-index-filters for ap-
proximate string matching. Master’s thesis, Dept. of Computer Science, Saarland
University, Nov 2003. http://www.mpi-sb.mpg.de/˜fontaine/thesis.ps.

[12] U. Keich, M. Li, B. Ma, and J. Tromp. On spaced seeds for similarity search.
Discrete Applied Mathematics, 138(3):253–263, 2004.

[13] G. Kucherov, L. Noé, and M. Roytberg. Multi-seed lossless filtration. To appear
in CPM 2004.

[14] M. Li, B. Ma, D. Kisman, and J. Tromp. PatternHunter II: Highly Sensitive and
Fast Homology Search. Journal of Bioinformatics and Computational Biology,
2004. To appear. Early version in GIW 2003.

[15] B. Ma, J. Tromp, and M. Li. Patternhunter: faster and more sensitive homology
search. Bioinformatics, 18:440–445, 2002.

[16] L. Noè and G. Kucherov. YASS: Similarity search in DNA sequences. Technical
report, INRIA Tech report 4852, 2003.

[17] Y. Sun and J. Buhler. Designing multiple simultaneous seeds for DNA simi-
larity search. In Proceedings of the eighth annual international conference on

Computational molecular biology, pages 76–84, 2004.

[18] J. Xu, D. Brown, M. Li, and B. Ma. Optimizing multiple spaced seeds for
homology search. To appear in CPM 2004.

68

