
Conditional Inequalities and the Shortest Common

Superstring Problem

Uli Laube and Maik Weinard

Institut für Informatik
Johann Wolfgang Goethe-Universität Frankfurt am Main

Robert-Mayer-Straße 11-15
60054 Frankfurt am Main, Germany

e-mail: {laube,weinard}@thi.cs.uni-frankfurt.de

Abstract. We investigate the shortest common superstring problem (SCSSP).
As SCSSP is APX-complete it cannot be approximated within an arbitrarily
small performance ratio. One heuristic that is widely used is the notorious
greedy heuristic. It is known, that the performance ratio of this heuristic is
at least 2 and not worse than 4. It is conjectured that the greedy heuristic’s
performance ratio is in fact 2 (the greedy conjecture). Even the best algorithms
introduced for SCSSP can only guarantee an upper bound of 2.5.

In [11] an even stronger version of the greedy conjecture is proven for a re-
stricted class of orders in which strings are merged. We extend these results
by broadening the class for which this stronger version can be established. We
also show that the Triple inequality, introduced in [11] and crucial for their
results, is inherently insufficient to carry the proof for the greedy conjecture in
the general case. Finally we describe how linear programming can be used to
support research along this line.

Keywords: Shortest Superstring, Greedy Heuristic, Performance Ratio

1 Introduction

Given a set of n strings S = {s1, . . . , sn}, the shortest common superstring problem
(SCSSP) is to find a string s such that each si is a substring of s, and such that s is
as short as possible. We may assume without loss of generality, that no string si is a
substring of another string sj for i 6= j.

Apart from being an interesting problem in itself, SCSSP models parts of the
reconstruction process in DNA-sequencing [4], since DNA-fragments can be described
as strings. Data compression is another area where SCSSP is used [8].

SCSSP is proven to be NP-complete by Maier and Storer [6]. It is known from the
work of Blum et al. [2] that SCSSP is APX-complete. According to Arora et al. [1]
such problems do not have a polynomial-time approximation scheme, unless P=NP.

The crucial part of the problem is to find the best order in which the strings si

should appear in the superstring. Once an order is fixed the superstring can be easily
constructed by greedily pulling a string as far as possible over its predecessor in the
given order, hence exploiting the greatest possible overlap.

124

Conditional Inequalities and the Shortest Common Superstring Problem

Definition 1 Consider two strings a and b. The overlap of a and b is the longest
proper suffix of a that is also a proper prefix of b. Its length is denoted by |a, b|.

For a given permutation π the superstring described by π (denoted sπ) has the
length

|sπ| =

n
∑

i=1

|si| −

n−1
∑

i=1

|sπ(i), sπ(i+1)|.

The greedy heuristic can be used to approximate the superstring s by repeatedly
merging strings with maximal overlap until only one string is left:

1. Input: A set S of n strings.

2. while |S| > 1

(a) Choose a, b ∈ S with maximal overlap |a, b| and a 6= b.

(b) Let c be the partial superstring that is created by concatenating a

and the suffix of b, that does not belong to (a, b).

(c) Let S :=
(

S \ {a, b}
)

∪ {c}.

3. Output: The one string left in S.

As we obtain a partial superstring in every step, the output will be a superstring
for the strings in S.

It has been conjectured by Turner [10] that this greedy heuristic has an approx-
imation factor of 2 (the greedy conjecture). A simple example given by Turner [10]
establishes that the approximation factor of the greedy heuristic is no better than 2.
Blum et al. [2] prove that the greedy heuristic achieves an approximation factor of
4 and these are still the best known upper and lower bounds for the performance of
the greedy heuristic.

A 3-approximation algorithm derived from the greedy heuristic is presented by
Blum et al. in the same paper. Since then a series of results has been published,
improving the approximation factor to 21

2
[9]. This was achieved by developing more

and more sophisticated algorithms.
However it is known, that the greedy heuristic has approximation factor 2, if one

is interested in maximizing the total amount of overlap exploited (as opposed to min-
imizing the length of the resulting superstring). Moreover a straightforward variation
of the greedy heuristic is able to find optimal cycle covers. Hence we seeked insight
as to why the greedy superstring conjecture appears so hard to verify. Therefore we
searched systematically for interesting instances of the problem by introducing greedy
orders. In section 2 we will describe our approach and introduce the mice game, which
resembles the task of proving the greedy superstring conjecture in a tricky way and
allows to exploit conditional linear inequalities like the prominent Monge inequality.

First results of this approach are shown in Weinard and Schnitger [11]: It is possi-
ble to verify an even stronger version of the greedy conjecture for a restricted class of
orders in which strings are merged. A second result shows that the established condi-
tional inequalities are insufficient to prove the greedy conjecture even in the classical
form. A new conditional inequality – called the Triple inequality – is introduced,
that carries the proof for the stronger version. We will briefly describe these results
in section 2.

125

Proceedings of the Prague Stringology Conference ’04

In this paper we extend the results from [11]: We increase the number of greedy
orders for which the stronger conjecture holds from Θ(2n) to Θ(4n). We further show
that the Triple inequality [11] is inherently too weak to prove the greedy conjecture
for the general case. These results will be presented in sections 3 and 4.

To support a systematical search for interesting instances of the problem we devel-
oped the software tool SINDBAD that turned out to be extremely helpful in achieving
the results of [11] and the results of this paper. We will describe the major features
of SINDBAD in section 5.

2 From SCSSP to the Mice Game

The difficult part of SCSSP is to find an optimal order in which to arrange the n

strings. We can assume without loss of generality, that the greedy heuristic merges the
strings into the order s1, s2, . . . , sn. The greedy heuristic achieves this by repeatedly
merging two partial superstrings. We call the order in which the partial superstrings
are merged the greedy order. We define the greedy order as a sequence of pairs
(si, si+1) that indicate, in which order the ends of the partial superstrings are merged
by the greedy heuristic.

The length of a superstring is the sum of the lengths of the strings in S =
{s1, s2, . . . , sn} minus the overlaps of the consecutive strings

|sπ| =

n
∑

i=1

|si| −

n−1
∑

i=1

∣

∣sπ(i), sπ(i+1)

∣

∣ (1)

given a permutation π, which defines the superstring. A cycle cover Cσ of the strings
in S is a set of disjoint cycles C1, C2, . . . , Cr. The length of a cycle cover is

|Cσ| =
n

∑

i=1

|si| −
n

∑

i=1

∣

∣si, sσ(i)

∣

∣ (2)

for a bijection σ, which indicates the successor of string si in the cycle cover.
The classical greedy conjecture is

|s| ≤ 2 · |s∗|, (3)

where |s| is the length of the superstring defined by the greedy heuristic and |s∗| is
the length of the optimal superstring. In [11] a stronger version is proposed:

|s| ≤ |s∗| + |C∗|, (4)

where |C∗| is the length of an optimal cycle cover. This conjecture is stronger because
the length of the optimal cycle cover is not longer than |s∗|. For technical reasons –
following [11] – our goal is to prove a variation of the stronger version:

∀ π∀σ : |s◦| ≤ |s◦π| + |Cσ| (5)

where |s◦| is the length of the superstring s when it is closed as a cycle. Therefore
|s◦| = |s|− |sn, s1| where |s| is the length of the superstring that is determined by the

126

Conditional Inequalities and the Shortest Common Superstring Problem

greedy order. We compare |s◦| with the length of an alternative closed superstring s◦π
plus the length of an alternative cycle cover Cσ. Thus |s◦π| = |sπ| −

∣

∣sπ(n), sπ(1)

∣

∣.
In [11] it is shown that equation (5) implies equation (4). Replacing the terms in

equation (5) with the expressions above and rearranging sums yields:

∀ π∀σ :
n−1
∑

i=1

∣

∣sπ(i), sπ(i+1)

∣

∣ +
∣

∣sπ(n), sπ(1)

∣

∣ +
n

∑

i=1

∣

∣si, sσ(i)

∣

∣ ≤

n
∑

i=1

|si| +

n−1
∑

i=1

∣

∣si, si+1

∣

∣ + |sn, s1| (6)

Hence we have to bound the 2n terms on the left-hand side by the 2n terms on the
right-hand side. To achieve this we need to exploit properties of strings. Two trivial
inequalities that can be used follow from the definition of the overlap. Let si, sj be
two strings with i 6= j then |si, sj| < |si| and |si, sj| < |sj| hold.

Definition 2 Let s and u be strings and |u| = p. The string s is p-periodic if and
only if s is a prefix of uk for some k. If s is ps-periodic and ps is minimal, then ps is
a minimum period of s.

A consequence of Definition 2 is the equality |si, si| = |si|−|psi
| and hence |si, si| < |si|

follows. These simple inequalities are of course insufficient to prove equation (6).
Our approach is to use conditional inequalities, i.e. linear inequalities that hold

whenever a condition, that is also a set of linear inequalities, holds. An example of a
conditional inequality is the one observed by Gaspard Monge [7] in 1781.

Lemma 1 Let a, b, c, d be strings. Given that |a, d| ≤ |a, b| and |c, b| ≤ |a, b| the
inequality |a, d| + |c, b| ≤ |a, b| + |c, d| holds. Moreover the variant |a, d| + |c, a| ≤
|a| + |c, d| holds without prerequisites.

In [11] another conditional linear inequality, the Triple inequality, is introduced.

Lemma 2 Let a, b, c, d, x be strings. Given that max
{

|a, x|, |x, b|
}

≥ |a, b|, |x, d|, |c, x|
then |a, b| + |x, d| + |c, x| ≤ |a, x| + |x, b| + |c, d| + |px| holds.

In order to apply these conditional inequalities we need to fix the greedy orders
because the greedy order provides a partial order on the overlaps. This order will
establish the premises of some conditional inequalities thereby allowing us to exploit
the conditioned inequality. As a consequence we have to prove (6) for all g ∈ G, where
G is the set of all greedy orders. Note that for a given n, there are (n − 1)! greedy
orders. The following example illustrates these concepts.

Example 1 Let us use conditional inequalities and prove our inequality (6) for
n = 5, a fixed greedy order

(

(s1, s2), (s4, s5), (s3, s4), (s2, s3)
)

, an alternative su-
perstring s5, s4, s1, s3, s2 and

{

(s1, s5, s3, s2, s1), (s4, s4)
}

as a cycle cover. Hence
π = (5, 4, 1, 3, 2) and σ(1) = 5, σ(2) = 1, σ(3) = 2, σ(4) = 4, σ(5) = 3.

The partial order on the right of Fig.1 is the one induced by the given greedy
order. At first the heuristic picks the overlap (s1, s2) and hence this overlap is larger
than every other possible overlap. When, in the second step, greedy chooses to use
(s4, s5) some of the other overlaps are no longer an option due to the choice in the

127

Proceedings of the Prague Stringology Conference ’04

|s3, s2| ≤ |s2|

|s1, s5| + |s3, s2| ≤ |s1, s2| + |s3, s5|

|s1, s3| + |s2, s1| ≤ |s1| + |s2, s3|

|s2, s5| + |s5, s4| ≤ |s2, s4| + |s5|

|s2, s4| ≤ |s3, s4|

|s3, s5| + |s4, s1| ≤ |s3, s1| + |s4, s5|

|s3, s1| + |s5, s3| ≤ |s3| + |s5, s1|

|s4, s4| ≤ |s4|

1,2

4,53,2 4,2 5,2 1,3 1,4 1,5 2,1

3,44,1 4,3 3,5 2,5 5,4

2,33,1 2,4 5,3

5,1

Figure 1: Proof and partial order

first round. Hence we can only exploit that (s4, s5) is larger than the overlaps still
usable at the time. On the left we give a set of inequalities that sum up to equation
(6) for this special case. The second and the sixth inequality are instances of the
Monge inequality and their applicability can be verified with the partial order. (For
example inequality 6 requires |s4, s5| ≥ |s3, s5| and |s4, s5| ≥ |s4, s1|.)

This setup leads to the question: Which (conditional) inequalities should be used
and which terms, that do not appear on either side of (6), should be introduced? For
instance the introduction of the valid inequality |s1, s5|+ |s4, s1| ≤ |s1|+ |s4, s5| in our
example above would’ve made it impossible to complete the proof. We are implicitly
asked to pick the appropriate linear inequalities. This task can be visualized as a
game, that was first introduced in [11] and that is called the mice game.

The mice game is played on a n × n-board (see Figure 2(a)). The cells represent
the length of the n2 possible overlaps of the n strings. The cells on the diagonal
have two interpretations: They represent the length of the self-overlap |si, si| and the
length of string |si| itself.

We assign a rank to the cells of the board, based on the partial order of the
overlaps as given by the greedy order. We assign a rank of n − r to the cell whose
pair was chosen as rth pair and to all the cells whose pair was thereby eliminated as
a possible choice for the greedy heuristic. Hence we know that an offdiagonal cell
(si, si+1) represents a value at least as big as the value of every cell with equal or
lower rank. (Note that the ranks correspond to the levels in Figure 1.)

Example 1 continued. Let us revisit our previous example. Figure 2(a) shows the
board. The cells on the diagonal are divided into an inner and an outer part. The
inner part represents the length of the string |si| itself (the diagonal holes) and the
outer part the length of the self-overlap of the string |si, si|. The cells with an ellipse
will be refered to as the greedy holes.

The permutation π and the bijection σ determine the cells that contain the mice
at the begining of the game. The cells are

∣

∣sπ(i), sπ(i+1)

∣

∣,
∣

∣sπ(n), sπ(1)

∣

∣ and
∣

∣si, sσ(i)

∣

∣, the
start-configuration of the game (Figure 2(b)). The mice shown as circles are placed
according to the bijection that defines the cycle cover

{

(s1, s5, s3, s2, s1), (s4, s4)
}

.
The mice shown in black are placed according to the permutation that defines the
alternative superstring s5, s4, s1, s3, s2. For the course of the game the mice are indis-
tinguishable, they are shown differently here to illustrate their origin.

A move is described by a set of start-cells and a set of end-cells. The move is
justified by an inequality that guarantees that the sum of the lengths represented

128

Conditional Inequalities and the Shortest Common Superstring Problem

s1 s2 s3 s4 s5

s5

s4

s3

s2

s1

4 4 4 4

4 1 2 3

2 4 2 3

3 4 3 3

1 423

(a) Board with ranks.

s1 s2 s3 s4 s5

4 4 4 4

4 1 2 3

2 4 2 3

3 4 3 3

1 423

b

b

b

b

b

(b) A start-configuration.

s1 s2 s3 s4 s5

s5

s4

s3

s2

s1

4 4 4 4

4 1 2 3

2 4 2 3

3 4 3 3

1 423

b

b

b

b

b

(c) First three moves.

Figure 2: The board of the mice game

by the start-cells is not greater than the sum of the lengths represented by the end-
cells. The moves inherit the name of the inequality that justifies them. Figure 2(c)
shows the moves that correspond to the first three inequalities from the first part
of Example 1. Firstly a diagonal insertion, secondly a greedy monge and thirdly a
diagonal monge. (If we move a mouse from the outer to the inner part of a diagonal,
using |si, si| < |si| we call this discarding a period.) Applying the moves of all the
inequalities listed in the example, brings all the mice into their holes, which is the
objective of the game. A hole can only accomodate one mouse. Sucessfully moving
the mice into their holes will be refered to as winning the game. Not used in this
example is the Triple inequality, its intertrepation as a move in the game is shown
below. The premises of the inequality are indicated by a sequence of arrows.

a

b x d

x

c

b

b

b

b

a

x

c

bxd

b

b

b

b

Figure 3: The horizontal and vertical Triple.

Winning the mice game hence corresponds to finding a derivation of the right-
hand side (the end-configuration of the game) of equation (6), starting from the
left-hand side (the start-configuration of the game). That is a proof of equation (6)
for permutation π and bijection σ.

Note that we only use the properties of the strings described by the conditional lin-
ear inequalities. We do not have to care about the structure of the strings themselves,
only their lengths and the lengths of their overlaps are sufficient in this case.

If we do this for every permutation π and bijection σ, we have proven the con-
jecture for a single greedy order (a single board). As we want to prove equation (6)
for arbitrary n, we cannot handle all π and σ individually. We have to search for a
winning strategy for the mice game, that is a set of rules according to which the mice
should be moved. The Rank Descending Algorithm [11] is a winning strategy for the
mice game for the restricted case of linear greedy orders. A linear greedy order is an
order in which the greedy heuristic starts with an arbitrary overlap (si, si+1) and in
later steps, when sj , . . . , sk is already created, either picks (sj−1, sj) or (sk, sk+1).

129

Proceedings of the Prague Stringology Conference ’04

3 Extension of the Rank Descending Algorithm

We now introduce our extension of the simple Rank-Descending-Algorithm (RDA),
the Duplex Rank-Descending-Algorithm (DPX-RDA), that will prove the greedy con-
jecture for Θ(4n) greedy orders, thus squaring the number of orders covered in com-
parison to the simple RDA, that could only cover Θ(2n) orders [11].

Definition 3 A greedy order corresponds to one distinct distribution of ranks on the
offdiagonal of the mice board.

1. A greedy order is linear, if there exists i such that rank(1, 2) < rank(2, 3) <

. . . < rank(i, i + 1) > rank(i + 1, i + 2) > . . . > rank(n − 1, n).

2. A greedy order is bilinear, if there exist i, k and w such that rank(1, 2) <

rank(2, 3) < . . . < rank(i, i + 1) > rank(i + 1, i + 2) > . . . > rank(w, w + 1) =
1 < rank(w + 1, w + 2) < . . . < rank(k, k + 1) > rank(k + 1, k + 2) > . . . >

rank(n − 1, n)

The concept of subboards is essential for understanding both the RDA and the
DPX-RDA. We extend the definition in [11] by introducing definitions 4.1b and 4.1c.

Definition 4 1a. The subboard Boardi,j (with i ≤ j) is the set of all cells in the
intersection of rows and columns {i . . . j}.

1b. The subboard Boardi,j (with i > j) is the set of all cells in the intersection of
rows and columns {1 . . . j} ∪ {i . . . n}.

1c. For i ≤ j we say that Boardi,j and Boardj+1,i−1 are complementary boards.

2. Let B = Boardi,j. The horizontal [vertical] frame of B is the set of all cells
that belong to a row [column] of Boardi,j, but not to one of its columns [rows].
The frame of B is the union of its horizontal and vertical frame.

3. Let B = Boardi,j. We define G1(B) to be the greedy cell in position (j, j + 1),
if existing, and G2(B) to be the greedy cell in position (i− 1, i), if existing. We
further define the neighbouring diagonal cells, N(G1(B)) := (j + 1, j + 1) and
N(G2(B)) := (i − 1, i − 1), if existing.

1 i j n

n

j

i
horiz.
Frame

horiz.
Frame

vert.
Frame

vert.
Frame

Boardi,j i ≤ j

1 j i n

n

i

j
vert.
Frame

vert.
Frame

horiz.
Frame

horiz.
Frame

Boardi,j j < i

1 i j n

n

j

i
B

G1(B)

N(G1(B))

G2(B)N(G2(B))

Figure 4: Complementary Boards and Frames

130

Conditional Inequalities and the Shortest Common Superstring Problem

The Duplex-Rank Descending Algorithm

(1) The input consists of a superstring s◦, a cycle cover C and a bilinear greedy
sequence.

(2) Preprocessing

(2a) Place a mouse on position (u, v), if string sv immediatly follows su in s◦ or
in C. If sv is the immediate successor of su in both s◦ and C, then (u, v)
receives two mice. If a mouse is placed on a diagonal (u, u) it is placed in
the outer part.

(2b) Let i, k and w be chosen according to the definition of bilinearity in Defi-
nition 3. Set B1 = Boardi,i and B2 = Boardk,k

(2c) If (i, i) contains a mouse, then discard its period. Otherwise execute a
diagonal monge in (i, i). If (k, k) contains a mouse, then discard its period.
Otherwise execute a diagonal monge in (k, k).

(3) Main Loop

while B1 6= Board1,w or B2 6= Boardw+1,n

Let G be the highest ranked greedy cell among G1(B1), G2(B1), G1(B2), G2(B2)

Does G contain a mouse?

yes no

Does N(G) hold a mouse? Does N(G) contain a mouse?

yes no no yes

Discard period Greedy Monge Is the Triple in G, N(G) legal?

in N(G) in G no yes

Greedy Monge in G Triple

Diagonal Monge in N(G) Discard period in N(G)

Extend the Bi, that G is incident to, to include G

By the preprocessing step (2) two subboards B1, B2 are provided that fulfill the
following 5 invariants. In [11] the corresponding invariants for a single subboard
were used.

I1 Every row and every column of the board contains 2 mice.

I2 Every hole in B1 and B2 is filled.

I3 No diagonal outside of B1 and B2 holds a mouse in the inner part.

I4 No diagonal contains more than one mouse.

I5.1 For all subboards B′ with B1 ⊆ B′ 6= Board1,n the frame of B′ is not empty.

I5.2 For all subboards B′ with B2 ⊆ B′ 6= Board1,n the frame of B′ is not empty.

It is easy to verify that these invariants hold after the preprocessing step. (I5 holds
since s◦ is a single cycle.) We call a move legal if it does not violate any of the invari-
ants. The main loop of the DPX-RDA grows the two subboards by systematically
filling the greedy cell of highest rank that is not yet in B1 or B2. The body of the
loop is essentially the same as in the simple RDA. Only the stop condition needs
adjustment and the set of greedy cells to pick from is different. Note, that w is picked
according to Definition 3.

131

Proceedings of the Prague Stringology Conference ’04

Invariant I1 will be preserved as the moves used, leave the number of mice per
row and column unchanged. Furthermore Bi only grows if new holes are filled. Hence
I2 is established once the existence of the required moves is shown. If a mouse steps
on a diagonal cell that is not about to be included into a Bi it only enters the outer
part.

The proof of the existence of the moves required by the DPX-RDA, as well as
maintaining invariants I4 and I5 is rather involved even for the simple RDA [11].
Luckily most of the observations establishing the existence of the moves and invariants
I4 and I5 follow from [11]. In [11] the invariants are shown for one growing subboard
B. These arguments remain valid and we only need to provide additional arguments
to make sure that the two boards do not interfere with each other.

Hence the remaining arguments are organized as follows: For the existence of the
moves we need Lemma 3. Once we have established that the moves exist, I4 holds,
since it holds for both Bi individually. As to I5 we inherit from [11], that no move
enlarging Bi will clear the frame of a subboard B′ that includes Bi. Lemma 4 will
guarantee that a move enlarging one of the Bi will not clear the frame of a board B′

that includes the other Bi. Finally in Lemma 5 we argue that the preserved invariants
together with the stop condition of the main loop yield a won game.

We call a mouse free, if it is not in a hole and not on a diagonal.

Lemma 3 The rank of the greedy cell G, that is about to be filled at a given time, is
high enough to dominate every free mouse on the board.

Proof: When DPX-RDA tries to fill G, all the greedy cells of higher rank and their
neighbouring diagonals are already filled by I2. By I1, there are only two mice in
every row and column, no free mouse can be in the row or the column of a greedy
cell already taken care of. In fact only the cell located in the bottom left corner of
the Bi, that is about to be extendend, has a rank higher than G and could hold a
mouse without violating I1. But in this case I5 would be violated, since the frame of
Bi itself would be free of mice. ⋄

Lemma 4 If a move in G that extends Bi does not violate I5.i it will not violate I5.k
either (with i, k ∈ {1, 2}, i 6= k).

Proof: Assume the opposite, namely that the frame of a board B′ with Bk ⊆ B′

gets cleared while no subboard B′′ ⊇ Bi, whose frame gets cleared, exists. Observe
that the frames of B′ and B′ are identical. But since Bi and Bk do not intersect,
Bi ⊆ B′ holds and we have a contradiction with B′′ = B′. ⋄

Lemma 5 At the end of the main loop of the DPX-RDA the game is won.

Proof: All the invariants are preserved and we have B1 = Board1,w and B2 =
Boardw+1,n. As all the holes in B1 and B2 are filled, the positions of the two mice in
rows 1 to w − 1 and w + 1 to n − 1 as well as columns 2 to w and w + 2 to n are
fixed. One of the mice in rows w and n as well as the columns 1 and w + 1 is also
accounted for. Only two possible arrangements for the last two mice do not violate
I1: They are either on (w, 1) and (n, w+1) or on the winning position (w, w+1) and
(n, 1). The first arrangement contradicts I5 for B1 and B2. ⋄

It should be noted, that only Lemma 5 can not be extended to tri-linear or more
complex greedy orders.

132

Conditional Inequalities and the Shortest Common Superstring Problem

4 Limitations of the Triple Inequality

The Monge and the Triple inequalities (plus the trivial ones that correspond to in-
sertions) are used in [11] to prove the strong version of the greedy conjecture (4)
for linear greedy orders. In section 3 these inequalities are used to prove the strong
version (5) for bilinear greedy orders. In [11] it is shown, that the Triple inequality is
crucial, i.e. it is impossible to prove even the weaker classical greedy conjecture with
just the Monge inequality.

We will now show that it is not possible to prove the classical greedy conjecture for
arbitrary greedy orders with just the elementary inequalities, the Monge inequality
and the Triple inequality. We do this by providing a 10 × 10 board that fulfills all
these inequalities and still violates |s| ≤ 2 · |sπ| for a given π.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

5 7 8 5 5 5 9 5 6
s1 i+5

i+4 i+3 i+1 0 0 0 i+1 i+2 i+1
7 7 8 7 7 7 9 7 7

s2 i+1 3i+10
3i+9 3i+3 i i 2i+2 3i+3 3i+5 3i+4

8 8 8 8 8 8 9 8 8
s3 0 0 4i+10

4i+4 i i 3i 4i+2 i i
5 7 8 3 3 3 9 4 6

s4 0 0 0 4i+5
i i 0 i i i

3 5 7 8 1 2 9 4 6
s5 0 0 0 0 i+1

0 0 0 0 0
2 5 7 8 3 2 9 4 6

s6 0 0 0 i i i+1
0 i i i

9 9 9 9 9 9 9 9 9
s7 0 0 0 4i+2 i i 4i+6

4i+4 i i
4 5 7 8 4 4 9 4 6

s8 0 0 i+2 4i i i 4i+2 5i+6
i+1 m

6 6 7 8 6 6 6 9 6
s9 i+1 i+1 3i+8 3i+3 i i 2i+2 3i+3 4i+10

3i+6

1 5 7 8 3 2 4 9 6
s10 0 i+2 2i+4 2i+2 0 0 i+1 2i+2 3i+6 3i+8

s.o. 0 i+1 0 i 0 i 3i 4i 3i+4 2i+2

This board describes the overlaps and lengths of 10 strings. A greedy order is given
by the ranks in the little boxes. The diagonal shows the lengths of the strings and the
extra row in the bottom indicates the overlaps of the strings with themselves. It can
be checked exhaustively, that this board fulfills all the inequalities mentioned. The
length of the strings on the diagonal sum up to 30i+62. The greedy locations on the
offdiagonal accomodate a total value of 17i+28. We use π = (1, 2, 10, 9, 3, 8, 7, 4, 6, 5)
for the superstring sπ. The locations of the overlaps exploited by this superstring
sum up to 24i + 28. Subtracting the greedy overlaps from the lengths of the strings
gives the length of the superstring of the greedy heuristic as 13i + 34. The length of
the alternative superstring sπ is 6i + 34. As we may choose i arbitrarily, the ratio
approaches 21

6
.

This shows, that a proof of the greedy conjecture needs to exploit string properties
beyond the Triple and the Monge inequality.

133

Proceedings of the Prague Stringology Conference ’04

5 SINDBAD

SINDBAD is the name of a software tool that we developed to support the research
on SCSSP. The introduction of greedy orders gives the greedy conjecture a shape
with four quantifiers

∀n ∀g ∈ Gn ∀π ∀σ : |s◦| < |s◦π| + |Cσ|.

For most instances (that is values of n, g, π and σ) the proof can be done with the
established conditional inequalities. In order to proceed one must find instances, that
cannot be covered with the means available. The use of calculation power is the
logical consequence.

One important feature is SINDBAD’s enumeration mode. It can automatically
determine all valid moves on the board for a given greedy order and check whether
the game on such a board can be won against a given alternative superstring π and
a given cycle cover σ. To do this a linear program (LP), depending on the current
configuration of the game is generated and evaluated. SINDBAD found the first
instance of a game with linear greedy order for which the classical greedy conjecture
can not be proven just with insertions and monges [11]. It was nessecary to check
boards up to a size of 9×9 to encounter such an instance. The matrix from section 4
was also found using SINDBAD. (For more on the linear program and on how to define
an intermediate performance ratio for arbitrary game configurations see subsection
5.1.)

SINDBAD also provides a manual mode that allows to play the mice game on
arbitrary boards against arbitrary π and σ via a graphical interface. Playing the
mice game manually allows interesting insights: In a game that can be won, there
will still be legal moves that destroy the property, that the game can be won. Being
able to locate these bad moves is extremely helpful when working on strategies. The
invariants both of the RDA and of the DPX-RDA embody experience, as to what
moves destroy the winning property of a game. In a game bound to be lost, one will
probably still find valid moves. A deadend (that is a configuration with no legal move
left) yields an interesting question about strings: The linear program assigns lengths
to the strings and overlaps that agree with all the inequalities implemented. If a
performance ratio above 2 is still possible, the question is, whether it is possible to
construct a set of strings that behave like the solution of the linear program indicates.
If so, a counter example would be found. If on the other hand one can pinpoint
the reason why the construction of such strings is impossible, one has found a new
property of strings that is guaranteed to solve yet unsolved instances of the problem.
The Triple inequality was found in exactly that way. It seems fair to say that it
would have been very hard to recognize the usefulness of the Triple inequality for our
purposes without SINDBAD.

We also made it possible to implement game strategies into SINDBAD. Hence we
could quickly find instances for which a certain strategy fails. If such a game can be
won, but the strategy fails, one has a chance to improve the strategy. If it cannot be
won according to the LP, one gets a hint on the limits of the moves established so far.

Further usefull features include the possibility to work with assumptions. For a
given greedy order the partial order activates a set of conditional linear inequalities.
By adding assumptions like |a, b| ≥ |c, d| the set of legal moves grows. If a game can be

134

Conditional Inequalities and the Shortest Common Superstring Problem

won under this assumption and also under the assumption |a, b| ≤ |c, d|, the instance
is solved as well. SINDBAD supports the systematical search for these assumptions.
SINDBAD can also assign different capacities to the holes and work with different
numbers of mice. This makes it possible to work on weaker bounds for tough instances
and on stronger bounds for easy instances.

5.1 SINDBAD’s Linear Program

Writing a linear program to check the classical greedy conjecture on a given board
and given π is simple: Let xi,j represent the lengths of the overlaps and li the lengths
of the strings themselves. Let Q be the set of all inequalities that hold on the given
board.

max :
n

∑

i=1

li −
n−1
∑

i=1

xi,i+1

subject to : Q ∪

{

n
∑

i=1

li −

n−1
∑

i=1

xπ(i),π(i+1) ≤ 1

}

∀i, j : xi,j, li ≥ 0

The linear program assigns values to all lengths and overlaps that comply with the
constraints in Q and that produce a superstring sπ of length at most one. The
objective function is the length of the greedy superstring. Hence the value of the
optimal solution will be the best performance ratio that can be derived with the
given set of inequalities Q.

From a linear programming perspective it is worthwhile noticing, that the dual
problem [3, 5] of this implementation is a description of the mice game: There is a
nonnegative variable yq associated with every inequality q ∈ Q (hence yq is associated
with a move in the mice game). A further nonnegative variable t associated with the
inequality

∑n

i=1 xi −
∑n−1

i=1 xπ(i),π(i+1) ≤ 1 appears. As we don’t have any inequalities
in Q that include constants (i.e. all of them compare a linear combination of lengths
and overlaps to 0), the objective function of the dual problem just depends on the
variable t, that is to be minimized.

For every variable of the primal program (i.e. strings and overlaps, that is the
cells of the miceboard) a constraint arises. For a cell c define its balance as follows:

bal(c) :=
∑

q∈Q
q moves a mouse into c

yq −
∑

q∈Q
q moves a mouse out of c

yq. (7)

If we interpret the variables yq as the number of times move q is executed in a game,
bal(c) describes the balanced total of mice moving into and out of c during a game.
The constraints of our dual problem are:

bal(c) − t ≤ −1 iff c is a diagonal

bal(c) ≤ 1 iff c is a greedy cell

bal(c) + t ≤ 0 iff c is an initial mice position (sπ(i), sπ(i+1))

bal(c) ≤ 0 otherwise.

135

Proceedings of the Prague Stringology Conference ’04

(If a cell c should be a greedy cell and an initial mice position, its constraint is
bal(c) + t ≤ 1.) Remember, that the optimal solutions of primal and dual problem
have the same value. Hence, we can verify that the performance ratio is upper
bounded by 2, by giving a legal solution of the above inequalities with t = 2. That
is, we need to provide a set of legal moves, that move 2 mice out of every initial
position and respects the capacity constraints (1 for diagonal and offdiagonal, 0 for
every other cell) — the mice game.

This dual representation also shows how the mice game can be adapted in order
to prove bounds other than 2. If one is interested in proving a factor of 3 for instance,
the game needs to be won with 3 mice on every initial position, a capacity of 2 for
the diagonal holes and a capacity of 1 for the greedy holes. If we are interested in
non integer performance ratios we can still use the game by scaling the number of
mice and the capacities. To prove an upper bound of 2.5, we would play with 5 mice
on the initial positions, and capacities 3 resp. 2 for diagonals and greedy cells.

The adaptions necessary to work with cyclicly closed superstrings are obvious.
The cell (n, 1) is treated as a greedy cell and (π(n), π(1)) is included as an initial
position.

Crucial for our research was the ability to evaluate arbitrary game configurations,
that is configurations that might arise during a game and that do not have a straight
forward interpretation in terms of superstrings or cycle covers. Observe that the above
representation indicates a total of n · t mice, if we work with cyclic closure. In the
course of the game these mice (initially placed in groups of t on the initial positions)
will spread over more cells and different numbers of mice will be on different cells of
the board. In our dual representation the generalisation necessary is rather natural.

bal(c) − t ≤ −n · t · m(c) − 1 iff c is a diagonal

bal(c) ≤ −n · t · m(c) + 1 iff c is a greedy cell

bal(c) ≤ −n · t · m(c) otherwise,

where m(c) indicates the percentage of mice on cell c. (Hence
∑

c m(c) = 1 and
n·t·m(c) is the number of mice on cell c at a given time.) Observe that we still describe
the winning property of the game. To check how these adaptions are resembled in
the primal version we need to put the above back into the shape of a linear program.

min : t

bal(c) + (n · m(c) − 1) · t ≤ −1 iff c is a diagonal

bal(c) + (n · m(c)) · t ≤ 1 iff c is a greedy cell

bal(c) + (n · m(c)) ≤ 0 otherwise,

Retransfering we find that we still have the variables li and xi,j, we still have the
constraints from set Q and the objective function is still to maximize the length of
the greedy superstring

∑n

i=1 li −
∑n−1

i=1 xi,i+1 − xn,1.
The adaption to arbitrary game configurations is only resembled in the one in-

equality, that initially bounded the superstring sπ. It is replaced by

n
∑

i=1

li − n ·





∑

c=(i,j)

m(c) · xi,j +
∑

c is diagonal i

m(c) · li



 ≤ 1. (8)

136

Conditional Inequalities and the Shortest Common Superstring Problem

Observe that regular starting positions are embedded: In start configurations there
are no mice on diagonals and every starting position holds 2 mice, hence a fraction
of 1

n
of all mice on the board.

Figure 5: This is how SINDBAD looks like. SINDBAD is a KDE-Application writ-
ten in C++. We experimented with an interior-point and a simplex based solver.
The interior-point solver is a FORTRAN version of Csaba Mészáros’ BPMPD solver.
(http://www.sztaki.hu/∼meszaros/bpmpd). The simplex based solver is SoPlex

created by Roland Wunderling.

6 Conclusion

We have extended the class of greedy orders for which the greedy conjecture can be
verified and proved that a proof for the general case is not possible without exploiting
string properties beyond those used in [11]. Of course the conjecture for the general
case remains the open problem. We believe that the stronger version of the greedy
conjecture might turn out to be easier to prove. We are not aware of a counterexample
for the stronger version for any greedy order. We do believe, that the approach via
the dual problem (the mice game) can help focusing further research along this line as
we can pinpoint unsolved instances with the help of computers. Hence we are quickly
led to good questions about strings whose answers will cause progress in the work on
the greedy conjecture.

137

Proceedings of the Prague Stringology Conference ’04

7 Acknowledgements

We would like to thank Roland Wunderling for making SoPlex available [12].

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy: Proof verification
and hardness of approximation problems. Journal of the ACM, 45(3), 501–555,
May 1998.

[2] A. Blum, T. Jiang, M. Li, J. Tromp and M. Yannakakis: Linear approximation
of shortest superstrings. Journal of the ACM, 41(4), 630–647, July 1994.

[3] Vašek Chvǎtal: Linear Programming. W. H. Freemann and Company, 1983.

[4] T. Jiang, M. Li: DNA Sequencing and String Learning. Mathematical Systems
Theory (now Theory of Computing Systems), 29(4), 387–405, July/August
1996.

[5] H. Karloff: Linear Programming. Birkhäuser, 1991.

[6] D. Maier and J. A. Storer: A Note on the Complexity of the Superstring
Problem. In Proceedings of the 12th Annual Conference on Information
Sciences and Systems, 52–56, 1978.

[7] G. Monge: Mémoire sur la théorie des déblais et des remblais. Historie de
l’Academie Royale des Sciences, Année MDCCLXXXI, avec les Mémoires de
Mathématique et de Physique, pour la même Année, Tirés des Registres de
cette Académie, 666–704, 1781.

[8] J. A. Storer: Data Compression: Methods and Theory. Computer Science
Press, 1988.

[9] Z. Sweedyk: A 21
2
-Approximation Algorithm for Shortest Superstring. SIAM

Journal on Computing, 29(3), 954–986, December 1999.

[10] J. Turner: Approximation Algorithms for the Shortest Commom Superstring
Problem. Information and Computation, 83(1), 1–20, October 1989

[11] M. Weinard and G. Schnitger: On the Greedy Superstring Conjecture. In
Proceedings of the 23rd Conference on Foundations of Software Technology and
Theoretical Computer Science, Mumbai, India, LNCS 2914, 387–398, December
2003. Extended version:
http://www.thi.informatik.uni-frankfurt.de/∼weinard/

/indexE.html

[12] R. Wunderling: Paralleler und Objektorientierter Simplex-Algorithmus. Ph.D.
thesis, ZIB technical report TR 96-09, Berlin, 1996.
http://www.zib.de/PaperWeb/abstracts/TR-96-09

138

